some minor improvement on precision detection: checking only once (in prec and no longer in math and crystallite), added one more 4/8 switch for LAPACK, as there is no single precision FFTW, stopping compilation for spectral method if FLOAT=4
new function in IO to print integers without leading zeros, implemented it at some places in the new spectral solver (reporting still needs some serious polishing) updated preprocessing for documentation to handle precision correctly
This commit is contained in:
parent
b7dc9f9944
commit
22812c9a91
|
@ -31,7 +31,8 @@ program DAMASK_spectral_Driver
|
|||
IO_error, &
|
||||
IO_lc, &
|
||||
IO_read_jobBinaryFile, &
|
||||
IO_write_jobBinaryFile
|
||||
IO_write_jobBinaryFile, &
|
||||
IO_intOut
|
||||
|
||||
use math
|
||||
|
||||
|
@ -390,9 +391,11 @@ program DAMASK_spectral_Driver
|
|||
write(6,'(a)') '=================================================================='
|
||||
if(solres%converged) then
|
||||
convergedCounter = convergedCounter + 1_pInt
|
||||
write(6,'(A,I5.5,A)') 'increment ', totalIncsCounter, ' converged'
|
||||
write(6,'(A,'//IO_intOut(totalIncsCounter)//',A)') &
|
||||
'increment', totalIncsCounter, 'converged'
|
||||
else
|
||||
write(6,'(A,I5.5,A)') 'increment ', totalIncsCounter, ' NOT converged'
|
||||
write(6,'(A,'//IO_intOut(totalIncsCounter)//',A)') &
|
||||
'increment', totalIncsCounter, 'NOT converged'
|
||||
notConvergedCounter = notConvergedCounter + 1_pInt
|
||||
endif
|
||||
|
||||
|
|
|
@ -47,7 +47,8 @@ subroutine basic_init()
|
|||
|
||||
use IO, only: &
|
||||
IO_read_JobBinaryFile, &
|
||||
IO_write_JobBinaryFile
|
||||
IO_write_JobBinaryFile, &
|
||||
IO_intOut
|
||||
|
||||
use FEsolving, only: &
|
||||
restartInc
|
||||
|
@ -95,8 +96,8 @@ subroutine basic_init()
|
|||
- geomdim/real(2_pInt*res,pReal)
|
||||
enddo; enddo; enddo
|
||||
elseif (restartInc > 1_pInt) then ! using old values from file
|
||||
if (debugRestart) write(6,'(a,i6,a)') 'Reading values of increment ',&
|
||||
restartInc - 1_pInt,' from file'
|
||||
if (debugRestart) write(6,'(a,'//IO_intOut(restartInc-1_pInt)//',a)') &
|
||||
'Reading values of increment', restartInc - 1_pInt, 'from file'
|
||||
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',&
|
||||
trim(getSolverJobName()),size(F))
|
||||
read (777,rec=1) F
|
||||
|
@ -154,7 +155,8 @@ type(solutionState) function basic_solution(guessmode,timeinc,timeinc_old,P_BC,F
|
|||
geomdim, &
|
||||
deformed_fft
|
||||
use IO, only: &
|
||||
IO_write_JobBinaryFile
|
||||
IO_write_JobBinaryFile, &
|
||||
IO_intOut
|
||||
|
||||
use DAMASK_spectral_Utilities, only: &
|
||||
boundaryCondition, &
|
||||
|
@ -240,7 +242,7 @@ type(solutionState) function basic_solution(guessmode,timeinc,timeinc_old,P_BC,F
|
|||
! report begin of new iteration
|
||||
write(6,'(a)') ''
|
||||
write(6,'(a)') '=================================================================='
|
||||
write(6,'(3(a,i6.6))') ' Iter. ',itmin,' < ',iter,' < ',itmax + 1_pInt
|
||||
write(6,'(3(a,'//IO_intOut(itmax)//'))') ' Iter.', itmin, '<',iter, '<', itmax + 1_pInt
|
||||
write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =', &
|
||||
math_transpose33(F_aim)
|
||||
F_aim_lab_lastIter = math_rotate_backward33(F_aim,rotation_BC)
|
||||
|
@ -279,7 +281,6 @@ end function basic_solution
|
|||
!> @brief convergence check for basic scheme based on div of P and deviation from stress aim
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
logical function basic_Converged(err_div,pAvgDiv,err_stress,pAvgStress)
|
||||
|
||||
use numerics, only: &
|
||||
itmin, &
|
||||
err_div_tol, &
|
||||
|
@ -292,7 +293,6 @@ logical function basic_Converged(err_div,pAvgDiv,err_stress,pAvgStress)
|
|||
math_transpose33
|
||||
|
||||
implicit none
|
||||
|
||||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
pAvgDiv,&
|
||||
pAvgStress
|
||||
|
|
16
code/IO.f90
16
code/IO.f90
|
@ -62,7 +62,8 @@ module IO
|
|||
IO_countContinuousIntValues, &
|
||||
IO_continuousIntValues, &
|
||||
IO_error, &
|
||||
IO_warning
|
||||
IO_warning, &
|
||||
IO_intOut
|
||||
#ifndef Spectral
|
||||
public :: IO_open_inputFile, &
|
||||
IO_open_logFile
|
||||
|
@ -1267,6 +1268,17 @@ function IO_continuousIntValues(myUnit,maxN,lookupName,lookupMap,lookupMaxN)
|
|||
100 end function IO_continuousIntValues
|
||||
|
||||
|
||||
pure function IO_intOut(intToPrint)
|
||||
implicit none
|
||||
character(len=64) :: N_Digits
|
||||
character(len=64) :: IO_intOut
|
||||
integer(pInt), intent(in) :: intToPrint
|
||||
|
||||
write(N_Digits, '(I16.16)') 1_pInt + int(log10(real(intToPrint)),pInt)
|
||||
IO_intOut = '1x,I'//trim(N_Digits)//'.'//trim(N_Digits)//',1x'
|
||||
|
||||
end function IO_intOut
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief write error statements to standard out and terminate the Marc/spectral run with exit #9xxx
|
||||
!> in ABAQUS either time step is reduced or execution terminated
|
||||
|
@ -1384,8 +1396,6 @@ subroutine IO_error(error_ID,e,i,g,ext_msg)
|
|||
|
||||
!* errors related to spectral solver
|
||||
|
||||
case (808_pInt)
|
||||
msg = 'precision not suitable for FFTW'
|
||||
case (809_pInt)
|
||||
msg = 'initializing FFTW'
|
||||
case (831_pInt)
|
||||
|
|
|
@ -30,7 +30,7 @@
|
|||
!* - _postResults *
|
||||
!***************************************
|
||||
|
||||
MODULE crystallite
|
||||
module crystallite
|
||||
|
||||
use prec, only: pReal, pInt
|
||||
|
||||
|
@ -46,62 +46,61 @@ private :: crystallite_integrateStateFPI, &
|
|||
! ****************************************************************
|
||||
! *** General variables for the crystallite calculation ***
|
||||
! ****************************************************************
|
||||
|
||||
integer(pInt) crystallite_maxSizePostResults
|
||||
integer(pInt), dimension(:), allocatable :: crystallite_sizePostResults
|
||||
integer(pInt), dimension(:,:), allocatable :: crystallite_sizePostResult
|
||||
character(len=64), dimension(:,:), allocatable :: crystallite_output ! name of each post result output
|
||||
character(len=64), dimension(:,:), allocatable :: crystallite_output !< name of each post result output
|
||||
integer(pInt), dimension (:,:,:), allocatable :: &
|
||||
crystallite_symmetryID ! crystallographic symmetry 1=cubic 2=hexagonal, needed in all orientation calcs
|
||||
crystallite_symmetryID !< crystallographic symmetry 1=cubic 2=hexagonal, needed in all orientation calcs
|
||||
|
||||
real(pReal), dimension (:,:,:), allocatable :: &
|
||||
crystallite_dt, & ! requested time increment of each grain
|
||||
crystallite_subdt, & ! substepped time increment of each grain
|
||||
crystallite_subFrac, & ! already calculated fraction of increment
|
||||
crystallite_subStep, & ! size of next integration step
|
||||
crystallite_Temperature, & ! Temp of each grain
|
||||
crystallite_partionedTemperature0, & ! Temp of each grain at start of homog inc
|
||||
crystallite_subTemperature0, & ! Temp of each grain at start of crystallite inc
|
||||
crystallite_dotTemperature ! evolution of Temperature of each grain
|
||||
crystallite_dt, & !< requested time increment of each grain
|
||||
crystallite_subdt, & !< substepped time increment of each grain
|
||||
crystallite_subFrac, & !< already calculated fraction of increment
|
||||
crystallite_subStep, & !< size of next integration step
|
||||
crystallite_Temperature, & !< Temp of each grain
|
||||
crystallite_partionedTemperature0, & !< Temp of each grain at start of homog inc
|
||||
crystallite_subTemperature0, & !< Temp of each grain at start of crystallite inc
|
||||
crystallite_dotTemperature !< evolution of Temperature of each grain
|
||||
real(pReal), dimension (:,:,:,:), allocatable :: &
|
||||
crystallite_Tstar_v, & ! current 2nd Piola-Kirchhoff stress vector (end of converged time step)
|
||||
crystallite_Tstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of FE inc
|
||||
crystallite_partionedTstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of homog inc
|
||||
crystallite_subTstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of crystallite inc
|
||||
crystallite_orientation, & ! orientation as quaternion
|
||||
crystallite_orientation0, & ! initial orientation as quaternion
|
||||
crystallite_rotation ! grain rotation away from initial orientation as axis-angle (in degrees)
|
||||
crystallite_Tstar_v, & !< current 2nd Piola-Kirchhoff stress vector (end of converged time step)
|
||||
crystallite_Tstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of FE inc
|
||||
crystallite_partionedTstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of homog inc
|
||||
crystallite_subTstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of crystallite inc
|
||||
crystallite_orientation, & !< orientation as quaternion
|
||||
crystallite_orientation0, & !< initial orientation as quaternion
|
||||
crystallite_rotation !< grain rotation away from initial orientation as axis-angle (in degrees)
|
||||
real(pReal), dimension (:,:,:,:,:), allocatable :: &
|
||||
crystallite_Fe, & ! current "elastic" def grad (end of converged time step)
|
||||
crystallite_subFe0,& ! "elastic" def grad at start of crystallite inc
|
||||
crystallite_Fp, & ! current plastic def grad (end of converged time step)
|
||||
crystallite_invFp, & ! inverse of current plastic def grad (end of converged time step)
|
||||
crystallite_Fp0, & ! plastic def grad at start of FE inc
|
||||
crystallite_partionedFp0,& ! plastic def grad at start of homog inc
|
||||
crystallite_subFp0,& ! plastic def grad at start of crystallite inc
|
||||
crystallite_F0, & ! def grad at start of FE inc
|
||||
crystallite_partionedF, & ! def grad to be reached at end of homog inc
|
||||
crystallite_partionedF0, & ! def grad at start of homog inc
|
||||
crystallite_subF, & ! def grad to be reached at end of crystallite inc
|
||||
crystallite_subF0, & ! def grad at start of crystallite inc
|
||||
crystallite_Lp, & ! current plastic velocitiy grad (end of converged time step)
|
||||
crystallite_Lp0, & ! plastic velocitiy grad at start of FE inc
|
||||
crystallite_partionedLp0,& ! plastic velocity grad at start of homog inc
|
||||
crystallite_subLp0,& ! plastic velocity grad at start of crystallite inc
|
||||
crystallite_P, & ! 1st Piola-Kirchhoff stress per grain
|
||||
crystallite_disorientation ! disorientation between two neighboring ips (only calculated for single grain IPs)
|
||||
crystallite_Fe, & !< current "elastic" def grad (end of converged time step)
|
||||
crystallite_subFe0,& !< "elastic" def grad at start of crystallite inc
|
||||
crystallite_Fp, & !< current plastic def grad (end of converged time step)
|
||||
crystallite_invFp, & !< inverse of current plastic def grad (end of converged time step)
|
||||
crystallite_Fp0, & !< plastic def grad at start of FE inc
|
||||
crystallite_partionedFp0,& !< plastic def grad at start of homog inc
|
||||
crystallite_subFp0,& !< plastic def grad at start of crystallite inc
|
||||
crystallite_F0, & !< def grad at start of FE inc
|
||||
crystallite_partionedF, & !< def grad to be reached at end of homog inc
|
||||
crystallite_partionedF0, & !< def grad at start of homog inc
|
||||
crystallite_subF, & !< def grad to be reached at end of crystallite inc
|
||||
crystallite_subF0, & !< def grad at start of crystallite inc
|
||||
crystallite_Lp, & !< current plastic velocitiy grad (end of converged time step)
|
||||
crystallite_Lp0, & !< plastic velocitiy grad at start of FE inc
|
||||
crystallite_partionedLp0,& !< plastic velocity grad at start of homog inc
|
||||
crystallite_subLp0,& !< plastic velocity grad at start of crystallite inc
|
||||
crystallite_P, & !< 1st Piola-Kirchhoff stress per grain
|
||||
crystallite_disorientation !< disorientation between two neighboring ips (only calculated for single grain IPs)
|
||||
real(pReal), dimension (:,:,:,:,:,:,:), allocatable :: &
|
||||
crystallite_dPdF, & ! current individual dPdF per grain (end of converged time step)
|
||||
crystallite_dPdF0, & ! individual dPdF per grain at start of FE inc
|
||||
crystallite_partioneddPdF0, & ! individual dPdF per grain at start of homog inc
|
||||
crystallite_fallbackdPdF ! dPdF fallback for non-converged grains (elastic prediction)
|
||||
crystallite_dPdF, & !< current individual dPdF per grain (end of converged time step)
|
||||
crystallite_dPdF0, & !< individual dPdF per grain at start of FE inc
|
||||
crystallite_partioneddPdF0, & !< individual dPdF per grain at start of homog inc
|
||||
crystallite_fallbackdPdF !< dPdF fallback for non-converged grains (elastic prediction)
|
||||
logical, dimension (:,:,:), allocatable :: &
|
||||
crystallite_localPlasticity, & ! indicates this grain to have purely local constitutive law
|
||||
crystallite_requested, & ! flag to request crystallite calculation
|
||||
crystallite_todo, & ! flag to indicate need for further computation
|
||||
crystallite_converged ! convergence flag
|
||||
crystallite_localPlasticity, & !< indicates this grain to have purely local constitutive law
|
||||
crystallite_requested, & !< flag to request crystallite calculation
|
||||
crystallite_todo, & !< flag to indicate need for further computation
|
||||
crystallite_converged !< convergence flag
|
||||
|
||||
CONTAINS
|
||||
contains
|
||||
|
||||
|
||||
!********************************************************************
|
||||
|
@ -149,8 +148,6 @@ integer(pInt), parameter :: myFile = 200_pInt, &
|
|||
!*** input variables ***!
|
||||
real(pReal) Temperature
|
||||
|
||||
!*** output variables ***!
|
||||
|
||||
!*** local variables ***!
|
||||
integer(pInt), dimension(1+2*maxNchunks) :: positions
|
||||
integer(pInt) g, & ! grain number
|
||||
|
@ -1048,8 +1045,8 @@ use constitutive, only: constitutive_sizeDotState, &
|
|||
|
||||
implicit none
|
||||
|
||||
real(pReal), dimension(4), parameter :: timeStepFraction = (/0.5_pReal, 0.5_pReal, 1.0_pReal, 1.0_pReal/) ! factor giving the fraction of the original timestep used for Runge Kutta Integration
|
||||
real(pReal), dimension(4), parameter :: weight = (/1.0_pReal, 2.0_pReal, 2.0_pReal, 1.0_pReal/) ! weight of slope used for Runge Kutta integration
|
||||
real(pReal), dimension(4), parameter :: timeStepFraction = [0.5_pReal, 0.5_pReal, 1.0_pReal, 1.0_pReal] ! factor giving the fraction of the original timestep used for Runge Kutta Integration
|
||||
real(pReal), dimension(4), parameter :: weight = [1.0_pReal, 2.0_pReal, 2.0_pReal, 1.0_pReal] ! weight of slope used for Runge Kutta integration
|
||||
|
||||
!*** input variables ***!
|
||||
integer(pInt), optional, intent(in):: ee, & ! element index
|
||||
|
@ -3040,8 +3037,6 @@ LpLoop: do
|
|||
#elif(FLOAT==4)
|
||||
call sgetrf(9,9,inv_dR_dLp,9,ipiv,error) ! invert dR/dLp --> dLp/dR
|
||||
call sgetri(9,inv_dR_dLp,9,ipiv,work,9,error)
|
||||
#else
|
||||
NO SUITABLE PRECISION SELECTED, COMPILATION ABORTED
|
||||
#endif
|
||||
if (error) then
|
||||
#ifndef _OPENMP
|
||||
|
|
|
@ -903,15 +903,20 @@ function math_invSym3333(A)
|
|||
|
||||
real(pReal),dimension(3,3,3,3),intent(in) :: A
|
||||
|
||||
integer(pInt) :: ierr1, ierr2
|
||||
integer(pInt) :: ierr
|
||||
integer(pInt), dimension(6) :: ipiv6
|
||||
real(pReal), dimension(6,6) :: temp66_Real
|
||||
real(pReal), dimension(6) :: work6
|
||||
|
||||
temp66_real = math_Mandel3333to66(A)
|
||||
call dgetrf(6,6,temp66_real,6,ipiv6,ierr1)
|
||||
call dgetri(6,temp66_real,6,ipiv6,work6,6,ierr2)
|
||||
if (ierr1*ierr2 == 0_pInt) then
|
||||
#if(FLOAT==8)
|
||||
call dgetrf(6,6,temp66_real,6,ipiv6,ierr)
|
||||
call dgetri(6,temp66_real,6,ipiv6,work6,6,ierr)
|
||||
#elif(FLOAT==4)
|
||||
call sgetrf(6,6,temp66_real,6,ipiv6,ierr)
|
||||
call sgetri(6,temp66_real,6,ipiv6,work6,6,ierr)
|
||||
#endif
|
||||
if (ierr == 0_pInt) then
|
||||
math_invSym3333 = math_Mandel66to3333(temp66_real)
|
||||
else
|
||||
call IO_error(400_pInt, ext_msg = 'math_invSym3333')
|
||||
|
@ -945,8 +950,6 @@ subroutine math_invert(myDim,A, InvA, error)
|
|||
#elif(FLOAT==4)
|
||||
call sgetrf(myDim,myDim,invA,myDim,ipiv,ierr)
|
||||
call sgetri(myDim,InvA,myDim,ipiv,work,myDim,ierr)
|
||||
#else
|
||||
NO SUITABLE PRECISION SELECTED, COMPILATION ABORTED
|
||||
#endif
|
||||
if (ierr == 0_pInt) then
|
||||
error = .false.
|
||||
|
@ -2770,7 +2773,6 @@ function math_curlFFT(geomdim,field)
|
|||
wgt = 1.0_pReal/real(res(1)*res(2)*res(3),pReal)
|
||||
res1_red = res(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
|
||||
|
||||
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=808_pInt)
|
||||
call fftw_set_timelimit(fftw_timelimit)
|
||||
field_fftw = fftw_alloc_complex(int(res1_red *res(2)*res(3)*vec_tens*3_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8)
|
||||
call c_f_pointer(field_fftw, field_real, [res(1)+2_pInt,res(2),res(3),vec_tens,3_pInt])
|
||||
|
@ -2890,7 +2892,6 @@ function math_divergenceFFT(geomdim,field)
|
|||
res1_red = res(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
|
||||
wgt = 1.0_pReal/real(res(1)*res(2)*res(3),pReal)
|
||||
|
||||
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=808_pInt)
|
||||
call fftw_set_timelimit(fftw_timelimit)
|
||||
field_fftw = fftw_alloc_complex(int(res1_red*res(2)*res(3)*vec_tens*3_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8)
|
||||
call c_f_pointer(field_fftw, field_real, [res(1)+2_pInt,res(2),res(3),vec_tens,3_pInt])
|
||||
|
|
|
@ -38,6 +38,9 @@ module prec
|
|||
private
|
||||
|
||||
#if (FLOAT==4)
|
||||
#ifdef Spectral
|
||||
SPECTRAL SOLVER DOES NOT SUPPORT SINGLE PRECISION, STOPING COMPILATION
|
||||
#endif
|
||||
integer, parameter, public :: pReal = 4 !< floating point single precition (was selected_real_kind(6,37), number with 6 significant digits, up to 1e+-37)
|
||||
#ifdef LEGACY_COMPILER
|
||||
real(pReal), parameter, public :: DAMASK_NaN = Z'7F800001' !< quiet NaN for single precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran)
|
||||
|
@ -51,12 +54,16 @@ module prec
|
|||
#else
|
||||
real(pReal), parameter, public :: DAMASK_NaN = real(Z'7FF8000000000000', pReal) !< quiet NaN for double precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran)
|
||||
#endif
|
||||
#else
|
||||
NO SUITABLE PRECISION SELECTED, STOPING COMPILATION
|
||||
#endif
|
||||
|
||||
#if (INT==4)
|
||||
integer, parameter, public :: pInt = 4 !< integer representation 32 bit (was selected_int_kind(9), number with at least up to +- 1e9)
|
||||
#elif (INT==8)
|
||||
integer, parameter, public :: pInt = 8 !< integer representation 64 bit (was selected_int_kind(12), number with at least up to +- 1e12)
|
||||
#else
|
||||
NO SUITABLE PRECISION SELECTED, STOPING COMPILATION
|
||||
#endif
|
||||
|
||||
integer, parameter, public :: pLongInt = 8 !< integer representation 64 bit (was selected_int_kind(12), number with at least up to +- 1e12)
|
||||
|
|
Loading…
Reference in New Issue