introduced pointers as names. thx to Chuanlai for doing the work
This commit is contained in:
parent
117c8edfbd
commit
208196d213
|
@ -138,8 +138,28 @@ module plastic_disloUCLA
|
|||
end enum
|
||||
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
|
||||
plastic_disloUCLA_outputID !< ID of each post result output
|
||||
|
||||
|
||||
|
||||
type, private :: tDisloUCLAState
|
||||
real(pReal), pointer, dimension(:,:) :: &
|
||||
rhoEdge, &
|
||||
rhoEdgeDip, &
|
||||
accshear_slip, &
|
||||
twinFraction, &
|
||||
accshear_twin, &
|
||||
invLambdaSlip, &
|
||||
invLambdaSlipTwin, &
|
||||
invLambdaTwin, &
|
||||
mfp_slip, &
|
||||
mfp_twin, &
|
||||
threshold_stress_slip, &
|
||||
threshold_stress_twin, &
|
||||
twinVolume
|
||||
end type
|
||||
type(tDisloUCLAState ), allocatable, dimension(:), private :: &
|
||||
state, &
|
||||
state0, &
|
||||
dotState
|
||||
|
||||
public :: &
|
||||
plastic_disloUCLA_init, &
|
||||
plastic_disloUCLA_homogenizedC, &
|
||||
|
@ -205,7 +225,8 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
Nchunks_SlipSlip = 0_pInt, Nchunks_SlipTwin = 0_pInt, &
|
||||
Nchunks_TwinSlip = 0_pInt, Nchunks_TwinTwin = 0_pInt, &
|
||||
Nchunks_SlipFamilies = 0_pInt, Nchunks_TwinFamilies = 0_pInt, Nchunks_nonSchmid = 0_pInt, &
|
||||
offset_slip, index_myFamily, index_otherFamily
|
||||
offset_slip, index_myFamily, index_otherFamily, &
|
||||
startIndex, endIndex
|
||||
integer(pInt) :: sizeState, sizeDotState, sizeDeltaState
|
||||
integer(pInt) :: NofMyPhase
|
||||
character(len=65536) :: &
|
||||
|
@ -633,6 +654,10 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_Ctwin66(6,6,maxTotalNtwin,maxNinstance), source=0.0_pReal)
|
||||
allocate(plastic_disloUCLA_Ctwin3333(3,3,3,3,maxTotalNtwin,maxNinstance), source=0.0_pReal)
|
||||
|
||||
allocate(state(maxNinstance))
|
||||
allocate(state0(maxNinstance))
|
||||
allocate(dotState(maxNinstance))
|
||||
|
||||
initializeInstances: do phase = 1_pInt, size(phase_plasticity)
|
||||
myPhase2: if (phase_plasticity(phase) == PLASTICITY_disloUCLA_ID) then
|
||||
|
@ -823,7 +848,78 @@ subroutine plastic_disloUCLA_init(fileUnit)
|
|||
enddo otherTwinSystems2; enddo otherTwinFamilies2
|
||||
|
||||
enddo myTwinSystems
|
||||
enddo myTwinFamilies
|
||||
enddo myTwinFamilies
|
||||
|
||||
startIndex=1_pInt
|
||||
endIndex=ns
|
||||
state(instance)%rhoEdge=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%rhoEdge=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
dotState(instance)%rhoEdge=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1_pInt
|
||||
endIndex=endIndex+ns
|
||||
state(instance)%rhoEdgeDip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%rhoEdgeDip=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
dotState(instance)%rhoEdgeDip=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1_pInt
|
||||
endIndex=endIndex+ns
|
||||
state(instance)%accshear_slip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%accshear_slip=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
dotState(instance)%accshear_slip=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1_pInt
|
||||
endIndex=endIndex+nt
|
||||
state(instance)%twinFraction=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%twinFraction=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
dotState(instance)%twinFraction=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1_pInt
|
||||
endIndex=endIndex+nt
|
||||
state(instance)%accshear_twin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%accshear_twin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
dotState(instance)%accshear_twin=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1_pInt
|
||||
endIndex=endIndex+ns
|
||||
state(instance)%invLambdaSlip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%invLambdaSlip=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+ns
|
||||
state(instance)%invLambdaSlipTwin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%invLambdaSlipTwin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+nt
|
||||
state(instance)%invLambdaTwin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%invLambdaTwin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+ns
|
||||
state(instance)%mfp_slip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%mfp_slip=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+nt
|
||||
state(instance)%mfp_twin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%mfp_twin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+ns
|
||||
state(instance)%threshold_stress_slip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%threshold_stress_slip=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+nt
|
||||
state(instance)%threshold_stress_twin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%threshold_stress_twin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+nt
|
||||
state(instance)%twinVolume=>plasticState(phase)%state(startIndex:endIndex,:)
|
||||
state0(instance)%twinVolume=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||||
|
||||
call plastic_disloUCLA_stateInit(phase,instance)
|
||||
call plastic_disloUCLA_aTolState(phase,instance)
|
||||
endif myPhase2
|
||||
|
@ -983,12 +1079,12 @@ function plastic_disloUCLA_homogenizedC(ipc,ip,el)
|
|||
nt = plastic_disloUCLA_totalNtwin(instance)
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(plasticState(ph)%state((3_pInt*ns+1_pInt):(3_pInt*ns+nt),of)) ! safe for nt == 0
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
!* Homogenized elasticity matrix
|
||||
plastic_disloUCLA_homogenizedC = (1.0_pReal-sumf)*lattice_C66(1:6,1:6,ph)
|
||||
do i=1_pInt,nt
|
||||
plastic_disloUCLA_homogenizedC = plastic_disloUCLA_homogenizedC &
|
||||
+ plasticState(ph)%state(3_pInt*ns+i, of)*plastic_disloUCLA_Ctwin66(1:6,1:6,i,instance)
|
||||
+ state(instance)%twinFraction(i,of)*plastic_disloUCLA_Ctwin66(1:6,1:6,i,instance)
|
||||
enddo
|
||||
|
||||
end function plastic_disloUCLA_homogenizedC
|
||||
|
@ -1002,7 +1098,6 @@ subroutine plastic_disloUCLA_microstructure(temperature,ipc,ip,el)
|
|||
use material, only: &
|
||||
material_phase, &
|
||||
phase_plasticityInstance, &
|
||||
plasticState, &
|
||||
phaseAt, phasememberAt
|
||||
use lattice, only: &
|
||||
lattice_mu, &
|
||||
|
@ -1031,22 +1126,9 @@ subroutine plastic_disloUCLA_microstructure(temperature,ipc,ip,el)
|
|||
instance = phase_plasticityInstance(ph)
|
||||
ns = plastic_disloUCLA_totalNslip(instance)
|
||||
nt = plastic_disloUCLA_totalNtwin(instance)
|
||||
!* State: 1 : ns rho_edge
|
||||
!* State: ns+1 : 2*ns rho_dipole
|
||||
!* State: 2*ns+1 : 3*ns accumulated shear due to slip
|
||||
!* State: 3*ns+1 : 3*ns+nt f
|
||||
!* State: 3*ns+nt+1 : 3*ns+2*nt accumulated shear due to twin
|
||||
!* State: 3*ns+2*nt+1 : 4*ns+2*nt 1/lambda_slip
|
||||
!* State: 4*ns+2*nt+1 : 5*ns+2*nt 1/lambda_sliptwin
|
||||
!* State: 5*ns+2*nt+1 : 5*ns+3*nt 1/lambda_twin
|
||||
!* State: 5*ns+3*nt+1 : 6*ns+3*nt mfp_slip
|
||||
!* State: 6*ns+3*nt+1 : 6*ns+4*nt mfp_twin
|
||||
!* State: 6*ns+4*nt+1 : 7*ns+4*nt threshold_stress_slip
|
||||
!* State: 7*ns+4*nt+1 : 7*ns+5*nt threshold_stress_twin
|
||||
!* State: 7*ns+5*nt+1 : 7*ns+6*nt twin volume
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(plasticState(ph)%state((3*ns+1):(3*ns+nt), of)) ! safe for nt == 0
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
|
||||
!* Stacking fault energy
|
||||
sfe = plastic_disloUCLA_SFE_0K(instance) + &
|
||||
|
@ -1055,58 +1137,58 @@ subroutine plastic_disloUCLA_microstructure(temperature,ipc,ip,el)
|
|||
!* rescaled twin volume fraction for topology
|
||||
forall (t = 1_pInt:nt) &
|
||||
fOverStacksize(t) = &
|
||||
plasticState(ph)%state(3_pInt*ns+t, of)/plastic_disloUCLA_twinsizePerTwinSystem(t,instance)
|
||||
state(instance)%twinFraction(t,of)/plastic_disloUCLA_twinsizePerTwinSystem(t,instance)
|
||||
|
||||
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||||
forall (s = 1_pInt:ns) &
|
||||
plasticState(ph)%state(3_pInt*ns+2_pInt*nt+s, of) = &
|
||||
sqrt(dot_product((plasticState(ph)%state(1:ns,of)+plasticState(ph)%state(ns+1_pInt:2_pInt*ns,of)),&
|
||||
state(instance)%invLambdaSlip(s,of) = &
|
||||
sqrt(dot_product((state(instance)%rhoEdge(1_pInt:ns,of)+state(instance)%rhoEdgeDip(1_pInt:ns,of)),&
|
||||
plastic_disloUCLA_forestProjectionEdge(1:ns,s,instance)))/ &
|
||||
plastic_disloUCLA_CLambdaSlipPerSlipSystem(s,instance)
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
plasticState(ph)%state((4_pInt*ns+2_pInt*nt+1_pInt):(5_pInt*ns+2_pInt*nt), of) = 0.0_pReal
|
||||
state(instance)%invLambdaSlipTwin(1_pInt:ns,of) = 0.0_pReal
|
||||
if (nt > 0_pInt .and. ns > 0_pInt) &
|
||||
plasticState(ph)%state((4_pInt*ns+2_pInt*nt+1):(5_pInt*ns+2_pInt*nt), of) = &
|
||||
state(instance)%invLambdaSlipTwin(1_pInt:ns,of) = &
|
||||
matmul(plastic_disloUCLA_interactionMatrix_SlipTwin(1:ns,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
if (nt > 0_pInt) &
|
||||
plasticState(ph)%state((5_pInt*ns+2_pInt*nt+1_pInt):(5_pInt*ns+3_pInt*nt), of) = &
|
||||
state(instance)%invLambdaTwin(1_pInt:nt,of) = &
|
||||
matmul(plastic_disloUCLA_interactionMatrix_TwinTwin(1:nt,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!* mean free path between 2 obstacles seen by a moving dislocation
|
||||
do s = 1_pInt,ns
|
||||
if (nt > 0_pInt) then
|
||||
plasticState(ph)%state(5_pInt*ns+3_pInt*nt+s, of) = &
|
||||
state(instance)%mfp_slip(s,of) = &
|
||||
plastic_disloUCLA_GrainSize(instance)/(1.0_pReal+plastic_disloUCLA_GrainSize(instance)*&
|
||||
(plasticState(ph)%state(3_pInt*ns+2_pInt*nt+s, of)+plasticState(ph)%state(4_pInt*ns+2_pInt*nt+s, of)))
|
||||
(state(instance)%invLambdaSlip(s,of)+state(instance)%invLambdaSlipTwin(s,of)))
|
||||
else
|
||||
plasticState(ph)%state(5_pInt*ns+s, of) = &
|
||||
state(instance)%mfp_slip(s,of) = &
|
||||
plastic_disloUCLA_GrainSize(instance)/&
|
||||
(1.0_pReal+plastic_disloUCLA_GrainSize(instance)*(plasticState(ph)%state(3_pInt*ns+s, of)))
|
||||
(1.0_pReal+plastic_disloUCLA_GrainSize(instance)*(state(instance)%invLambdaSlip(s,of)))
|
||||
endif
|
||||
enddo
|
||||
|
||||
!* mean free path between 2 obstacles seen by a growing twin
|
||||
forall (t = 1_pInt:nt) &
|
||||
plasticState(ph)%state(6_pInt*ns+3_pInt*nt+t, of) = &
|
||||
state(instance)%mfp_twin(t,of) = &
|
||||
(plastic_disloUCLA_Cmfptwin(instance)*plastic_disloUCLA_GrainSize(instance))/&
|
||||
(1.0_pReal+plastic_disloUCLA_GrainSize(instance)*plasticState(ph)%state(5_pInt*ns+2_pInt*nt+t, of))
|
||||
(1.0_pReal+plastic_disloUCLA_GrainSize(instance)*state(instance)%invLambdaTwin(t,of))
|
||||
|
||||
!* threshold stress for dislocation motion
|
||||
forall (s = 1_pInt:ns) &
|
||||
plasticState(ph)%state(6_pInt*ns+4_pInt*nt+s, of) = &
|
||||
state(instance)%threshold_stress_slip(s,of) = &
|
||||
lattice_mu(ph)*plastic_disloUCLA_burgersPerSlipSystem(s,instance)*&
|
||||
sqrt(dot_product((plasticState(ph)%state(1:ns, of)+plasticState(ph)%state(ns+1_pInt:2_pInt*ns, of)),&
|
||||
sqrt(dot_product((state(instance)%rhoEdge(1_pInt:ns,of)+state(instance)%rhoEdgeDip(1_pInt:ns,of)),&
|
||||
plastic_disloUCLA_interactionMatrix_SlipSlip(s,1:ns,instance)))
|
||||
|
||||
!* threshold stress for growing twin
|
||||
forall (t = 1_pInt:nt) &
|
||||
plasticState(ph)%state(7_pInt*ns+4_pInt*nt+t, of) = &
|
||||
state(instance)%threshold_stress_twin(t,of) = &
|
||||
plastic_disloUCLA_Cthresholdtwin(instance)*&
|
||||
(sfe/(3.0_pReal*plastic_disloUCLA_burgersPerTwinSystem(t,instance))+&
|
||||
3.0_pReal*plastic_disloUCLA_burgersPerTwinSystem(t,instance)*lattice_mu(ph)/&
|
||||
|
@ -1114,8 +1196,8 @@ subroutine plastic_disloUCLA_microstructure(temperature,ipc,ip,el)
|
|||
|
||||
!* final twin volume after growth
|
||||
forall (t = 1_pInt:nt) &
|
||||
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+t, of) = &
|
||||
(pi/4.0_pReal)*plastic_disloUCLA_twinsizePerTwinSystem(t,instance)*plasticState(ph)%state(6*ns+3*nt+t, of)**(2.0_pReal)
|
||||
state(instance)%twinVolume(t,of) = &
|
||||
(pi/4.0_pReal)*plastic_disloUCLA_twinsizePerTwinSystem(t,instance)*state(instance)%mfp_twin(t,of)**(2.0_pReal)
|
||||
|
||||
!* equilibrium seperation of partial dislocations
|
||||
do t = 1_pInt,nt
|
||||
|
@ -1145,7 +1227,7 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
use material, only: &
|
||||
material_phase, &
|
||||
phase_plasticityInstance, &
|
||||
plasticState, &
|
||||
!plasticState, &
|
||||
phaseAt, phasememberAt
|
||||
use lattice, only: &
|
||||
lattice_Sslip, &
|
||||
|
@ -1206,7 +1288,7 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
BoltzmannRatio = plastic_disloUCLA_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
plasticState(ph)%state(j, of)*plastic_disloUCLA_burgersPerSlipSystem(j,instance)*&
|
||||
state(instance)%rhoEdge(j,of)*plastic_disloUCLA_burgersPerSlipSystem(j,instance)*&
|
||||
plastic_disloUCLA_v0PerSlipSystem(j,instance)
|
||||
!* Resolved shear stress on slip system
|
||||
tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
|
||||
|
@ -1224,9 +1306,9 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,ph)
|
||||
enddo nonSchmidSystems
|
||||
|
||||
significantPostitiveStress: if((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of)) > tol_math_check) then
|
||||
significantPostitiveStress: if((abs(tau_slip_pos)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
!* Stress ratio
|
||||
stressRatio = ((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
||||
stressRatio = ((abs(tau_slip_pos)-state(instance)%threshold_stress_slip(j,of))/&
|
||||
(plastic_disloUCLA_SolidSolutionStrength(instance)+&
|
||||
plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance)))
|
||||
stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance)
|
||||
|
@ -1234,13 +1316,13 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
!* Shear rates due to slip
|
||||
vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) &
|
||||
* plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) &
|
||||
* ( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* (tau_slip_pos &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) &
|
||||
/ ( &
|
||||
2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
)
|
||||
|
||||
|
@ -1252,7 +1334,7 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
dvel_slip = &
|
||||
2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) &
|
||||
* plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) &
|
||||
* ( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* ( &
|
||||
(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
+ tau_slip_pos &
|
||||
|
@ -1264,14 +1346,14 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
) &
|
||||
* (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
) &
|
||||
- (tau_slip_pos &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) &
|
||||
* (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal) &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i)
|
||||
*BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)&
|
||||
*plastic_disloUCLA_qPerSlipFamily(f,instance)/&
|
||||
|
@ -1283,16 +1365,16 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
( &
|
||||
2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
)**2.0_pReal &
|
||||
)
|
||||
dgdot_dtauslip_pos = DotGamma0 * dvel_slip
|
||||
|
||||
endif significantPostitiveStress
|
||||
significantNegativeStress: if((abs(tau_slip_neg)-plasticState(ph)%state(6*ns+4*nt+j, of)) > tol_math_check) then
|
||||
significantNegativeStress: if((abs(tau_slip_neg)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
!* Stress ratio
|
||||
stressRatio = ((abs(tau_slip_neg)-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
||||
stressRatio = ((abs(tau_slip_neg)-state(instance)%threshold_stress_slip(j,of))/&
|
||||
(plastic_disloUCLA_SolidSolutionStrength(instance)+&
|
||||
plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance)))
|
||||
stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance)
|
||||
|
@ -1300,13 +1382,13 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
!* Shear rates due to slip
|
||||
vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) &
|
||||
* plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) &
|
||||
* ( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* (tau_slip_neg &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) &
|
||||
/ ( &
|
||||
2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
)
|
||||
|
||||
|
@ -1318,7 +1400,7 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
dvel_slip = &
|
||||
2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) &
|
||||
* plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) &
|
||||
* ( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* ( &
|
||||
(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
+ tau_slip_neg &
|
||||
|
@ -1330,14 +1412,14 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
) &
|
||||
* (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
) &
|
||||
- (tau_slip_neg &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) &
|
||||
* (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal) &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i)
|
||||
*BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)&
|
||||
*plastic_disloUCLA_qPerSlipFamily(f,instance)/&
|
||||
|
@ -1349,7 +1431,7 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
( &
|
||||
2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
)**2.0_pReal &
|
||||
)
|
||||
|
@ -1371,7 +1453,7 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
! correct Lp and dLp_dTstar3333 for twinned fraction
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(plasticState(ph)%state((3_pInt*ns+1_pInt):(3_pInt*ns+nt), of)) ! safe for nt == 0
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
Lp = Lp * (1.0_pReal - sumf)
|
||||
dLp_dTstar3333 = dLp_dTstar3333 * (1.0_pReal - sumf)
|
||||
|
||||
|
@ -1389,15 +1471,15 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
|
||||
!* Stress ratios
|
||||
if (tau_twin > tol_math_check) then
|
||||
StressRatio_r = (plasticState(ph)%state(7*ns+4*nt+j, of)/tau_twin)**plastic_disloUCLA_rPerTwinFamily(f,instance)
|
||||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau_twin)**plastic_disloUCLA_rPerTwinFamily(f,instance)
|
||||
!* Shear rates and their derivatives due to twin
|
||||
select case(lattice_structure(ph))
|
||||
case (LATTICE_fcc_ID)
|
||||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||||
if (tau_twin < plastic_disloUCLA_tau_r(j,instance)) then
|
||||
Ndot0=(abs(gdot_slip_pos(s1))*(plasticState(ph)%state(s2,of)+plasticState(ph)%state(ns+s2, of))+& !no non-Schmid behavior for fcc, just take the not influenced positive gdot_slip_pos (= gdot_slip_neg)
|
||||
abs(gdot_slip_pos(s2))*(plasticState(ph)%state(s1,of)+plasticState(ph)%state(ns+s1, of)))/&
|
||||
Ndot0=(abs(gdot_slip_pos(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !no non-Schmid behavior for fcc, just take the not influenced positive gdot_slip_pos (= gdot_slip_neg)
|
||||
abs(gdot_slip_pos(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
(plastic_disloUCLA_L0(instance)*plastic_disloUCLA_burgersPerSlipSystem(j,instance))*&
|
||||
(1.0_pReal-exp(-plastic_disloUCLA_VcrossSlip(instance)/(kB*Temperature)*&
|
||||
(plastic_disloUCLA_tau_r(j,instance)-tau_twin)))
|
||||
|
@ -1409,7 +1491,7 @@ subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
end select
|
||||
gdot_twin = &
|
||||
(plastic_disloUCLA_MaxTwinFraction(instance)-sumf)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||||
plasticState(ph)%state(7*ns+5*nt+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
state(instance)%twinVolume(j,of)*Ndot0*exp(-StressRatio_r)
|
||||
dgdot_dtautwin = ((gdot_twin*plastic_disloUCLA_rPerTwinFamily(f,instance))/tau_twin)*StressRatio_r
|
||||
endif
|
||||
|
||||
|
@ -1504,7 +1586,7 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
nt = plastic_disloUCLA_totalNtwin(instance)
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(plasticState(ph)%state((3_pInt*ns+1_pInt):(3_pInt*ns+nt), of)) ! safe for nt == 0
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
plasticState(ph)%dotState(:,of) = 0.0_pReal
|
||||
|
||||
!* Dislocation density evolution
|
||||
|
@ -1519,7 +1601,7 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
BoltzmannRatio = plastic_disloUCLA_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
plasticState(ph)%state(j, of)*plastic_disloUCLA_burgersPerSlipSystem(j,instance)*&
|
||||
state(instance)%rhoEdge(j,of)*plastic_disloUCLA_burgersPerSlipSystem(j,instance)*&
|
||||
plastic_disloUCLA_v0PerSlipSystem(j,instance)
|
||||
!* Resolved shear stress on slip system
|
||||
tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
|
||||
|
@ -1532,22 +1614,22 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
|
||||
enddo nonSchmidSystems
|
||||
|
||||
significantPositiveStress: if((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of)) > tol_math_check) then
|
||||
significantPositiveStress: if((abs(tau_slip_pos)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
stressRatio = ((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
||||
stressRatio = ((abs(tau_slip_pos)-state(instance)%threshold_stress_slip(j,of))/&
|
||||
(plastic_disloUCLA_SolidSolutionStrength(instance)+&
|
||||
plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance)))
|
||||
stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance)
|
||||
!* Shear rates due to slip
|
||||
vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) &
|
||||
* plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) &
|
||||
* ( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* (tau_slip_pos &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) &
|
||||
/ ( &
|
||||
2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
)
|
||||
|
||||
|
@ -1555,22 +1637,22 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
* vel_slip &
|
||||
* sign(1.0_pReal,tau_slip_pos)
|
||||
endif significantPositiveStress
|
||||
significantNegativeStress: if((abs(tau_slip_neg)-plasticState(ph)%state(6*ns+4*nt+j, of)) > tol_math_check) then
|
||||
significantNegativeStress: if((abs(tau_slip_neg)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
stressRatio = ((abs(tau_slip_neg)-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
||||
stressRatio = ((abs(tau_slip_neg)-state(instance)%threshold_stress_slip(j,of))/&
|
||||
(plastic_disloUCLA_SolidSolutionStrength(instance)+&
|
||||
plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance)))
|
||||
stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance)
|
||||
|
||||
vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) &
|
||||
* plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) &
|
||||
* ( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* (tau_slip_neg &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) &
|
||||
/ ( &
|
||||
2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
)
|
||||
|
||||
|
@ -1582,7 +1664,7 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Multiplication
|
||||
DotRhoMultiplication = abs(gdot_slip)/&
|
||||
(plastic_disloUCLA_burgersPerSlipSystem(j,instance)* &
|
||||
plasticState(ph)%state(5*ns+3*nt+j, of))
|
||||
state(instance)%mfp_slip(j,of))
|
||||
|
||||
!* Dipole formation
|
||||
EdgeDipMinDistance = &
|
||||
|
@ -1593,22 +1675,22 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
EdgeDipDistance = &
|
||||
(3.0_pReal*lattice_mu(ph)*plastic_disloUCLA_burgersPerSlipSystem(j,instance))/&
|
||||
(16.0_pReal*pi*abs(tau_slip_pos))
|
||||
if (EdgeDipDistance>plasticState(ph)%state(5*ns+3*nt+j, of)) EdgeDipDistance=plasticState(ph)%state(5*ns+3*nt+j, of)
|
||||
if (EdgeDipDistance>state(instance)%mfp_slip(j,of)) EdgeDipDistance=state(instance)%mfp_slip(j,of)
|
||||
if (EdgeDipDistance<EdgeDipMinDistance) EdgeDipDistance=EdgeDipMinDistance
|
||||
DotRhoDipFormation = &
|
||||
((2.0_pReal*EdgeDipDistance)/plastic_disloUCLA_burgersPerSlipSystem(j,instance))*&
|
||||
plasticState(ph)%state(j, of)*abs(gdot_slip)*plastic_disloUCLA_dipoleFormationFactor(instance)
|
||||
state(instance)%rhoEdge(j,of)*abs(gdot_slip)*plastic_disloUCLA_dipoleFormationFactor(instance)
|
||||
endif
|
||||
|
||||
!* Spontaneous annihilation of 2 single edge dislocations
|
||||
DotRhoEdgeEdgeAnnihilation = &
|
||||
((2.0_pReal*EdgeDipMinDistance)/plastic_disloUCLA_burgersPerSlipSystem(j,instance))*&
|
||||
plasticState(ph)%state(j, of)*abs(gdot_slip)
|
||||
state(instance)%rhoEdge(j,of)*abs(gdot_slip)
|
||||
|
||||
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
||||
DotRhoEdgeDipAnnihilation = &
|
||||
((2.0_pReal*EdgeDipMinDistance)/plastic_disloUCLA_burgersPerSlipSystem(j,instance))*&
|
||||
plasticState(ph)%state(ns+j, of)*abs(gdot_slip)
|
||||
state(instance)%rhoEdgeDip(j,of)*abs(gdot_slip)
|
||||
|
||||
!* Dislocation dipole climb
|
||||
AtomicVolume = &
|
||||
|
@ -1622,19 +1704,19 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
((3.0_pReal*lattice_mu(ph)*VacancyDiffusion*AtomicVolume)/(2.0_pReal*pi*kB*Temperature))*&
|
||||
(1/(EdgeDipDistance+EdgeDipMinDistance))
|
||||
DotRhoEdgeDipClimb = &
|
||||
(4.0_pReal*ClimbVelocity*plasticState(ph)%state(ns+j, of))/(EdgeDipDistance-EdgeDipMinDistance)
|
||||
(4.0_pReal*ClimbVelocity*state(instance)%rhoEdgeDip(j,of))/(EdgeDipDistance-EdgeDipMinDistance)
|
||||
endif
|
||||
|
||||
!* Edge dislocation density rate of change
|
||||
plasticState(ph)%dotState(j, of) = &
|
||||
dotState(instance)%rhoEdge(j,of) = &
|
||||
DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||||
|
||||
!* Edge dislocation dipole density rate of change
|
||||
plasticState(ph)%dotState(ns+j, of) = &
|
||||
dotState(instance)%rhoEdgeDip(j,of) = &
|
||||
DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||||
|
||||
!* Dotstate for accumulated shear due to slip
|
||||
plasticState(ph)%dotState(2_pInt*ns+j, of) = gdot_slip
|
||||
dotState(instance)%accshear_slip(j,of) = gdot_slip
|
||||
|
||||
enddo slipSystems
|
||||
enddo slipFamilies
|
||||
|
@ -1649,7 +1731,7 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
tau_twin = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
if (tau_twin > tol_math_check) then
|
||||
StressRatio_r = (plasticState(ph)%state(7*ns+4*nt+j, of)/tau_twin)**plastic_disloUCLA_rPerTwinFamily(f,instance)
|
||||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau_twin)**plastic_disloUCLA_rPerTwinFamily(f,instance)
|
||||
!* Shear rates and their derivatives due to twin
|
||||
|
||||
select case(lattice_structure(ph))
|
||||
|
@ -1657,8 +1739,8 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||||
if (tau_twin < plastic_disloUCLA_tau_r(j,instance)) then
|
||||
Ndot0=(abs(gdot_slip_pos(s1))*(plasticState(ph)%state(s2, of)+plasticState(ph)%state(ns+s2, of))+& !no non-Schmid behavior for fcc, just take the not influenced positive slip (gdot_slip_pos = gdot_slip_neg)
|
||||
abs(gdot_slip_pos(s2))*(plasticState(ph)%state(s1, of)+plasticState(ph)%state(ns+s1, of)))/&
|
||||
Ndot0=(abs(gdot_slip_pos(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !no non-Schmid behavior for fcc, just take the not influenced positive slip (gdot_slip_pos = gdot_slip_neg)
|
||||
abs(gdot_slip_pos(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
(plastic_disloUCLA_L0(instance)*plastic_disloUCLA_burgersPerSlipSystem(j,instance))*&
|
||||
(1.0_pReal-exp(-plastic_disloUCLA_VcrossSlip(instance)/(kB*Temperature)*&
|
||||
(plastic_disloUCLA_tau_r(j,instance)-tau_twin)))
|
||||
|
@ -1669,11 +1751,11 @@ subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
Ndot0=plastic_disloUCLA_Ndot0PerTwinSystem(j,instance)
|
||||
end select
|
||||
|
||||
plasticState(ph)%dotState(3_pInt*ns+j, of) = &
|
||||
dotState(instance)%twinFraction(j, of) = &
|
||||
(plastic_disloUCLA_MaxTwinFraction(instance)-sumf)*&
|
||||
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
state(instance)%twinVolume(j, of)*Ndot0*exp(-StressRatio_r)
|
||||
!* Dotstate for accumulated shear due to twin
|
||||
plasticState(ph)%dotState(3_pInt*ns+nt+j, of) = plasticState(ph)%dotState(3_pInt*ns+j, of) * &
|
||||
dotState(instance)%accshear_twin(j,of) = dotState(ph)%twinFraction(j,of) * &
|
||||
lattice_sheartwin(index_myfamily+i,ph)
|
||||
endif
|
||||
enddo twinSystems
|
||||
|
@ -1693,7 +1775,7 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
use material, only: &
|
||||
material_phase, &
|
||||
phase_plasticityInstance,&
|
||||
plasticState, &
|
||||
!plasticState, &
|
||||
phaseAt, phasememberAt
|
||||
use lattice, only: &
|
||||
lattice_Sslip_v, &
|
||||
|
@ -1743,7 +1825,7 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
nt = plastic_disloUCLA_totalNtwin(instance)
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(plasticState(ph)%state((3_pInt*ns+1_pInt):(3_pInt*ns+nt), of)) ! safe for nt == 0
|
||||
sumf = sum(state(ph)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
|
||||
!* Required output
|
||||
c = 0_pInt
|
||||
|
@ -1753,10 +1835,10 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
select case(plastic_disloUCLA_outputID(o,instance))
|
||||
|
||||
case (edge_density_ID)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+ns) = plasticState(ph)%state(1_pInt:ns, of)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+ns) = state(instance)%rhoEdge(1_pInt:ns,of)
|
||||
c = c + ns
|
||||
case (dipole_density_ID)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+ns) = plasticState(ph)%state(ns+1_pInt:2_pInt*ns, of)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+ns) = state(instance)%rhoEdgeDip(1_pInt:ns,of)
|
||||
c = c + ns
|
||||
case (shear_rate_slip_ID,shear_rate_twin_ID,stress_exponent_ID)
|
||||
gdot_slip_pos = 0.0_pReal
|
||||
|
@ -1772,7 +1854,7 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
BoltzmannRatio = plastic_disloUCLA_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
plasticState(ph)%state(j, of)*plastic_disloUCLA_burgersPerSlipSystem(j,instance)*&
|
||||
state(instance)%rhoEdge(j,of)*plastic_disloUCLA_burgersPerSlipSystem(j,instance)*&
|
||||
plastic_disloUCLA_v0PerSlipSystem(j,instance)
|
||||
!* Resolved shear stress on slip system
|
||||
tau_slip_pos(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
|
@ -1785,9 +1867,9 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
|
||||
enddo nonSchmidSystems
|
||||
|
||||
significantPostitiveStress: if((abs(tau_slip_pos(j))-plasticState(ph)%state(6*ns+4*nt+j, of)) > tol_math_check) then
|
||||
significantPositiveTau: if((abs(tau_slip_pos(j))-state(instance)%threshold_stress_slip(j, of)) > tol_math_check) then
|
||||
!* Stress ratio
|
||||
stressRatio = ((abs(tau_slip_pos(j))-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
||||
stressRatio = ((abs(tau_slip_pos(j))-state(instance)%threshold_stress_slip(j, of))/&
|
||||
(plastic_disloUCLA_SolidSolutionStrength(instance)+&
|
||||
plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance)))
|
||||
stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance)
|
||||
|
@ -1795,13 +1877,13 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Shear rates due to slip
|
||||
vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) &
|
||||
* plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) &
|
||||
* ( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* (tau_slip_pos(j) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) &
|
||||
/ ( &
|
||||
2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos(j) &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
)
|
||||
|
||||
|
@ -1813,7 +1895,7 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
dvel_slip = &
|
||||
2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) &
|
||||
* plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) &
|
||||
* ( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* ( &
|
||||
(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
+ tau_slip_pos(j) &
|
||||
|
@ -1825,14 +1907,14 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
) &
|
||||
* (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos(j) &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
) &
|
||||
- (tau_slip_pos(j) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) &
|
||||
* (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal) &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i)
|
||||
*BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)&
|
||||
*plastic_disloUCLA_qPerSlipFamily(f,instance)/&
|
||||
|
@ -1844,17 +1926,17 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
( &
|
||||
2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos(j) &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
)**2.0_pReal &
|
||||
)
|
||||
|
||||
dgdot_dtauslip_pos(j) = DotGamma0 * dvel_slip
|
||||
|
||||
endif significantPostitiveStress
|
||||
significantNegativeStress: if((abs(tau_slip_neg(j))-plasticState(ph)%state(6*ns+4*nt+j, of)) > tol_math_check) then
|
||||
endif significantPositiveTau
|
||||
significantNegativeTau: if((abs(tau_slip_neg(j))-state(instance)%threshold_stress_slip(j, of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
stressRatio = ((abs(tau_slip_neg(j))-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
||||
stressRatio = ((abs(tau_slip_neg(j))-state(instance)%threshold_stress_slip(j, of))/&
|
||||
(plastic_disloUCLA_SolidSolutionStrength(instance)+&
|
||||
plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance)))
|
||||
stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance)
|
||||
|
@ -1862,13 +1944,13 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Shear rates due to slip
|
||||
vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) &
|
||||
* plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) &
|
||||
* ( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* (tau_slip_neg(j) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) &
|
||||
/ ( &
|
||||
2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg(j) &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
)
|
||||
|
||||
|
@ -1879,7 +1961,7 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
dvel_slip = &
|
||||
2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) &
|
||||
* plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) &
|
||||
* ( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) &
|
||||
* ( &
|
||||
(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
+ tau_slip_neg(j) &
|
||||
|
@ -1891,14 +1973,14 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
) &
|
||||
* (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg(j) &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
) &
|
||||
- (tau_slip_neg(j) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) &
|
||||
* (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal) &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i)
|
||||
*BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)&
|
||||
*plastic_disloUCLA_qPerSlipFamily(f,instance)/&
|
||||
|
@ -1910,7 +1992,7 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
( &
|
||||
2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg(j) &
|
||||
+ plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) &
|
||||
*(( plasticState(ph)%state(5_pInt*ns+3_pInt*nt+j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
*(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) &
|
||||
)**2.0_pReal &
|
||||
)
|
||||
|
@ -1918,7 +2000,7 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
|
||||
dgdot_dtauslip_neg(j) = DotGamma0 * dvel_slip
|
||||
|
||||
endif significantNegativeStress
|
||||
endif significantNegativeTau
|
||||
enddo slipSystems
|
||||
enddo slipFamilies
|
||||
|
||||
|
@ -1936,7 +2018,7 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Resolved shear stress on twin system
|
||||
tau_twin = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
StressRatio_r = (plasticState(ph)%state(7_pInt*ns+4_pInt*nt+j, of)/ &
|
||||
StressRatio_r = (state(instance)%threshold_stress_twin(j, of)/ &
|
||||
tau_twin)**plastic_disloUCLA_rPerTwinFamily(f,instance)
|
||||
|
||||
!* Shear rates due to twin
|
||||
|
@ -1946,8 +2028,8 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||||
if (tau_twin < plastic_disloUCLA_tau_r(j,instance)) then
|
||||
Ndot0=(abs(gdot_slip_pos(s1))*(plasticState(ph)%state(s2, of)+plasticState(ph)%state(ns+s2, of))+& !no non-Schmid behavior for fcc, just take the not influenced positive slip (gdot_slip_pos = gdot_slip_neg)
|
||||
abs(gdot_slip_pos(s2))*(plasticState(ph)%state(s1, of)+plasticState(ph)%state(ns+s1, of)))/&
|
||||
Ndot0=(abs(gdot_slip_pos(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !no non-Schmid behavior for fcc, just take the not influenced positive slip (gdot_slip_pos = gdot_slip_neg)
|
||||
abs(gdot_slip_pos(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
(plastic_disloUCLA_L0(instance)*&
|
||||
plastic_disloUCLA_burgersPerSlipSystem(j,instance))*&
|
||||
(1.0_pReal-exp(-plastic_disloUCLA_VcrossSlip(instance)/(kB*Temperature)*&
|
||||
|
@ -1961,7 +2043,7 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
end select
|
||||
plastic_disloUCLA_postResults(c+j) = &
|
||||
(plastic_disloUCLA_MaxTwinFraction(instance)-sumf)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||||
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
state(instance)%twinVolume(j,of)*Ndot0*exp(-StressRatio_r)
|
||||
endif
|
||||
enddo twinSystems1
|
||||
enddo twinFamilies1
|
||||
|
@ -1982,11 +2064,11 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
|
||||
case (accumulated_shear_slip_ID)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+ns) = &
|
||||
plasticState(ph)%state((2_pInt*ns+1_pInt):(3_pInt*ns), of)
|
||||
state(instance)%accshear_slip(1_pInt:ns, of)
|
||||
c = c + ns
|
||||
case (mfp_slip_ID)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+ns) =&
|
||||
plasticState(ph)%state((5_pInt*ns+3_pInt*nt+1_pInt):(6_pInt*ns+3_pInt*nt), of)
|
||||
state(instance)%mfp_slip(1_pInt:ns, of)
|
||||
c = c + ns
|
||||
case (resolved_stress_slip_ID)
|
||||
j = 0_pInt
|
||||
|
@ -2000,7 +2082,7 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
c = c + ns
|
||||
case (threshold_stress_slip_ID)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+ns) = &
|
||||
plasticState(ph)%state((6_pInt*ns+4_pInt*nt+1_pInt):(7_pInt*ns+4_pInt*nt), of)
|
||||
state(instance)%threshold_stress_slip(1_pInt:ns,of)
|
||||
c = c + ns
|
||||
case (edge_dipole_distance_ID)
|
||||
j = 0_pInt
|
||||
|
@ -2012,21 +2094,21 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
(3.0_pReal*lattice_mu(ph)*plastic_disloUCLA_burgersPerSlipSystem(j,instance))/&
|
||||
(16.0_pReal*pi*abs(dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))))
|
||||
plastic_disloUCLA_postResults(c+j)=min(plastic_disloUCLA_postResults(c+j),&
|
||||
plasticState(ph)%state(5*ns+3*nt+j, of))
|
||||
state(instance)%mfp_slip(j,of))
|
||||
enddo slipSystems2; enddo slipFamilies2
|
||||
c = c + ns
|
||||
case (twin_fraction_ID)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+nt) = plasticState(ph)%state((3_pInt*ns+1_pInt):(3_pInt*ns+nt), of)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+nt) = state(instance)%twinFraction(1_pInt:nt, of)
|
||||
c = c + nt
|
||||
|
||||
case (accumulated_shear_twin_ID)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+nt) = plasticState(ph)% &
|
||||
state((3_pInt*ns+nt+1_pInt) :(3_pInt*ns+2_pInt*nt), of)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+nt) = state(instance)%accshear_twin(1_pInt:nt, of)
|
||||
c = c + nt
|
||||
|
||||
case (mfp_twin_ID)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+nt) = plasticState(ph)% &
|
||||
state((6_pInt*ns+3_pInt*nt+1_pInt):(6_pInt*ns+4_pInt*nt), of)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+nt) = state(instance)%mfp_twin(1_pInt:nt, of)
|
||||
c = c + nt
|
||||
|
||||
case (resolved_stress_twin_ID)
|
||||
if (nt > 0_pInt) then
|
||||
j = 0_pInt
|
||||
|
@ -2039,8 +2121,7 @@ function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
endif
|
||||
c = c + nt
|
||||
case (threshold_stress_twin_ID)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+nt) = plasticState(ph)% &
|
||||
state((7_pInt*ns+4_pInt*nt+1_pInt):(7_pInt*ns+5_pInt*nt), of)
|
||||
plastic_disloUCLA_postResults(c+1_pInt:c+nt) = state(instance)%threshold_stress_twin(1_pInt:nt, of)
|
||||
c = c + nt
|
||||
end select
|
||||
enddo
|
||||
|
|
Loading…
Reference in New Issue