renaming
This commit is contained in:
parent
97977f4940
commit
1f9d268e29
|
@ -6,7 +6,7 @@
|
|||
module plastic_dislotwin
|
||||
use prec, only: &
|
||||
pReal, &
|
||||
pIntS
|
||||
pInt
|
||||
|
||||
implicit none
|
||||
private
|
||||
|
@ -155,7 +155,8 @@ module plastic_dislotwin
|
|||
threshold_stress_twin, &
|
||||
threshold_stress_trans, &
|
||||
twinVolume, &
|
||||
martensiteVolume
|
||||
martensiteVolume, &
|
||||
whole
|
||||
end type tDislotwinState
|
||||
|
||||
type, private :: tDislotwinMicrostructure
|
||||
|
@ -244,7 +245,7 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
implicit none
|
||||
integer(pInt), intent(in) :: fileUnit
|
||||
|
||||
integer(pInt) :: maxNinstance,&
|
||||
integer(pInt) :: Ninstances,&
|
||||
f,instance,j,i,k,l,m,n,o,p,q,r,s,p1, &
|
||||
offset_slip, index_myFamily, index_otherFamily, &
|
||||
startIndex, endIndex, outputSize
|
||||
|
@ -276,8 +277,13 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
character(len=65536), dimension(0), parameter :: emptyString = [character(len=65536)::]
|
||||
|
||||
|
||||
type(tParameters) :: prm
|
||||
type(tDislotwinMicrostructure) :: mse
|
||||
type(tParameters) :: &
|
||||
prm
|
||||
type(tDislotwinState) :: &
|
||||
stt, &
|
||||
dst
|
||||
type(tDislotwinMicrostructure) :: &
|
||||
mse
|
||||
|
||||
|
||||
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_DISLOTWIN_label//' init -+>>>'
|
||||
|
@ -290,27 +296,33 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
|
||||
#include "compilation_info.f90"
|
||||
|
||||
maxNinstance = int(count(phase_plasticity == PLASTICITY_DISLOTWIN_ID),pInt)
|
||||
if (maxNinstance == 0_pInt) return
|
||||
Ninstances = int(count(phase_plasticity == PLASTICITY_DISLOTWIN_ID),pInt)
|
||||
if (Ninstances == 0_pInt) return
|
||||
|
||||
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
|
||||
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
|
||||
write(6,'(a16,1x,i5,/)') '# instances:',Ninstances
|
||||
|
||||
|
||||
allocate(plastic_dislotwin_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
|
||||
allocate(plastic_dislotwin_output(maxval(phase_Noutput),maxNinstance))
|
||||
allocate(plastic_dislotwin_sizePostResult(maxval(phase_Noutput),Ninstances),source=0_pInt)
|
||||
allocate(plastic_dislotwin_output(maxval(phase_Noutput),Ninstances))
|
||||
plastic_dislotwin_output = ''
|
||||
allocate(param(maxNinstance))
|
||||
allocate(state(maxNinstance))
|
||||
allocate(dotState(maxNinstance))
|
||||
allocate(microstructure(maxNinstance))
|
||||
allocate(param(Ninstances))
|
||||
allocate(state(Ninstances))
|
||||
allocate(dotState(Ninstances))
|
||||
allocate(microstructure(Ninstances))
|
||||
|
||||
do p = 1_pInt, size(phase_plasticityInstance)
|
||||
if (phase_plasticity(p) /= PLASTICITY_DISLOTWIN_ID) cycle
|
||||
instance = phase_plasticityInstance(p)
|
||||
associate(prm => param(instance))
|
||||
associate(prm => param(phase_plasticityInstance(p)), &
|
||||
dst => dotState(phase_plasticityInstance(p)), &
|
||||
stt => state(phase_plasticityInstance(p)), &
|
||||
mse => microstructure(phase_plasticityInstance(p)))
|
||||
|
||||
! This data is read in already in lattice
|
||||
prm%isFCC = merge(.true., .false., lattice_structure(p) == LATTICE_FCC_ID)
|
||||
prm%mu = lattice_mu(p)
|
||||
prm%nu = lattice_nu(p)
|
||||
prm%C66 = lattice_C66(1:6,1:6,p)
|
||||
|
||||
prm%Nslip = config_phase(p)%getInts('nslip',defaultVal=emptyInt)
|
||||
if (size(prm%Nslip) > count(lattice_NslipSystem(:,p) > 0_pInt)) call IO_error(150_pInt,ext_msg='Nslip')
|
||||
|
@ -513,68 +525,68 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
end select
|
||||
|
||||
if (outputID /= undefined_ID) then
|
||||
plastic_dislotwin_output(i,instance) = outputs(i)
|
||||
plastic_dislotwin_sizePostResult(i,instance) = outputSize
|
||||
plastic_dislotwin_output(i,phase_plasticityInstance(p)) = outputs(i)
|
||||
plastic_dislotwin_sizePostResult(i,phase_plasticityInstance(p)) = outputSize
|
||||
prm%outputID = [prm%outputID, outputID]
|
||||
endif
|
||||
enddo
|
||||
|
||||
|
||||
do f = 1_pInt,lattice_maxNslipFamily
|
||||
! if (rhoEdge0(f,instance) < 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=instance,ext_msg='rhoEdge0 ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
! if (rhoEdgeDip0(f,instance) < 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=instance,ext_msg='rhoEdgeDip0 ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
! if (burgersPerSlipFamily(f,instance) <= 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=instance,ext_msg='slipBurgers ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
!if (v0PerSlipFamily(f,instance) <= 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=instance,ext_msg='v0 ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
! if (rhoEdge0(f,p) < 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=p,ext_msg='rhoEdge0 ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
! if (rhoEdgeDip0(f,p) < 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=p,ext_msg='rhoEdgeDip0 ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
! if (burgersPerSlipFamily(f,p) <= 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=p,ext_msg='slipBurgers ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
!if (v0PerSlipFamily(f,p) <= 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=p,ext_msg='v0 ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
!if (prm%tau_peierlsPerSlipFamily(f) < 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=instance,ext_msg='tau_peierls ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
! call IO_error(211_pInt,el=p,ext_msg='tau_peierls ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
enddo
|
||||
do f = 1_pInt,lattice_maxNtwinFamily
|
||||
! if (burgersPerTwinFamily(f,instance) <= 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=instance,ext_msg='twinburgers ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
!if (Ndot0PerTwinFamily(f,instance) < 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=instance,ext_msg='ndot0_twin ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
! if (burgersPerTwinFamily(f,p) <= 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=p,ext_msg='twinburgers ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
!if (Ndot0PerTwinFamily(f,p) < 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=p,ext_msg='ndot0_twin ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
enddo
|
||||
if (prm%CAtomicVolume <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='cAtomicVolume ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
call IO_error(211_pInt,el=p,ext_msg='cAtomicVolume ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
if (prm%D0 <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='D0 ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
call IO_error(211_pInt,el=p,ext_msg='D0 ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
if (prm%Qsd <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='Qsd ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
call IO_error(211_pInt,el=p,ext_msg='Qsd ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
if (prm%totalNtwin > 0_pInt) then
|
||||
if (dEq0(prm%SFE_0K) .and. &
|
||||
dEq0(prm%dSFE_dT) .and. &
|
||||
lattice_structure(p) == LATTICE_fcc_ID) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='SFE0K ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
call IO_error(211_pInt,el=p,ext_msg='SFE0K ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
if (prm%aTolRho <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='aTolRho ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
call IO_error(211_pInt,el=p,ext_msg='aTolRho ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
if (prm%aTolTwinFrac <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='aTolTwinFrac ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
call IO_error(211_pInt,el=p,ext_msg='aTolTwinFrac ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
endif
|
||||
if (prm%totalNtrans > 0_pInt) then
|
||||
if (dEq0(prm%SFE_0K) .and. &
|
||||
dEq0(prm%dSFE_dT) .and. &
|
||||
lattice_structure(p) == LATTICE_fcc_ID) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='SFE0K ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
call IO_error(211_pInt,el=p,ext_msg='SFE0K ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
if (prm%aTolTransFrac <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='aTolTransFrac ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
call IO_error(211_pInt,el=p,ext_msg='aTolTransFrac ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
endif
|
||||
!if (prm%sbResistance < 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=instance,ext_msg='sbResistance ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
! call IO_error(211_pInt,el=p,ext_msg='sbResistance ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
!if (prm%sbVelocity < 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=instance,ext_msg='sbVelocity ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
! call IO_error(211_pInt,el=p,ext_msg='sbVelocity ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
!if (prm%sbVelocity > 0.0_pReal .and. &
|
||||
! prm%pShearBand <= 0.0_pReal) &
|
||||
! call IO_error(211_pInt,el=instance,ext_msg='pShearBand ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
! call IO_error(211_pInt,el=p,ext_msg='pShearBand ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
if (dNeq0(prm%dipoleFormationFactor) .and. &
|
||||
dNeq(prm%dipoleFormationFactor, 1.0_pReal)) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='dipoleFormationFactor ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
call IO_error(211_pInt,el=p,ext_msg='dipoleFormationFactor ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
if (prm%sbVelocity > 0.0_pReal .and. &
|
||||
prm%qShearBand <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='qShearBand ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
call IO_error(211_pInt,el=p,ext_msg='qShearBand ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
|
||||
|
||||
NofMyPhase=count(material_phase==p)
|
||||
|
@ -597,7 +609,7 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
plasticState(p)%sizeState = sizeState
|
||||
plasticState(p)%sizeDotState = sizeDotState
|
||||
plasticState(p)%sizeDeltaState = sizeDeltaState
|
||||
plasticState(p)%sizePostResults = sum(plastic_dislotwin_sizePostResult(:,instance))
|
||||
plasticState(p)%sizePostResults = sum(plastic_dislotwin_sizePostResult(:,phase_plasticityInstance(p)))
|
||||
plasticState(p)%nSlip = prm%totalNslip
|
||||
plasticState(p)%nTwin = prm%totalNtwin
|
||||
plasticState(p)%nTrans= prm%totalNtrans
|
||||
|
@ -623,9 +635,7 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
plasticState(p)%accumulatedSlip => &
|
||||
plasticState(p)%state (offset_slip+1:offset_slip+plasticState(p)%nslip,1:NofMyPhase)
|
||||
|
||||
prm%mu = lattice_mu(p)
|
||||
prm%nu = lattice_nu(p)
|
||||
prm%C66 = lattice_C66(1:6,1:6,p)
|
||||
|
||||
|
||||
allocate(temp1(prm%totalNslip,prm%totalNslip), source =0.0_pReal)
|
||||
allocate(temp2(prm%totalNslip,prm%totalNtwin), source =0.0_pReal)
|
||||
|
@ -809,53 +819,53 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
|
||||
startIndex=1_pInt
|
||||
endIndex=prm%totalNslip
|
||||
state(instance)%rhoEdge=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dotState(instance)%rhoEdge=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
stt%rhoEdge=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dst%rhoEdge=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = &
|
||||
spread(math_expand(prm%rho0,prm%Nslip),2,NofMyPhase)
|
||||
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolRho
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNslip
|
||||
state(instance)%rhoEdgeDip=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dotState(instance)%rhoEdgeDip=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
stt%rhoEdgeDip=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dst%rhoEdgeDip=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = &
|
||||
spread(math_expand(prm%rhoDip0,prm%Nslip),2,NofMyPhase)
|
||||
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolRho
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNslip
|
||||
state(instance)%accshear_slip=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dotState(instance)%accshear_slip=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
stt%accshear_slip=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dst%accshear_slip=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
plasticState(p)%aTolState(startIndex:endIndex) = 1.0e6_pReal
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNtwin
|
||||
state(instance)%twinFraction=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dotState(instance)%twinFraction=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
stt%twinFraction=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dst%twinFraction=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolTwinFrac
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNtwin
|
||||
state(instance)%accshear_twin=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dotState(instance)%accshear_twin=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
stt%accshear_twin=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dst%accshear_twin=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
plasticState(p)%aTolState(startIndex:endIndex) = 1.0e6_pReal
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNtrans
|
||||
state(instance)%stressTransFraction=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dotState(instance)%stressTransFraction=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
stt%stressTransFraction=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dst%stressTransFraction=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolTransFrac
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNtrans
|
||||
state(instance)%strainTransFraction=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dotState(instance)%strainTransFraction=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
stt%strainTransFraction=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dst%strainTransFraction=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolTransFrac
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNslip
|
||||
state(instance)%invLambdaSlip=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%invLambdaSlip=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
invLambdaSlip0 = spread(0.0_pReal,1,prm%totalNslip)
|
||||
forall (i = 1_pInt:prm%totalNslip) &
|
||||
invLambdaSlip0(i) = sqrt(dot_product(math_expand(prm%rho0,prm%Nslip)+ &
|
||||
|
@ -866,48 +876,48 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNslip
|
||||
state(instance)%invLambdaSlipTwin=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%invLambdaSlipTwin=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = 0.0_pReal
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNtwin
|
||||
state(instance)%invLambdaTwin=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%invLambdaTwin=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = 0.0_pReal
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNslip
|
||||
state(instance)%invLambdaSlipTrans=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%invLambdaSlipTrans=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = 0.0_pReal
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNtrans
|
||||
state(instance)%invLambdaTrans=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%invLambdaTrans=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = 0.0_pReal
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNslip
|
||||
state(instance)%mfp_slip=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%mfp_slip=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
MeanFreePathSlip0 = prm%GrainSize/(1.0_pReal+invLambdaSlip0*prm%GrainSize)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = &
|
||||
spread(math_expand(MeanFreePathSlip0,prm%Nslip),2, NofMyPhase)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNtwin
|
||||
state(instance)%mfp_twin=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%mfp_twin=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
MeanFreePathTwin0 = spread(prm%GrainSize,1,prm%totalNtwin)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = &
|
||||
spread(math_expand(MeanFreePathTwin0,prm%Ntwin),2, NofMyPhase)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNtrans
|
||||
state(instance)%mfp_trans=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%mfp_trans=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
MeanFreePathTrans0 = spread(prm%GrainSize,1,prm%totalNtrans)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = &
|
||||
spread(math_expand(MeanFreePathTrans0,prm%Ntrans),2, NofMyPhase)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNslip
|
||||
state(instance)%threshold_stress_slip=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%threshold_stress_slip=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
tauSlipThreshold0 = spread(0.0_pReal,1,prm%totalNslip)
|
||||
forall (i = 1_pInt:prm%totalNslip) tauSlipThreshold0(i) = &
|
||||
lattice_mu(p)*prm%burgers_slip(i) * &
|
||||
|
@ -918,15 +928,15 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNtwin
|
||||
state(instance)%threshold_stress_twin=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%threshold_stress_twin=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNtrans
|
||||
state(instance)%threshold_stress_trans=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%threshold_stress_trans=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNtwin
|
||||
state(instance)%twinVolume=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%twinVolume=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
TwinVolume0= spread(0.0_pReal,1,prm%totalNtwin)
|
||||
forall (i = 1_pInt:prm%totalNtwin) TwinVolume0(i) = &
|
||||
(PI/4.0_pReal)*prm%twinsize(i)*MeanFreePathTwin0(i)**2.0_pReal
|
||||
|
@ -935,15 +945,18 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
|
||||
startIndex=endIndex+1
|
||||
endIndex=endIndex+prm%totalNtrans
|
||||
state(instance)%martensiteVolume=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%martensiteVolume=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
MartensiteVolume0= spread(0.0_pReal,1,prm%totalNtrans)
|
||||
forall (i = 1_pInt:prm%totalNtrans) MartensiteVolume0(i) = &
|
||||
(PI/4.0_pReal)*prm%lamellarsizePerTransSystem(i)*MeanFreePathTrans0(i)**2.0_pReal
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = &
|
||||
spread(math_expand(MartensiteVolume0,prm%Ntrans),2, NofMyPhase)
|
||||
|
||||
allocate(microstructure(instance)%tau_r_twin(prm%totalNtwin,NofMyPhase), source=0.0_pReal)
|
||||
allocate(microstructure(instance)%tau_r_trans(prm%totalNtrans,NofMyPhase), source=0.0_pReal)
|
||||
dst%whole => plasticState(p)%dotState
|
||||
|
||||
allocate(mse%tau_r_twin(prm%totalNtwin,NofMyPhase), source=0.0_pReal)
|
||||
allocate(mse%tau_r_trans(prm%totalNtrans,NofMyPhase), source=0.0_pReal)
|
||||
|
||||
end associate
|
||||
enddo
|
||||
|
||||
|
@ -968,7 +981,7 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el)
|
|||
type(tParameters) :: prm
|
||||
type(tDislotwinState) :: stt
|
||||
|
||||
integer(pInt) :: s, &
|
||||
integer(pInt) :: i, &
|
||||
of
|
||||
real(pReal) :: sumf_twin, sumf_trans
|
||||
|
||||
|
@ -982,14 +995,14 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el)
|
|||
sum(stt%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||||
|
||||
plastic_dislotwin_homogenizedC = (1.0_pReal-sumf_twin-sumf_trans)*prm%C66
|
||||
do s=1_pInt,prm%totalNtwin
|
||||
do i=1_pInt,prm%totalNtwin
|
||||
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
|
||||
+ stt%twinFraction(s,of)*prm%C66_twin(1:6,1:6,s)
|
||||
+ stt%twinFraction(i,of)*prm%C66_twin(1:6,1:6,i)
|
||||
enddo
|
||||
do s=1_pInt,prm%totalNtrans
|
||||
do i=1_pInt,prm%totalNtrans
|
||||
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
|
||||
+(stt%stressTransFraction(i,of)+stt%strainTransFraction(s,of))*&
|
||||
prm%C66_trans(1:6,1:6,s)
|
||||
+(stt%stressTransFraction(i,of)+stt%strainTransFraction(i,of))*&
|
||||
prm%C66_trans(1:6,1:6,i)
|
||||
enddo
|
||||
end associate
|
||||
end function plastic_dislotwin_homogenizedC
|
||||
|
@ -1014,7 +1027,7 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
temperature !< temperature at IP
|
||||
|
||||
integer(pInt) :: &
|
||||
s, &
|
||||
i, &
|
||||
of
|
||||
real(pReal) :: &
|
||||
sumf_twin,sfe,sumf_trans
|
||||
|
@ -1044,10 +1057,10 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
ftransOverLamellarSize = sumf_trans/prm%lamellarsizePerTransSystem !ToDo: But this not ...
|
||||
|
||||
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||||
forall (s = 1_pInt:prm%totalNslip) &
|
||||
stt%invLambdaSlip(s,of) = &
|
||||
forall (i = 1_pInt:prm%totalNslip) &
|
||||
stt%invLambdaSlip(i,of) = &
|
||||
sqrt(dot_product((stt%rhoEdge(1_pInt:prm%totalNslip,of)+stt%rhoEdgeDip(1_pInt:prm%totalNslip,of)),&
|
||||
prm%forestProjectionEdge(1:prm%totalNslip,s)))/prm%CLambdaSlip(s)
|
||||
prm%forestProjectionEdge(1:prm%totalNslip,i)))/prm%CLambdaSlip(i)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
|
@ -1075,15 +1088,15 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!* mean free path between 2 obstacles seen by a moving dislocation
|
||||
do s = 1_pInt,prm%totalNslip
|
||||
do i = 1_pInt,prm%totalNslip
|
||||
if ((prm%totalNtwin > 0_pInt) .or. (prm%totalNtrans > 0_pInt)) then ! ToDo: This is too simplified
|
||||
stt%mfp_slip(s,of) = &
|
||||
stt%mfp_slip(i,of) = &
|
||||
prm%GrainSize/(1.0_pReal+prm%GrainSize*&
|
||||
(stt%invLambdaSlip(s,of) + stt%invLambdaSlipTwin(s,of) + stt%invLambdaSlipTrans(s,of)))
|
||||
(stt%invLambdaSlip(i,of) + stt%invLambdaSlipTwin(i,of) + stt%invLambdaSlipTrans(i,of)))
|
||||
else
|
||||
stt%mfp_slip(s,of) = &
|
||||
stt%mfp_slip(i,of) = &
|
||||
prm%GrainSize/&
|
||||
(1.0_pReal+prm%GrainSize*(stt%invLambdaSlip(s,of))) !!!!!! correct?
|
||||
(1.0_pReal+prm%GrainSize*(stt%invLambdaSlip(i,of))) !!!!!! correct?
|
||||
endif
|
||||
enddo
|
||||
|
||||
|
@ -1092,10 +1105,10 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
stt%mfp_trans(:,of) = prm%Cmfptrans*prm%GrainSize/(1.0_pReal+prm%GrainSize*stt%invLambdaTrans(:,of))
|
||||
|
||||
!* threshold stress for dislocation motion
|
||||
forall (s = 1_pInt:prm%totalNslip) stt%threshold_stress_slip(s,of) = &
|
||||
prm%mu*prm%burgers_slip(s)*&
|
||||
forall (i = 1_pInt:prm%totalNslip) stt%threshold_stress_slip(i,of) = &
|
||||
prm%mu*prm%burgers_slip(i)*&
|
||||
sqrt(dot_product(stt%rhoEdge(1_pInt:prm%totalNslip,of)+stt%rhoEdgeDip(1_pInt:prm%totalNslip,of),&
|
||||
prm%interaction_SlipSlip(s,1:prm%totalNslip)))
|
||||
prm%interaction_SlipSlip(i,1:prm%totalNslip)))
|
||||
|
||||
!* threshold stress for growing twin/martensite
|
||||
stt%threshold_stress_twin(:,of) = prm%Cthresholdtwin* &
|
||||
|
@ -1149,7 +1162,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
real(pReal), dimension(3,3), intent(out) :: Lp
|
||||
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99
|
||||
|
||||
integer(pInt) :: of,j,k,l,m,n,s1,s2
|
||||
integer(pInt) :: of,i,k,l,m,n,s1,s2
|
||||
real(pReal) :: sumf_twin,sumf_trans,StressRatio_p,StressRatio_pminus1,&
|
||||
StressRatio_r,BoltzmannRatio,Ndot0_twin,stressRatio, &
|
||||
Ndot0_trans,StressRatio_s, &
|
||||
|
@ -1201,29 +1214,29 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
dLp_dS = 0.0_pReal
|
||||
S = math_Mandel6to33(Tstar_v)
|
||||
|
||||
slipContribution: do j = 1_pInt, prm%totalNslip
|
||||
slipContribution: do i = 1_pInt, prm%totalNslip
|
||||
|
||||
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,i))
|
||||
|
||||
significantSlipStress: if((abs(tau)-stt%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
stressRatio = ((abs(tau)- stt%threshold_stress_slip(j,of))/&
|
||||
(prm%SolidSolutionStrength+prm%tau_peierls(j)))
|
||||
StressRatio_p = stressRatio** prm%p(j)
|
||||
StressRatio_pminus1 = stressRatio**(prm%p(j)-1.0_pReal) ! ToDo: no very helpful
|
||||
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
|
||||
significantSlipStress: if((abs(tau)-stt%threshold_stress_slip(i,of)) > tol_math_check) then
|
||||
stressRatio = ((abs(tau)- stt%threshold_stress_slip(i,of))/&
|
||||
(prm%SolidSolutionStrength+prm%tau_peierls(i)))
|
||||
StressRatio_p = stressRatio** prm%p(i)
|
||||
StressRatio_pminus1 = stressRatio**(prm%p(i)-1.0_pReal) ! ToDo: no very helpful
|
||||
BoltzmannRatio = prm%Qedge(i)/(kB*Temperature)
|
||||
|
||||
gdot_slip(j) = stt%rhoEdge(j,of)*prm%burgers_slip(j)* prm%v0(j) &
|
||||
* sign(exp(-BoltzmannRatio*(1-StressRatio_p)** prm%q(j)), tau)
|
||||
dgdot_dtau = abs(gdot_slip(j))*BoltzmannRatio*prm%p(j) * prm%q(j) &
|
||||
/ (prm%SolidSolutionStrength+prm%tau_peierls(j)) &
|
||||
* StressRatio_pminus1*(1-StressRatio_p)**(prm%q(j)-1.0_pReal)
|
||||
gdot_slip(i) = stt%rhoEdge(i,of)*prm%burgers_slip(i)* prm%v0(i) &
|
||||
* sign(exp(-BoltzmannRatio*(1-StressRatio_p)** prm%q(i)), tau)
|
||||
dgdot_dtau = abs(gdot_slip(i))*BoltzmannRatio*prm%p(i) * prm%q(i) &
|
||||
/ (prm%SolidSolutionStrength+prm%tau_peierls(i)) &
|
||||
* StressRatio_pminus1*(1-StressRatio_p)**(prm%q(i)-1.0_pReal)
|
||||
|
||||
Lp = Lp + gdot_slip(j)*prm%Schmid_slip(1:3,1:3,j)
|
||||
Lp = Lp + gdot_slip(i)*prm%Schmid_slip(1:3,1:3,i)
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) &
|
||||
+ dgdot_dtau * prm%Schmid_slip(k,l,j) * prm%Schmid_slip(m,n,j)
|
||||
+ dgdot_dtau * prm%Schmid_slip(k,l,i) * prm%Schmid_slip(m,n,i)
|
||||
else significantSlipStress
|
||||
gdot_slip(j) = 0.0_pReal
|
||||
gdot_slip(i) = 0.0_pReal
|
||||
endif significantSlipStress
|
||||
|
||||
enddo slipContribution
|
||||
|
@ -1237,9 +1250,9 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
BoltzmannRatio = prm%sbQedge/(kB*Temperature)
|
||||
call math_eigenValuesVectorsSym(S,eigValues,eigVectors,error)
|
||||
|
||||
do j = 1_pInt,6_pInt
|
||||
sb_s = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_sComposition(1:3,j))
|
||||
sb_m = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_mComposition(1:3,j))
|
||||
do i = 1_pInt,6_pInt
|
||||
sb_s = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_sComposition(1:3,i))
|
||||
sb_m = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_mComposition(1:3,i))
|
||||
Schmid_shearBand = math_tensorproduct33(sb_s,sb_m)
|
||||
tau = math_mul33xx33(S,Schmid_shearBand)
|
||||
|
||||
|
@ -1259,71 +1272,71 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
|
||||
endif shearBandingContribution
|
||||
|
||||
twinContibution: do j = 1_pInt, prm%totalNtwin
|
||||
twinContibution: do i = 1_pInt, prm%totalNtwin
|
||||
|
||||
tau = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
|
||||
tau = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,i))
|
||||
|
||||
significantTwinStress: if (tau > tol_math_check) then
|
||||
StressRatio_r = (stt%threshold_stress_twin(j,of)/tau)**prm%r(j)
|
||||
StressRatio_r = (stt%threshold_stress_twin(i,of)/tau)**prm%r(i)
|
||||
|
||||
isFCCtwin: if (prm%isFCC) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau < mse%tau_r_twin(j,of)) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,i)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,i)
|
||||
if (tau < mse%tau_r_twin(i,of)) then
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_twin*prm%burgers_slip(j))*&
|
||||
(prm%L0_twin*prm%burgers_slip(i))*&
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(mse%tau_r_twin(j,of)-tau)))
|
||||
(mse%tau_r_twin(i,of)-tau)))
|
||||
else
|
||||
Ndot0_twin=0.0_pReal
|
||||
end if
|
||||
else isFCCtwin
|
||||
Ndot0_twin=prm%Ndot0_twin(j)
|
||||
Ndot0_twin=prm%Ndot0_twin(i)
|
||||
endif isFCCtwin
|
||||
|
||||
gdot_twin = (1.0_pReal-sumf_twin-sumf_trans)* prm%shear_twin(j) * stt%twinVolume(j,of) &
|
||||
gdot_twin = (1.0_pReal-sumf_twin-sumf_trans)* prm%shear_twin(i) * stt%twinVolume(i,of) &
|
||||
* Ndot0_twin*exp(-StressRatio_r)
|
||||
dgdot_dtau = ((gdot_twin*prm%r(j))/tau)*StressRatio_r
|
||||
dgdot_dtau = ((gdot_twin*prm%r(i))/tau)*StressRatio_r
|
||||
|
||||
Lp = Lp + gdot_twin*prm%Schmid_twin(1:3,1:3,j)
|
||||
Lp = Lp + gdot_twin*prm%Schmid_twin(1:3,1:3,i)
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) &
|
||||
+ dgdot_dtau* prm%Schmid_twin(k,l,j)*prm%Schmid_twin(m,n,j)
|
||||
+ dgdot_dtau* prm%Schmid_twin(k,l,i)*prm%Schmid_twin(m,n,i)
|
||||
endif significantTwinStress
|
||||
|
||||
enddo twinContibution
|
||||
|
||||
transConstribution: do j = 1_pInt, prm%totalNtrans
|
||||
transConstribution: do i = 1_pInt, prm%totalNtrans
|
||||
|
||||
tau = math_mul33xx33(S,prm%Schmid_trans(1:3,1:3,j))
|
||||
tau = math_mul33xx33(S,prm%Schmid_trans(1:3,1:3,i))
|
||||
|
||||
significantTransStress: if (tau > tol_math_check) then
|
||||
StressRatio_s = (stt%threshold_stress_trans(j,of)/tau)**prm%s(j)
|
||||
StressRatio_s = (stt%threshold_stress_trans(i,of)/tau)**prm%s(i)
|
||||
|
||||
isFCCtrans: if (prm%isFCC) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau < mse%tau_r_trans(j,of)) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,i)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,i)
|
||||
if (tau < mse%tau_r_trans(i,of)) then
|
||||
Ndot0_trans=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_trans*prm%burgers_slip(j))*&
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*(mse%tau_r_trans(j,of)-tau)))
|
||||
(prm%L0_trans*prm%burgers_slip(i))*&
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*(mse%tau_r_trans(i,of)-tau)))
|
||||
else
|
||||
Ndot0_trans=0.0_pReal
|
||||
end if
|
||||
else isFCCtrans
|
||||
Ndot0_trans=prm%Ndot0_trans(j)
|
||||
Ndot0_trans=prm%Ndot0_trans(i)
|
||||
endif isFCCtrans
|
||||
|
||||
gdot_trans = (1.0_pReal-sumf_twin-sumf_trans)* stt%martensiteVolume(j,of) &
|
||||
gdot_trans = (1.0_pReal-sumf_twin-sumf_trans)* stt%martensiteVolume(i,of) &
|
||||
* Ndot0_trans*exp(-StressRatio_s)
|
||||
dgdot_dtau = ((gdot_trans*prm%s(j))/tau)*StressRatio_s
|
||||
Lp = Lp + gdot_trans*prm%Schmid_trans(1:3,1:3,j)
|
||||
dgdot_dtau = ((gdot_trans*prm%s(i))/tau)*StressRatio_s
|
||||
Lp = Lp + gdot_trans*prm%Schmid_trans(1:3,1:3,i)
|
||||
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) &
|
||||
+ dgdot_dtau * prm%Schmid_trans(k,l,j)* prm%Schmid_trans(m,n,j)
|
||||
+ dgdot_dtau * prm%Schmid_trans(k,l,i)* prm%Schmid_trans(m,n,i)
|
||||
endif significantTransStress
|
||||
|
||||
enddo transConstribution
|
||||
|
@ -1362,8 +1375,7 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
ip, & !< integration point
|
||||
el !< element
|
||||
|
||||
integer(pInt) :: instance,j,s1,s2, &
|
||||
ph, &
|
||||
integer(pInt) :: i,s1,s2, &
|
||||
of
|
||||
real(pReal) :: sumf_twin,sumf_trans,StressRatio_p,BoltzmannRatio,&
|
||||
EdgeDipMinDistance,AtomicVolume,VacancyDiffusion,StressRatio_r,Ndot0_twin,stressRatio,&
|
||||
|
@ -1382,59 +1394,60 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
|
||||
!* Shortened notation
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = material_phase(ipc,ip,el)
|
||||
|
||||
S = math_Mandel6to33(Tstar_v)
|
||||
|
||||
plasticState(ph)%dotState(:,of) = 0.0_pReal
|
||||
|
||||
|
||||
associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))), &
|
||||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))), &
|
||||
dst => dotstate(phase_plasticityInstance(material_phase(ipc,ip,el))), &
|
||||
mse => microstructure(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
|
||||
dst%whole(:,of) = 0.0_pReal
|
||||
|
||||
sumf_twin = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of))
|
||||
sumf_trans = sum(stt%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
|
||||
sum(stt%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||||
|
||||
slipState: do j = 1_pInt, prm%totalNslip
|
||||
slipState: do i = 1_pInt, prm%totalNslip
|
||||
|
||||
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,i))
|
||||
|
||||
significantSlipStress1: if((abs(tau)-stt%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
stressRatio =((abs(tau)- stt%threshold_stress_slip(j,of))/&
|
||||
(prm%SolidSolutionStrength+prm%tau_peierls(j)))
|
||||
StressRatio_p = stressRatio** prm%p(j)
|
||||
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
|
||||
gdot_slip(j) = stt%rhoEdge(j,of)*prm%burgers_slip(j)*prm%v0(j) &
|
||||
* sign(exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**prm%q(j)),tau)
|
||||
significantSlipStress1: if((abs(tau)-stt%threshold_stress_slip(i,of)) > tol_math_check) then
|
||||
stressRatio =((abs(tau)- stt%threshold_stress_slip(i,of))/&
|
||||
(prm%SolidSolutionStrength+prm%tau_peierls(i)))
|
||||
StressRatio_p = stressRatio** prm%p(i)
|
||||
BoltzmannRatio = prm%Qedge(i)/(kB*Temperature)
|
||||
gdot_slip(i) = stt%rhoEdge(i,of)*prm%burgers_slip(i)*prm%v0(i) &
|
||||
* sign(exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**prm%q(i)),tau)
|
||||
else significantSlipStress1
|
||||
gdot_slip(j) = 0.0_pReal
|
||||
gdot_slip(i) = 0.0_pReal
|
||||
endif significantSlipStress1
|
||||
|
||||
DotRhoMultiplication = abs(gdot_slip(j))/(prm%burgers_slip(j)*stt%mfp_slip(j,of))
|
||||
EdgeDipMinDistance = prm%CEdgeDipMinDistance*prm%burgers_slip(j)
|
||||
DotRhoMultiplication = abs(gdot_slip(i))/(prm%burgers_slip(i)*stt%mfp_slip(i,of))
|
||||
EdgeDipMinDistance = prm%CEdgeDipMinDistance*prm%burgers_slip(i)
|
||||
|
||||
significantSlipStress2: if (dEq0(tau)) then
|
||||
DotRhoDipFormation = 0.0_pReal
|
||||
else significantSlipStress2
|
||||
EdgeDipDistance = (3.0_pReal*prm%mu*prm%burgers_slip(j))/&
|
||||
EdgeDipDistance = (3.0_pReal*prm%mu*prm%burgers_slip(i))/&
|
||||
(16.0_pReal*PI*abs(tau))
|
||||
if (EdgeDipDistance>stt%mfp_slip(j,of)) EdgeDipDistance=stt%mfp_slip(j,of)
|
||||
if (EdgeDipDistance>stt%mfp_slip(i,of)) EdgeDipDistance=stt%mfp_slip(i,of)
|
||||
if (EdgeDipDistance<EdgeDipMinDistance) EdgeDipDistance=EdgeDipMinDistance
|
||||
DotRhoDipFormation = ((2.0_pReal*(EdgeDipDistance-EdgeDipMinDistance))/prm%burgers_slip(j))*&
|
||||
stt%rhoEdge(j,of)*abs(gdot_slip(j))*prm%dipoleFormationFactor
|
||||
DotRhoDipFormation = ((2.0_pReal*(EdgeDipDistance-EdgeDipMinDistance))/prm%burgers_slip(i))*&
|
||||
stt%rhoEdge(i,of)*abs(gdot_slip(i))*prm%dipoleFormationFactor
|
||||
endif significantSlipStress2
|
||||
|
||||
!* Spontaneous annihilation of 2 single edge dislocations
|
||||
DotRhoEdgeEdgeAnnihilation = ((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(j))*&
|
||||
stt%rhoEdge(j,of)*abs(gdot_slip(j))
|
||||
DotRhoEdgeEdgeAnnihilation = ((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(i))*&
|
||||
stt%rhoEdge(i,of)*abs(gdot_slip(i))
|
||||
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
||||
DotRhoEdgeDipAnnihilation = ((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(j)) &
|
||||
* stt%rhoEdgeDip(j,of)*abs(gdot_slip(j))
|
||||
DotRhoEdgeDipAnnihilation = ((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(i)) &
|
||||
* stt%rhoEdgeDip(i,of)*abs(gdot_slip(i))
|
||||
|
||||
!* Dislocation dipole climb
|
||||
AtomicVolume = prm%CAtomicVolume*prm%burgers_slip(j)**(3.0_pReal) ! no need to calculate this over and over again
|
||||
AtomicVolume = prm%CAtomicVolume*prm%burgers_slip(i)**(3.0_pReal) ! no need to calculate this over and over again
|
||||
VacancyDiffusion = prm%D0*exp(-prm%Qsd/(kB*Temperature))
|
||||
|
||||
if (dEq0(tau)) then
|
||||
|
@ -1445,66 +1458,66 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
else
|
||||
ClimbVelocity = 3.0_pReal*prm%mu*VacancyDiffusion*AtomicVolume/ &
|
||||
(2.0_pReal*pi*kB*Temperature*(EdgeDipDistance+EdgeDipMinDistance))
|
||||
DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*stt%rhoEdgeDip(j,of)/ &
|
||||
DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*stt%rhoEdgeDip(i,of)/ &
|
||||
(EdgeDipDistance-EdgeDipMinDistance)
|
||||
endif
|
||||
endif
|
||||
dst%rhoEdge(j,of) = DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||||
dst%rhoEdgeDip(j,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||||
dst%accshear_slip(j,of) = abs(gdot_slip(j))
|
||||
dst%rhoEdge(i,of) = DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||||
dst%rhoEdgeDip(i,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||||
dst%accshear_slip(i,of) = abs(gdot_slip(i))
|
||||
enddo slipState
|
||||
|
||||
twinState: do j = 1_pInt, prm%totalNtwin
|
||||
twinState: do i = 1_pInt, prm%totalNtwin
|
||||
|
||||
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,i))
|
||||
|
||||
significantTwinStress: if (tau > tol_math_check) then
|
||||
StressRatio_r = (stt%threshold_stress_twin(j,of)/tau)**prm%r(j)
|
||||
StressRatio_r = (stt%threshold_stress_twin(i,of)/tau)**prm%r(i)
|
||||
isFCCtwin: if (prm%isFCC) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau < mse%tau_r_twin(j,of)) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,i)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,i)
|
||||
if (tau < mse%tau_r_twin(i,of)) then
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_twin*prm%burgers_slip(j))*(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(mse%tau_r_twin(j,of)-tau)))
|
||||
(prm%L0_twin*prm%burgers_slip(i))*(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(mse%tau_r_twin(i,of)-tau)))
|
||||
else
|
||||
Ndot0_twin=0.0_pReal
|
||||
end if
|
||||
else isFCCtwin
|
||||
Ndot0_twin=prm%Ndot0_twin(j)
|
||||
Ndot0_twin=prm%Ndot0_twin(i)
|
||||
endif isFCCtwin
|
||||
dst%twinFraction(j,of) = (1.0_pReal-sumf_twin-sumf_trans)*&
|
||||
stt%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
dst%accshear_twin(j,of) = dst%twinFraction(j,of) * prm%shear_twin(j)
|
||||
dst%twinFraction(i,of) = (1.0_pReal-sumf_twin-sumf_trans)*&
|
||||
stt%twinVolume(i,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
dst%accshear_twin(i,of) = dst%twinFraction(i,of) * prm%shear_twin(i)
|
||||
endif significantTwinStress
|
||||
|
||||
enddo twinState
|
||||
|
||||
transState: do j = 1_pInt, prm%totalNtrans
|
||||
transState: do i = 1_pInt, prm%totalNtrans
|
||||
|
||||
tau = math_mul33xx33(S,prm%Schmid_trans(1:3,1:3,j))
|
||||
tau = math_mul33xx33(S,prm%Schmid_trans(1:3,1:3,i))
|
||||
|
||||
significantTransStress: if (tau > tol_math_check) then
|
||||
StressRatio_s = (stt%threshold_stress_trans(j,of)/tau)**prm%s(j)
|
||||
StressRatio_s = (stt%threshold_stress_trans(i,of)/tau)**prm%s(i)
|
||||
isFCCtrans: if (prm%isFCC) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau < mse%tau_r_trans(j,of)) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,i)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,i)
|
||||
if (tau < mse%tau_r_trans(i,of)) then
|
||||
Ndot0_trans=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_trans*prm%burgers_slip(j))*(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(mse%tau_r_trans(j,of)-tau)))
|
||||
(prm%L0_trans*prm%burgers_slip(i))*(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(mse%tau_r_trans(i,of)-tau)))
|
||||
else
|
||||
Ndot0_trans=0.0_pReal
|
||||
end if
|
||||
else isFCCtrans
|
||||
Ndot0_trans=prm%Ndot0_trans(j)
|
||||
Ndot0_trans=prm%Ndot0_trans(i)
|
||||
endif isFCCtrans
|
||||
dst%strainTransFraction(j,of) = (1.0_pReal-sumf_twin-sumf_trans)*&
|
||||
stt%martensiteVolume(j,of)*Ndot0_trans*exp(-StressRatio_s)
|
||||
dst%strainTransFraction(i,of) = (1.0_pReal-sumf_twin-sumf_trans)*&
|
||||
stt%martensiteVolume(i,of)*Ndot0_trans*exp(-StressRatio_s)
|
||||
!* Dotstate for accumulated shear due to transformation
|
||||
!dst%accshear_trans(j,of) = dst%strainTransFraction(j,of) * &
|
||||
!dst%accshear_trans(i,of) = dst%strainTransFraction(i,of) * &
|
||||
! lattice_sheartrans(index_myfamily+i,ph)
|
||||
endif significantTransStress
|
||||
|
||||
|
|
Loading…
Reference in New Issue