From 1f160dfd7292166ab9511eb2499ed64a29842eff Mon Sep 17 00:00:00 2001 From: Martin Diehl Date: Sun, 24 May 2015 16:35:37 +0000 Subject: [PATCH] FFT was at single precision only --- processing/post/addCurl.py | 4 ++-- processing/post/addDivergence.py | 6 +++--- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/processing/post/addCurl.py b/processing/post/addCurl.py index 814ea7766..6d8643fd0 100755 --- a/processing/post/addCurl.py +++ b/processing/post/addCurl.py @@ -20,7 +20,7 @@ def curlFFT(geomdim,field): dataType = 'tensor' field_fourier=np.fft.fftpack.rfftn(field,axes=(0,1,2)) - curl_fourier=np.zeros(field_fourier.shape,'c8') + curl_fourier=np.zeros(field_fourier.shape,'c16') # differentiation in Fourier space k_s=np.zeros([3],'i') @@ -34,7 +34,7 @@ def curlFFT(geomdim,field): for k in xrange(grid[2]/2+1): k_s[2] = k if(k > grid[2]/2 ): k_s[2] = k_s[2] - grid[2] - xi=np.array([k_s[2]/geomdim[2]+0.0j,k_s[1]/geomdim[1]+0.j,k_s[0]/geomdim[0]+0.j],'c8') + xi=np.array([k_s[2]/geomdim[2]+0.0j,k_s[1]/geomdim[1]+0.j,k_s[0]/geomdim[0]+0.j],'c16') if dataType == 'tensor': for l in xrange(3): curl_fourier[i,j,k,0,l] = ( field_fourier[i,j,k,l,2]*xi[1]\ diff --git a/processing/post/addDivergence.py b/processing/post/addDivergence.py index acb5454bc..47923aac8 100755 --- a/processing/post/addDivergence.py +++ b/processing/post/addDivergence.py @@ -18,10 +18,10 @@ def divFFT(geomdim,field): if len(np.shape(field)) == 4: dataType = 'vector' - div_fourier=np.zeros(field_fourier.shape[0:3],'c8') # div is a scalar + div_fourier=np.zeros(field_fourier.shape[0:3],'c16') # div is a scalar elif len(np.shape(field)) == 5: dataType = 'tensor' - div_fourier=np.zeros(field_fourier.shape[0:4],'c8') # div is a vector + div_fourier=np.zeros(field_fourier.shape[0:4],'c16') # div is a vector # differentiation in Fourier space k_s=np.zeros([3],'i') @@ -35,7 +35,7 @@ def divFFT(geomdim,field): for k in xrange(grid[2]/2+1): k_s[2] = k if(k > grid[2]/2 ): k_s[2] = k_s[2] - grid[2] - xi=np.array([k_s[2]/geomdim[2]+0.0j,k_s[1]/geomdim[1]+0.j,k_s[0]/geomdim[0]+0.j],'c8') + xi=np.array([k_s[2]/geomdim[2]+0.0j,k_s[1]/geomdim[1]+0.j,k_s[0]/geomdim[0]+0.j],'c16') if dataType == 'tensor': for l in xrange(3): div_fourier[i,j,k,l] = sum(field_fourier[i,j,k,l,0:3]*xi) *TWOPIIMG