ip volume is only needed by plastic nonlocal
This commit is contained in:
parent
076aa3f72b
commit
1d35699884
|
@ -45,7 +45,6 @@ module mesh
|
|||
|
||||
real(pReal), dimension(:,:), allocatable :: &
|
||||
mesh_node, & !< node x,y,z coordinates (after deformation! ONLY FOR MARC!!!
|
||||
mesh_ipVolume, & !< volume associated with IP (initially!)
|
||||
mesh_node0 !< node x,y,z coordinates (initially!)
|
||||
|
||||
real(pReal), dimension(:,:,:), allocatable:: &
|
||||
|
@ -219,8 +218,7 @@ subroutine mesh_init(ip,el)
|
|||
allocate(mesh_ipCoordinates(3,theMesh%elem%nIPs,theMesh%nElems),source=0.0_pReal)
|
||||
call mesh_build_ipCoordinates
|
||||
if (myDebug) write(6,'(a)') ' Built IP coordinates'; flush(6)
|
||||
call mesh_build_ipVolumes
|
||||
if (myDebug) write(6,'(a)') ' Built IP volumes'; flush(6)
|
||||
|
||||
call mesh_build_ipAreas
|
||||
if (myDebug) write(6,'(a)') ' Built IP areas'; flush(6)
|
||||
|
||||
|
@ -245,7 +243,8 @@ subroutine mesh_init(ip,el)
|
|||
call discretization_init(mesh_element(3,:),mesh_element(4,:),&
|
||||
reshape(mesh_ipCoordinates,[3,theMesh%elem%nIPs*theMesh%nElems]),&
|
||||
mesh_node0)
|
||||
call geometry_plastic_nonlocal_setIPvolume(mesh_ipVolume)
|
||||
|
||||
call geometry_plastic_nonlocal_setIPvolume(IPvolume())
|
||||
call geometry_plastic_nonlocal_setIPneighborhood(mesh_ipNeighborhood2)
|
||||
call geometry_plastic_nonlocal_setIParea(mesh_IParea)
|
||||
call geometry_plastic_nonlocal_setIPareaNormal(mesh_IPareaNormal)
|
||||
|
@ -1020,7 +1019,7 @@ end function mesh_build_cellnodes
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Calculates IP volume. Allocates global array 'mesh_ipVolume'
|
||||
!> @brief Calculates IP volume.
|
||||
!> @details The IP volume is calculated differently depending on the cell type.
|
||||
!> 2D cells assume an element depth of one in order to calculate the volume.
|
||||
!> For the hexahedral cell we subdivide the cell into subvolumes of pyramidal
|
||||
|
@ -1028,58 +1027,57 @@ end function mesh_build_cellnodes
|
|||
!> calculated as an average of four tetrahedals with three corners on the cell face
|
||||
!> and one corner at the central ip.
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine mesh_build_ipVolumes
|
||||
function IPvolume()
|
||||
|
||||
real(pReal), dimension(theMesh%elem%nIPs,theMesh%nElems) :: IPvolume
|
||||
|
||||
integer :: e,i,c,m,f,n
|
||||
real(pReal), dimension(size(theMesh%elem%cellFace,1),size(theMesh%elem%cellFace,2)) :: subvolume
|
||||
|
||||
allocate(mesh_ipVolume(theMesh%elem%nIPs,theMesh%nElems),source=0.0_pReal)
|
||||
c = theMesh%elem%cellType
|
||||
m = FE_NcellnodesPerCellface(c)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(f,n,subvolume)
|
||||
do e = 1,theMesh%nElems
|
||||
select case (c)
|
||||
do e = 1,theMesh%nElems
|
||||
select case (c)
|
||||
|
||||
case (1) ! 2D 3node
|
||||
forall (i = 1:theMesh%elem%nIPs) & ! loop over ips=cells in this element
|
||||
mesh_ipVolume(i,e) = math_areaTriangle(theMesh%node_0(1:3,mesh_cell2(1,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(2,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(3,i,e)))
|
||||
case (1) ! 2D 3node
|
||||
forall (i = 1:theMesh%elem%nIPs) & ! loop over ips=cells in this element
|
||||
IPvolume(i,e) = math_areaTriangle(theMesh%node_0(1:3,mesh_cell2(1,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(2,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(3,i,e)))
|
||||
|
||||
case (2) ! 2D 4node
|
||||
forall (i = 1:theMesh%elem%nIPs) & ! loop over ips=cells in this element
|
||||
mesh_ipVolume(i,e) = math_areaTriangle(theMesh%node_0(1:3,mesh_cell2(1,i,e)), & ! here we assume a planar shape, so division in two triangles suffices
|
||||
theMesh%node_0(1:3,mesh_cell2(2,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(3,i,e))) &
|
||||
+ math_areaTriangle(theMesh%node_0(1:3,mesh_cell2(3,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(4,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(1,i,e)))
|
||||
case (2) ! 2D 4node
|
||||
forall (i = 1:theMesh%elem%nIPs) & ! loop over ips=cells in this element
|
||||
IPvolume(i,e) = math_areaTriangle(theMesh%node_0(1:3,mesh_cell2(1,i,e)), & ! here we assume a planar shape, so division in two triangles suffices
|
||||
theMesh%node_0(1:3,mesh_cell2(2,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(3,i,e))) &
|
||||
+ math_areaTriangle(theMesh%node_0(1:3,mesh_cell2(3,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(4,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(1,i,e)))
|
||||
|
||||
case (3) ! 3D 4node
|
||||
forall (i = 1:theMesh%elem%nIPs) & ! loop over ips=cells in this element
|
||||
mesh_ipVolume(i,e) = math_volTetrahedron(theMesh%node_0(1:3,mesh_cell2(1,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(2,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(3,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(4,i,e)))
|
||||
case (3) ! 3D 4node
|
||||
forall (i = 1:theMesh%elem%nIPs) & ! loop over ips=cells in this element
|
||||
IPvolume(i,e) = math_volTetrahedron(theMesh%node_0(1:3,mesh_cell2(1,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(2,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(3,i,e)), &
|
||||
theMesh%node_0(1:3,mesh_cell2(4,i,e)))
|
||||
|
||||
case (4) ! 3D 8node
|
||||
do i = 1,theMesh%elem%nIPs ! loop over ips=cells in this element
|
||||
subvolume = 0.0_pReal
|
||||
forall(f = 1:FE_NipNeighbors(c), n = 1:m) &
|
||||
subvolume(n,f) = math_volTetrahedron(&
|
||||
mesh_cellnode(1:3,mesh_cell(theMesh%elem%cellface( n ,f),i,e)), &
|
||||
mesh_cellnode(1:3,mesh_cell(theMesh%elem%cellface(1+mod(n ,m),f),i,e)), &
|
||||
mesh_cellnode(1:3,mesh_cell(theMesh%elem%cellface(1+mod(n+1,m),f),i,e)), &
|
||||
mesh_ipCoordinates(1:3,i,e))
|
||||
mesh_ipVolume(i,e) = 0.5_pReal * sum(subvolume) ! each subvolume is based on four tetrahedrons, altough the face consists of only two triangles -> averaging factor two
|
||||
enddo
|
||||
case (4) ! 3D 8node
|
||||
do i = 1,theMesh%elem%nIPs ! loop over ips=cells in this element
|
||||
subvolume = 0.0_pReal
|
||||
forall(f = 1:FE_NipNeighbors(c), n = 1:m) &
|
||||
subvolume(n,f) = math_volTetrahedron(&
|
||||
mesh_cellnode(1:3,mesh_cell(theMesh%elem%cellface( n ,f),i,e)), &
|
||||
mesh_cellnode(1:3,mesh_cell(theMesh%elem%cellface(1+mod(n ,m),f),i,e)), &
|
||||
mesh_cellnode(1:3,mesh_cell(theMesh%elem%cellface(1+mod(n+1,m),f),i,e)), &
|
||||
mesh_ipCoordinates(1:3,i,e))
|
||||
IPvolume(i,e) = 0.5_pReal * sum(subvolume) ! each subvolume is based on four tetrahedrons, altough the face consists of only two triangles -> averaging factor two
|
||||
enddo
|
||||
|
||||
end select
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
end select
|
||||
enddo
|
||||
|
||||
end subroutine mesh_build_ipVolumes
|
||||
end function IPvolume
|
||||
|
||||
|
||||
subroutine IP_neighborhood2
|
||||
|
@ -1155,15 +1153,12 @@ subroutine IP_neighborhood2
|
|||
end subroutine IP_neighborhood2
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Calculates IP Coordinates. Allocates global array 'mesh_ipCoordinates'
|
||||
! Called by all solvers in mesh_init in order to initialize the ip coordinates.
|
||||
! Later on the current ip coordinates are directly prvided by the spectral solver and by Abaqus,
|
||||
! so no need to use this subroutine anymore; Marc however only provides nodal displacements,
|
||||
!> @brief Calculates IP Coordinates.
|
||||
! Marc however only provides nodal displacements,
|
||||
! so in this case the ip coordinates are always calculated on the basis of this subroutine.
|
||||
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
! FOR THE MOMENT THIS SUBROUTINE ACTUALLY CALCULATES THE CELL CENTER AND NOT THE IP COORDINATES,
|
||||
! AS THE IP IS NOT (ALWAYS) LOCATED IN THE CENTER OF THE IP VOLUME.
|
||||
! HAS TO BE CHANGED IN A LATER VERSION.
|
||||
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine mesh_build_ipCoordinates
|
||||
|
|
Loading…
Reference in New Issue