simplified CurlFFT and DivergenceFFT functions, and did the last changes to Utilities related to the new structure of the spectral solver
This commit is contained in:
parent
60633ffd98
commit
1ce6028ad3
|
@ -35,7 +35,6 @@ module DAMASK_spectral_utilities
|
|||
! debug divergence
|
||||
real(pReal), private, dimension(:,:,:,:), pointer :: divergence_real !< scalar field real representation for debugging divergence calculation
|
||||
complex(pReal),private, dimension(:,:,:,:), pointer :: divergence_fourier !< scalar field real representation for debugging divergence calculation
|
||||
real(pReal), private, dimension(:,:,:,:), allocatable :: divergence_post !< data of divergence calculation using function from core modules (serves as a reference)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! plans for FFTW
|
||||
|
@ -76,6 +75,7 @@ module DAMASK_spectral_utilities
|
|||
utilities_FFTbackward, &
|
||||
utilities_fourierConvolution, &
|
||||
utilities_divergenceRMS, &
|
||||
utilities_curlRMS, &
|
||||
utilities_maskedCompliance, &
|
||||
utilities_constitutiveResponse, &
|
||||
utilities_calculateRate, &
|
||||
|
@ -166,6 +166,7 @@ subroutine utilities_init()
|
|||
#else
|
||||
call IO_warning(41_pInt, ext_msg='debug PETSc')
|
||||
#endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! allocation
|
||||
allocate (xi(3,res1_red,res(2),res(3)),source = 0.0_pReal) ! frequencies, only half the size for first dimension
|
||||
|
@ -203,7 +204,6 @@ subroutine utilities_init()
|
|||
divergence = fftw_alloc_complex(int(res1_red*res(2)*res(3)*3_pInt,C_SIZE_T))
|
||||
call c_f_pointer(divergence, divergence_real, [ res(1)+2_pInt,res(2),res(3),3])
|
||||
call c_f_pointer(divergence, divergence_fourier, [ res1_red, res(2),res(3),3])
|
||||
allocate (divergence_post(res(1),res(2),res(3),3),source = 0.0_pReal)
|
||||
plan_divergence = fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],3,&
|
||||
divergence_fourier,[ res(3),res(2) ,res1_red],&
|
||||
1, res(3)*res(2)* res1_red,&
|
||||
|
@ -321,16 +321,9 @@ subroutine utilities_FFTforward(row,column)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! copy one component of the stress field to to a single FT and check for mismatch
|
||||
if (debugFFTW) then
|
||||
if (.not. present(row) .or. .not. present(column)) stop
|
||||
if (debugFFTW .and. present(row) .and. present(column)) &
|
||||
scalarField_real(1:res(1),1:res(2),1:res(3)) =& ! store the selected component
|
||||
cmplx(field_real(1:res(1),1:res(2),1:res(3),row,column),0.0_pReal,pReal)
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! call function to calculate divergence from math (for post processing) to check results
|
||||
if (debugDivergence) &
|
||||
divergence_post = math_divergenceFFT(scaledDim,field_real(1:res(1),1:res(2),1:res(3),1:3,1:3)) ! some elements are padded
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! doing the FFT
|
||||
|
@ -338,7 +331,7 @@ subroutine utilities_FFTforward(row,column)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! comparing 1 and 3x3 FT results
|
||||
if (debugFFTW) then
|
||||
if (debugFFTW .and. present(row) .and. present(column)) then
|
||||
call fftw_execute_dft(plan_scalarField_forth,scalarField_real,scalarField_fourier)
|
||||
write(6,'(/,a,i1,1x,i1,a)') ' .. checking FT results of compontent ', row, column, ' ..'
|
||||
flush(6)
|
||||
|
@ -384,7 +377,7 @@ subroutine utilities_FFTbackward(row,column)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! unpack FFT data for conj complex symmetric part. This data is not transformed when using c2r
|
||||
if (debugFFTW) then
|
||||
if (debugFFTW .and. present(row) .and. present(column)) then
|
||||
scalarField_fourier = field_fourier(1:res1_red,1:res(2),1:res(3),row,column)
|
||||
do i = 0_pInt, res(1)/2_pInt-2_pInt
|
||||
m = 1_pInt
|
||||
|
@ -406,7 +399,7 @@ subroutine utilities_FFTbackward(row,column)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! comparing 1 and 3x3 inverse FT results
|
||||
if (debugFFTW) then
|
||||
if (debugFFTW .and. present(row) .and. present(column)) then
|
||||
write(6,'(/,a,i1,1x,i1,a)') ' ... checking iFT results of compontent ', row, column, ' ..'
|
||||
flush(6)
|
||||
call fftw_execute_dft(plan_scalarField_back,scalarField_fourier,scalarField_real)
|
||||
|
@ -419,29 +412,6 @@ subroutine utilities_FFTbackward(row,column)
|
|||
|
||||
field_real = field_real * wgt ! normalize the result by number of elements
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate some additional output
|
||||
! if(debugGeneral) then
|
||||
! maxCorrectionSkew = 0.0_pReal
|
||||
! maxCorrectionSym = 0.0_pReal
|
||||
! temp33_Real = 0.0_pReal
|
||||
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
! maxCorrectionSym = max(maxCorrectionSym,&
|
||||
! maxval(math_symmetric33(field_real(i,j,k,1:3,1:3))))
|
||||
! maxCorrectionSkew = max(maxCorrectionSkew,&
|
||||
! maxval(math_skew33(field_real(i,j,k,1:3,1:3))))
|
||||
! temp33_Real = temp33_Real + field_real(i,j,k,1:3,1:3)
|
||||
! enddo; enddo; enddo
|
||||
! write(6,'(a,1x,es11.4)') 'max symmetric correction of deformation =',&
|
||||
! maxCorrectionSym*wgt
|
||||
! write(6,'(a,1x,es11.4)') 'max skew correction of deformation =',&
|
||||
! maxCorrectionSkew*wgt
|
||||
! write(6,'(a,1x,es11.4)') 'max sym/skew of avg correction = ',&
|
||||
! maxval(math_symmetric33(temp33_real))/&
|
||||
! maxval(math_skew33(temp33_real))
|
||||
! endif
|
||||
|
||||
|
||||
end subroutine utilities_FFTbackward
|
||||
|
||||
|
||||
|
@ -513,9 +483,7 @@ real(pReal) function utilities_divergenceRMS()
|
|||
implicit none
|
||||
integer(pInt) :: i, j, k
|
||||
real(pReal) :: &
|
||||
err_div_RMS, & !< RMS of divergence in Fourier space
|
||||
err_real_div_RMS, & !< RMS of divergence in real space
|
||||
err_post_div_RMS, & !< RMS of divergence in Fourier space, calculated using function for post processing
|
||||
err_div_max, & !< maximum value of divergence in Fourier space
|
||||
err_real_div_max !< maximum value of divergence in real space
|
||||
complex(pReal), dimension(3) :: temp3_complex
|
||||
|
@ -560,13 +528,11 @@ real(pReal) function utilities_divergenceRMS()
|
|||
call fftw_execute_dft_c2r(plan_divergence,divergence_fourier,divergence_real) ! already weighted
|
||||
|
||||
err_real_div_RMS = sqrt(wgt*sum(divergence_real**2.0_pReal)) ! RMS in real space
|
||||
err_post_div_RMS = sqrt(wgt*sum(divergence_post**2.0_pReal)) ! RMS in real space from funtion in math.f90
|
||||
err_real_div_max = sqrt(maxval(sum(divergence_real**2.0_pReal,dim=4))) ! max in real space
|
||||
err_div_max = sqrt( err_div_max) ! max in Fourier space
|
||||
|
||||
write(6,'(/,1x,a,es11.4)') 'error divergence FT RMS = ',err_div_RMS
|
||||
write(6,'(/,1x,a,es11.4)') 'error divergence FT RMS = ',utilities_divergenceRMS
|
||||
write(6,'(1x,a,es11.4)') 'error divergence Real RMS = ',err_real_div_RMS
|
||||
write(6,'(1x,a,es11.4)') 'error divergence post RMS = ',err_post_div_RMS
|
||||
write(6,'(1x,a,es11.4)') 'error divergence FT max = ',err_div_max
|
||||
write(6,'(1x,a,es11.4)') 'error divergence Real max = ',err_real_div_max
|
||||
flush(6)
|
||||
|
@ -702,8 +668,9 @@ function utilities_maskedCompliance(rot_BC,mask_stress,C)
|
|||
j = j + 1_pInt
|
||||
temp99_Real(n,m) = s_reduced(k,j)
|
||||
endif; enddo; endif; enddo
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! check if inversion was successfull
|
||||
! check if inversion was successful
|
||||
sTimesC = matmul(c_reduced,s_reduced)
|
||||
do m=1_pInt, size_reduced
|
||||
do n=1_pInt, size_reduced
|
||||
|
@ -743,7 +710,8 @@ subroutine utilities_constitutiveResponse(F_lastInc,F,temperature,timeinc,&
|
|||
debug_info
|
||||
use math, only: &
|
||||
math_transpose33, &
|
||||
math_rotate_forward33
|
||||
math_rotate_forward33, &
|
||||
math_det33
|
||||
use FEsolving, only: &
|
||||
restartWrite
|
||||
use mesh, only: &
|
||||
|
@ -784,8 +752,8 @@ subroutine utilities_constitutiveResponse(F_lastInc,F,temperature,timeinc,&
|
|||
real(pReal), dimension(6) :: sigma !< cauchy stress in mandel notation
|
||||
real(pReal), dimension(6,6) :: dsde !< d sigma / d Epsilon
|
||||
real(pReal), dimension(3,3,3,3) :: max_dPdF, min_dPdF
|
||||
real(pReal) :: max_dPdF_norm, min_dPdF_norm
|
||||
integer(pInt) :: k
|
||||
real(pReal) :: max_dPdF_norm, min_dPdF_norm, defgradDetMin, defgradDetMax, defgradDet
|
||||
integer(pInt) :: i,j,k
|
||||
|
||||
write(6,'(/,a)') ' ... evaluating constitutive response ......................................'
|
||||
calcMode = CPFEM_CALCRESULTS
|
||||
|
@ -799,22 +767,22 @@ subroutine utilities_constitutiveResponse(F_lastInc,F,temperature,timeinc,&
|
|||
collectMode = iand(collectMode, not(CPFEM_BACKUPJACOBIAN))
|
||||
calcMode = iand(calcMode, not(CPFEM_AGERESULTS))
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate bounds of det(F) and report
|
||||
! if(debugGeneral) then
|
||||
! defgradDetMax = -huge(1.0_pReal)
|
||||
! defgradDetMin = +huge(1.0_pReal)
|
||||
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
! defgradDet = math_det33(F(i,j,k,1:3,1:3))
|
||||
! defgradDetMax = max(defgradDetMax,defgradDet)
|
||||
! defgradDetMin = min(defgradDetMin,defgradDet)
|
||||
! enddo; enddo; enddo
|
||||
if(debugGeneral) then
|
||||
defgradDetMax = -huge(1.0_pReal)
|
||||
defgradDetMin = +huge(1.0_pReal)
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
defgradDet = math_det33(F(1:3,1:3,i,j,k))
|
||||
defgradDetMax = max(defgradDetMax,defgradDet)
|
||||
defgradDetMin = min(defgradDetMin,defgradDet)
|
||||
enddo; enddo; enddo
|
||||
|
||||
! write(6,'(a,1x,es11.4)') 'max determinant of deformation =', defgradDetMax
|
||||
! write(6,'(a,1x,es11.4)') 'min determinant of deformation =', defgradDetMin
|
||||
! endif
|
||||
if (DebugGeneral) write(6,'(/,2(a,i1.1))') ' collect mode: ', collectMode,' calc mode: ', calcMode
|
||||
flush(6)
|
||||
write(6,'(a,1x,es11.4)') ' max determinant of deformation =', defgradDetMax
|
||||
write(6,'(a,1x,es11.4)') ' min determinant of deformation =', defgradDetMin
|
||||
flush(6)
|
||||
endif
|
||||
|
||||
call CPFEM_general(collectMode,F_lastInc(1:3,1:3,1,1,1),F(1:3,1:3,1,1,1), & ! collect mode handles Jacobian backup / restoration
|
||||
temperature,timeinc,1_pInt,1_pInt,sigma,dsde,P(1:3,1:3,1,1,1),dPdF)
|
||||
|
@ -832,7 +800,7 @@ subroutine utilities_constitutiveResponse(F_lastInc,F,temperature,timeinc,&
|
|||
max_dPdF_norm = 0.0_pReal
|
||||
min_dPdF = huge(1.0_pReal)
|
||||
min_dPdF_norm = huge(1.0_pReal)
|
||||
do k = 1_pInt, res(3)*res(2)*res(3)
|
||||
do k = 1_pInt, mesh_NcpElems
|
||||
if (max_dPdF_norm < sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal)) then
|
||||
max_dPdF = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)
|
||||
max_dPdF_norm = sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal)
|
||||
|
|
|
@ -51,8 +51,6 @@ python module core ! in
|
|||
real*8, dimension(:,:,:,:,:), intent(in), :: field
|
||||
! function definition
|
||||
real*8, dimension(size(field,1),size(field,2),size(field,3),size(field,4),size(field,5)), depend(field) :: math_curlFFT
|
||||
! variables with dimension depending on input
|
||||
real*8, dimension(size(field,1)/2+1,size(field,2),size(field,3),3), depend(field) :: xi
|
||||
end function math_curlFFT
|
||||
|
||||
function math_divergenceFFT(geomdim,field) ! in :math:math.f90
|
||||
|
@ -61,8 +59,6 @@ python module core ! in
|
|||
real*8, dimension(:,:,:,:,:), intent(in), :: field
|
||||
! function definition
|
||||
real*8, dimension(size(field,1),size(field,2),size(field,3),size(field,4)), depend(field) :: math_divergenceFFT
|
||||
! variables with dimension depending on input
|
||||
real*8, dimension(size(field,1)/2+1,size(field,2),size(field,3),3), depend(field) :: xi
|
||||
end function math_divergenceFFT
|
||||
|
||||
function math_divergenceFDM(geomdim,order,field) ! in :math:math.f90
|
||||
|
|
418
code/math.f90
418
code/math.f90
|
@ -20,14 +20,13 @@
|
|||
#include "kdtree2.f90"
|
||||
#endif
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!* $Id$
|
||||
! $Id$
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief Mathematical library, including random number generation and tensor represenations
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
||||
module math
|
||||
use, intrinsic :: iso_c_binding
|
||||
use prec, only: &
|
||||
|
@ -36,10 +35,10 @@ module math
|
|||
|
||||
implicit none
|
||||
public ! because FFTW is included in math.f90
|
||||
real(pReal), parameter, public :: PI = 3.14159265358979323846264338327950288419716939937510_pReal
|
||||
real(pReal), parameter, public :: INDEG = 180.0_pReal/PI
|
||||
real(pReal), parameter, public :: INRAD = PI/180.0_pReal
|
||||
complex(pReal), parameter, public :: TWOPIIMG = (0.0_pReal,2.0_pReal)* PI
|
||||
real(pReal), parameter, public :: PI = 3.14159265358979323846264338327950288419716939937510_pReal !< ratio of a circle's circumference to its diameter
|
||||
real(pReal), parameter, public :: INDEG = 180.0_pReal/PI !< conversion from radian into degree
|
||||
real(pReal), parameter, public :: INRAD = PI/180.0_pReal !< conversion from degree into radian
|
||||
complex(pReal), parameter, public :: TWOPIIMG = (0.0_pReal,2.0_pReal)* PI !< Re(0.0), Im(2xPi)
|
||||
|
||||
real(pReal), dimension(3,3), parameter, public :: &
|
||||
math_I3 = reshape([&
|
||||
|
@ -1417,8 +1416,9 @@ end function math_RtoEuler
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief quaternion (w+ix+jy+kz) from orientation matrix
|
||||
!> @details math adopted from
|
||||
!> @details http://code.google.com/p/mtex/source/browse/trunk/geometry/geometry_tools/mat2quat.m
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! math adopted from http://code.google.com/p/mtex/source/browse/trunk/geometry/geometry_tools/mat2quat.m
|
||||
pure function math_RtoQ(R)
|
||||
|
||||
implicit none
|
||||
|
@ -2201,7 +2201,6 @@ end function math_eigenvalues33
|
|||
pure subroutine math_hi(M,HI1M,HI2M,HI3M)
|
||||
|
||||
implicit none
|
||||
|
||||
real(pReal), intent(in) :: M(3,3)
|
||||
real(pReal), intent(out) :: HI1M, HI2M, HI3M
|
||||
|
||||
|
@ -2215,23 +2214,14 @@ end subroutine math_hi
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief HALTON computes the next element in the Halton sequence.
|
||||
!
|
||||
! Parameters:
|
||||
! Input, integer NDIM, the dimension of the element.
|
||||
! Output, real R(NDIM), the next element of the current Halton sequence.
|
||||
!
|
||||
! Modified: 09 March 2003
|
||||
! Author: John Burkardt
|
||||
!
|
||||
! Modified: 29 April 2005
|
||||
! Author: Franz Roters
|
||||
!> @brief computes the next element in the Halton sequence.
|
||||
!> @author John Burkardt
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine halton(ndim, r)
|
||||
implicit none
|
||||
|
||||
integer(pInt), intent(in) :: ndim
|
||||
real(pReal), intent(out), dimension(ndim) :: r
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: ndim !< dimension of the element
|
||||
real(pReal), intent(out), dimension(ndim) :: r !< next element of the current Halton sequence
|
||||
integer(pInt), dimension(ndim) :: base
|
||||
integer(pInt) :: seed
|
||||
integer(pInt), dimension(1) :: value_halton
|
||||
|
@ -2250,59 +2240,39 @@ end subroutine halton
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief HALTON_MEMORY sets or returns quantities associated with the Halton sequence.
|
||||
!
|
||||
! Parameters:
|
||||
! Input, character (len = *) action_halton, the desired action.
|
||||
! 'GET' means get the value of a particular quantity.
|
||||
! 'SET' means set the value of a particular quantity.
|
||||
! 'INC' means increment the value of a particular quantity.
|
||||
! (Only the SEED can be incremented.)
|
||||
!
|
||||
! Input, character (len = *) name_halton, the name of the quantity.
|
||||
! 'BASE' means the Halton base or bases.
|
||||
! 'NDIM' means the spatial dimension.
|
||||
! 'SEED' means the current Halton seed.
|
||||
!
|
||||
! Input/output, integer NDIM, the dimension of the quantity.
|
||||
! If action_halton is 'SET' and action_halton is 'BASE', then NDIM is input, and
|
||||
! is the number of entries in value_halton to be put into BASE.
|
||||
!
|
||||
! Input/output, integer value_halton(NDIM), contains a value.
|
||||
! If action_halton is 'SET', then on input, value_halton contains values to be assigned
|
||||
! to the internal variable.
|
||||
! If action_halton is 'GET', then on output, value_halton contains the values of
|
||||
! the specified internal variable.
|
||||
! If action_halton is 'INC', then on input, value_halton contains the increment to
|
||||
! be added to the specified internal variable.
|
||||
!
|
||||
! Modified: 09 March 2003
|
||||
! Author: John Burkardt
|
||||
!
|
||||
! Modified: 29 April 2005
|
||||
! Author: Franz Roters
|
||||
!> @brief sets or returns quantities associated with the Halton sequence.
|
||||
!> @details If action_halton is 'SET' and action_halton is 'BASE', then NDIM is input, and
|
||||
!> @details is the number of entries in value_halton to be put into BASE.
|
||||
!> @details If action_halton is 'SET', then on input, value_halton contains values to be assigned
|
||||
!> @details to the internal variable.
|
||||
!> @details If action_halton is 'GET', then on output, value_halton contains the values of
|
||||
!> @details the specified internal variable.
|
||||
!> @details If action_halton is 'INC', then on input, value_halton contains the increment to
|
||||
!> @details be added to the specified internal variable.
|
||||
!> @author John Burkardt
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
|
||||
implicit none
|
||||
|
||||
character(len = *), intent(in) :: action_halton, name_halton
|
||||
character(len = *), intent(in) :: &
|
||||
action_halton, & !< desired action: GET the value of a particular quantity, SET the value of a particular quantity, INC the value of a particular quantity (only for SEED)
|
||||
name_halton !< name of the quantity: BASE: Halton base(s), NDIM: spatial dimension, SEED: current Halton seed
|
||||
integer(pInt), dimension(*), intent(inout) :: value_halton
|
||||
integer(pInt), allocatable, save, dimension(:) :: base
|
||||
logical, save :: first_call = .true.
|
||||
integer(pInt), intent(in) :: ndim
|
||||
integer(pInt), intent(in) :: ndim !< dimension of the quantity
|
||||
integer(pInt):: i
|
||||
integer(pInt), save :: ndim_save = 0_pInt, seed = 1_pInt
|
||||
|
||||
|
||||
if (first_call) then
|
||||
ndim_save = 1_pInt
|
||||
allocate(base(ndim_save))
|
||||
base(1) = 2_pInt
|
||||
first_call = .false.
|
||||
endif
|
||||
!
|
||||
! Set
|
||||
!
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Set
|
||||
if(action_halton(1:1) == 'S' .or. action_halton(1:1) == 's') then
|
||||
|
||||
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
|
||||
|
@ -2330,9 +2300,9 @@ subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
|
|||
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
||||
seed = value_halton(1)
|
||||
endif
|
||||
!
|
||||
! Get
|
||||
!
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Get
|
||||
elseif(action_halton(1:1) == 'G' .or. action_halton(1:1) == 'g') then
|
||||
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
|
||||
if(ndim /= ndim_save) then
|
||||
|
@ -2349,9 +2319,9 @@ subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
|
|||
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
||||
value_halton(1) = seed
|
||||
endif
|
||||
!
|
||||
! Increment
|
||||
!
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Increment
|
||||
elseif(action_halton(1:1) == 'I' .or. action_halton(1:1) == 'i') then
|
||||
if(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
||||
seed = seed + value_halton(1)
|
||||
|
@ -2362,21 +2332,13 @@ end subroutine halton_memory
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief HALTON_NDIM_SET sets the dimension for a Halton sequence.
|
||||
!
|
||||
! Parameters:
|
||||
! Input, integer NDIM, the dimension of the Halton vectors.
|
||||
!
|
||||
! Modified: 26 February 2001
|
||||
! Author: John Burkardt
|
||||
!
|
||||
! Modified: 29 April 2005
|
||||
! Author: Franz Roters
|
||||
!> @brief sets the dimension for a Halton sequence
|
||||
!> @author John Burkardt
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine halton_ndim_set (ndim)
|
||||
implicit none
|
||||
|
||||
integer(pInt), intent(in) :: ndim
|
||||
integer(pInt), intent(in) :: ndim !< dimension of the Halton vectors
|
||||
integer(pInt) :: value_halton(1)
|
||||
|
||||
value_halton(1) = ndim
|
||||
|
@ -2385,35 +2347,23 @@ subroutine halton_ndim_set (ndim)
|
|||
end subroutine halton_ndim_set
|
||||
|
||||
|
||||
|
||||
!> HALTON_SEED_SET sets the "seed" for the Halton sequence.
|
||||
!
|
||||
! Calling HALTON repeatedly returns the elements of the
|
||||
! Halton sequence in order, starting with element number 1.
|
||||
! An internal counter, called SEED, keeps track of the next element
|
||||
! to return. Each time the routine is called, the SEED-th element
|
||||
! is computed, and then SEED is incremented by 1.
|
||||
!
|
||||
! To restart the Halton sequence, it is only necessary to reset
|
||||
! SEED to 1. It might also be desirable to reset SEED to some other value.
|
||||
! This routine allows the user to specify any value of SEED.
|
||||
!
|
||||
! The default value of SEED is 1, which restarts the Halton sequence.
|
||||
!
|
||||
! Parameters:
|
||||
! Input, integer SEED, the seed for the Halton sequence.
|
||||
!
|
||||
! Modified: 26 February 2001
|
||||
! Author: John Burkardt
|
||||
!
|
||||
! Modified: 29 April 2005
|
||||
! Author: Franz Roters
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine halton_seed_set (seed)
|
||||
!> @brief sets the seed for the Halton sequence.
|
||||
!> @details Calling HALTON repeatedly returns the elements of the Halton sequence in order,
|
||||
!> @details starting with element number 1.
|
||||
!> @details An internal counter, called SEED, keeps track of the next element to return. Each time
|
||||
!> @details is computed, and then SEED is incremented by 1.
|
||||
!> @details To restart the Halton sequence, it is only necessary to reset SEED to 1. It might also
|
||||
!> @details be desirable to reset SEED to some other value. This routine allows the user to specify
|
||||
!> @details any value of SEED.
|
||||
!> @details The default value of SEED is 1, which restarts the Halton sequence.
|
||||
!> @author John Burkardt
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine halton_seed_set(seed)
|
||||
implicit none
|
||||
|
||||
integer(pInt), parameter :: ndim = 1_pInt
|
||||
integer(pInt), intent(in) :: seed
|
||||
integer(pInt), intent(in) :: seed !< seed for the Halton sequence.
|
||||
integer(pInt) :: value_halton(ndim)
|
||||
|
||||
value_halton(1) = seed
|
||||
|
@ -2423,43 +2373,26 @@ end subroutine halton_seed_set
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief I_TO_HALTON computes an element of a Halton sequence.
|
||||
!
|
||||
! Reference:
|
||||
! J H Halton: On the efficiency of certain quasi-random sequences of points
|
||||
! in evaluating multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
|
||||
!
|
||||
! Parameters:
|
||||
! Input, integer SEED, the index of the desired element.
|
||||
! Only the absolute value of SEED is considered. SEED = 0 is allowed,
|
||||
! and returns R = 0.
|
||||
!
|
||||
! Input, integer BASE(NDIM), the Halton bases, which should be
|
||||
! distinct prime numbers. This routine only checks that each base
|
||||
! is greater than 1.
|
||||
!
|
||||
! Input, integer NDIM, the dimension of the sequence.
|
||||
!
|
||||
! Output, real R(NDIM), the SEED-th element of the Halton sequence
|
||||
! for the given bases.
|
||||
!
|
||||
! Modified: 26 February 2001
|
||||
! Author: John Burkardt
|
||||
!
|
||||
! Modified: 29 April 2005
|
||||
! Author: Franz Roters
|
||||
!> @brief computes an element of a Halton sequence.
|
||||
!> @details Only the absolute value of SEED is considered. SEED = 0 is allowed, and returns R = 0.
|
||||
!> @details Halton Bases should be distinct prime numbers. This routine only checks that each base
|
||||
!> @details is greater than 1.
|
||||
!> @details Reference:
|
||||
!> @details J.H. Halton: On the efficiency of certain quasi-random sequences of points in evaluating
|
||||
!> @details multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
|
||||
!> @author John Burkardt
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine i_to_halton (seed, base, ndim, r)
|
||||
use IO, only: &
|
||||
IO_error
|
||||
|
||||
use IO, only: IO_error
|
||||
implicit none
|
||||
|
||||
integer(pInt), intent(in) :: ndim
|
||||
integer(pInt), intent(in), dimension(ndim) :: base
|
||||
integer(pInt), intent(in) :: ndim !< dimension of the sequence
|
||||
integer(pInt), intent(in), dimension(ndim) :: base !< Halton bases
|
||||
real(pReal), dimension(ndim) :: base_inv
|
||||
integer(pInt), dimension(ndim) :: digit
|
||||
real(pReal), dimension(ndim), intent(out) ::r
|
||||
integer(pInt) :: seed
|
||||
real(pReal), dimension(ndim), intent(out) ::r !< the SEED-th element of the Halton sequence for the given bases
|
||||
integer(pInt) , intent(in):: seed !< index of the desired element
|
||||
integer(pInt), dimension(ndim) :: seed2
|
||||
|
||||
seed2(1:ndim) = abs(seed)
|
||||
|
@ -2481,37 +2414,22 @@ end subroutine i_to_halton
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief PRIME returns any of the first PRIME_MAX prime numbers.
|
||||
!
|
||||
! Note:
|
||||
! PRIME_MAX is 1500, and the largest prime stored is 12553.
|
||||
! Reference:
|
||||
! Milton Abramowitz and Irene Stegun: Handbook of Mathematical Functions,
|
||||
! US Department of Commerce, 1964, pages 870-873.
|
||||
!
|
||||
! Daniel Zwillinger: CRC Standard Mathematical Tables and Formulae,
|
||||
! 30th Edition, CRC Press, 1996, pages 95-98.
|
||||
!
|
||||
! Parameters:
|
||||
! Input, integer N, the index of the desired prime number.
|
||||
! N = -1 returns PRIME_MAX, the index of the largest prime available.
|
||||
! N = 0 is legal, returning PRIME = 1.
|
||||
! It should generally be true that 0 <= N <= PRIME_MAX.
|
||||
!
|
||||
! Output, integer PRIME, the N-th prime. If N is out of range, PRIME
|
||||
! is returned as 0.
|
||||
!
|
||||
! Modified: 21 June 2002
|
||||
! Author: John Burkardt
|
||||
!
|
||||
! Modified: 29 April 2005
|
||||
! Author: Franz Roters
|
||||
!> @brief returns any of the first 1500 prime numbers.
|
||||
!> @details n <= 0 returns 1500, the index of the largest prime (12553) available.
|
||||
!> @details n = 0 is legal, returning PRIME = 1.
|
||||
!> @details Reference:
|
||||
!> @details Milton Abramowitz and Irene Stegun: Handbook of Mathematical Functions,
|
||||
!> @details US Department of Commerce, 1964, pages 870-873.
|
||||
!> @details Daniel Zwillinger: CRC Standard Mathematical Tables and Formulae,
|
||||
!> @details 30th Edition, CRC Press, 1996, pages 95-98.
|
||||
!> @author John Burkardt
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
integer(pInt) function prime(n)
|
||||
use IO, only: IO_error
|
||||
use IO, only: &
|
||||
IO_error
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: n
|
||||
integer(pInt), intent(in) :: n !< index of the desired prime number
|
||||
integer(pInt), parameter :: prime_max = 1500_pInt
|
||||
integer(pInt), save :: icall = 0_pInt
|
||||
integer(pInt), save, dimension(prime_max) :: npvec
|
||||
|
@ -2686,7 +2604,7 @@ integer(pInt) function prime(n)
|
|||
12491_pInt,12497_pInt,12503_pInt,12511_pInt,12517_pInt,12527_pInt,12539_pInt,12541_pInt,12547_pInt,12553_pInt]
|
||||
endif
|
||||
|
||||
if(n == -1_pInt) then
|
||||
if(n < 0_pInt) then
|
||||
prime = prime_max
|
||||
else if (n == 0_pInt) then
|
||||
prime = 1_pInt
|
||||
|
@ -2778,21 +2696,20 @@ end function math_rotate_forward3333
|
|||
!> @brief calculates curl field using differentation in Fourier space
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_curlFFT(geomdim,field)
|
||||
|
||||
use IO, only: IO_error
|
||||
use numerics, only: fftw_timelimit, fftw_planner_flag
|
||||
use debug, only: debug_math, &
|
||||
debug_level, &
|
||||
debug_levelBasic
|
||||
use IO, only: &
|
||||
IO_error
|
||||
use numerics, only: &
|
||||
fftw_timelimit, &
|
||||
fftw_planner_flag
|
||||
use debug, only: &
|
||||
debug_math, &
|
||||
debug_level, &
|
||||
debug_levelBasic
|
||||
|
||||
implicit none
|
||||
! input variables
|
||||
real(pReal), intent(in), dimension(3) :: geomdim
|
||||
real(pReal), intent(in), dimension(:,:,:,:,:) :: field
|
||||
! function
|
||||
real(pReal), dimension(size(field,1),size(field,2),size(field,3),size(field,4),size(field,5)) :: math_curlFFT
|
||||
! variables with dimension depending on input
|
||||
real(pReal), dimension(size(field,1)/2_pInt+1_pInt,size(field,2),size(field,3),3) :: xi
|
||||
real(pReal), intent(in), dimension(3) :: geomdim
|
||||
! allocatable arrays for fftw c routines
|
||||
type(C_PTR) :: fftw_forth, fftw_back
|
||||
type(C_PTR) :: field_fftw, curl_fftw
|
||||
|
@ -2804,6 +2721,7 @@ function math_curlFFT(geomdim,field)
|
|||
integer(pInt) i, j, k, l, res1_red
|
||||
integer(pInt), dimension(3) :: k_s,res
|
||||
real(pReal) :: wgt
|
||||
complex(pReal), dimension(3) :: xi
|
||||
integer(pInt) :: vec_tens
|
||||
|
||||
res = [size(field,1),size(field,2),size(field,3)]
|
||||
|
@ -2835,16 +2753,16 @@ function math_curlFFT(geomdim,field)
|
|||
call c_f_pointer(curl_fftw, curl_real, [res(1)+2_pInt,res(2),res(3),vec_tens,3_pInt])
|
||||
call c_f_pointer(curl_fftw, curl_fourier, [res1_red ,res(2),res(3),vec_tens,3_pInt])
|
||||
|
||||
fftw_forth = fftw_plan_many_dft_r2c(3_pInt,(/res(3),res(2) ,res(1)/),vec_tens*3_pInt,& ! dimensions , length in each dimension in reversed order
|
||||
field_real,(/res(3),res(2) ,res(1)+2_pInt/),& ! input data , physical length in each dimension in reversed order
|
||||
fftw_forth = fftw_plan_many_dft_r2c(3_pInt,[res(3),res(2) ,res(1)],vec_tens*3_pInt,& ! dimensions , length in each dimension in reversed order
|
||||
field_real,[res(3),res(2) ,res(1)+2_pInt],& ! input data , physical length in each dimension in reversed order
|
||||
1_pInt, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
|
||||
field_fourier,(/res(3),res(2) ,res1_red/),&
|
||||
field_fourier,[res(3),res(2) ,res1_red],&
|
||||
1_pInt, res(3)*res(2)* res1_red,fftw_planner_flag)
|
||||
|
||||
fftw_back = fftw_plan_many_dft_c2r(3_pInt,(/res(3),res(2) ,res(1)/),vec_tens*3_pInt,&
|
||||
curl_fourier,(/res(3),res(2) ,res1_red/),&
|
||||
fftw_back = fftw_plan_many_dft_c2r(3_pInt,[res(3),res(2) ,res(1)],vec_tens*3_pInt,&
|
||||
curl_fourier,[res(3),res(2) ,res1_red],&
|
||||
1_pInt, res(3)*res(2)* res1_red,&
|
||||
curl_real,(/res(3),res(2) ,res(1)+2_pInt/),&
|
||||
curl_real,[res(3),res(2) ,res(1)+2_pInt],&
|
||||
1_pInt, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
|
||||
|
||||
|
||||
|
@ -2865,26 +2783,23 @@ function math_curlFFT(geomdim,field)
|
|||
field_fourier(1:res1_red ,1:res(2) ,res(3)/2_pInt+1_pInt,&
|
||||
1:vec_tens,1:3) = cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
|
||||
do k = 1_pInt, res(3) ! calculation of discrete angular frequencies, ordered as in FFTW (wrap around)
|
||||
do k = 1_pInt, res(3)
|
||||
k_s(3) = k - 1_pInt
|
||||
if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3)
|
||||
do j = 1_pInt, res(2)
|
||||
k_s(2) = j - 1_pInt
|
||||
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
|
||||
do i = 1_pInt, res1_red
|
||||
k_s(1) = i - 1_pInt
|
||||
xi(i,j,k,1:3) = real(k_s, pReal)/geomdim
|
||||
enddo; enddo; enddo
|
||||
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
||||
do l = 1_pInt, vec_tens
|
||||
curl_fourier(i,j,k,l,1) = ( field_fourier(i,j,k,l,3)*xi(i,j,k,2)&
|
||||
-field_fourier(i,j,k,l,2)*xi(i,j,k,3) )*TWOPIIMG
|
||||
curl_fourier(i,j,k,l,2) = (-field_fourier(i,j,k,l,3)*xi(i,j,k,1)&
|
||||
+field_fourier(i,j,k,l,1)*xi(i,j,k,3) )*TWOPIIMG
|
||||
curl_fourier(i,j,k,l,3) = ( field_fourier(i,j,k,l,2)*xi(i,j,k,1)&
|
||||
-field_fourier(i,j,k,l,1)*xi(i,j,k,2) )*TWOPIIMG
|
||||
enddo
|
||||
do j = 1_pInt, res(2)
|
||||
k_s(2) = j - 1_pInt
|
||||
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
|
||||
do i = 1_pInt, res1_red
|
||||
k_s(1) = i - 1_pInt
|
||||
xi = cmplx(real(k_s, pReal)/geomdim,0.0_pReal)
|
||||
do l = 1_pInt, vec_tens
|
||||
curl_fourier(i,j,k,l,1) = ( field_fourier(i,j,k,l,3)*xi(2)&
|
||||
-field_fourier(i,j,k,l,2)*xi(3))*TWOPIIMG
|
||||
curl_fourier(i,j,k,l,2) = (-field_fourier(i,j,k,l,3)*xi(1)&
|
||||
+field_fourier(i,j,k,l,1)*xi(3))*TWOPIIMG
|
||||
curl_fourier(i,j,k,l,3) = ( field_fourier(i,j,k,l,2)*xi(1)&
|
||||
-field_fourier(i,j,k,l,1)*xi(2))*TWOPIIMG
|
||||
enddo
|
||||
enddo; enddo; enddo
|
||||
|
||||
call fftw_execute_dft_c2r(fftw_back, curl_fourier, curl_real)
|
||||
|
@ -2906,25 +2821,25 @@ function math_curlFFT(geomdim,field)
|
|||
|
||||
end function math_curlFFT
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates divergence field using integration in Fourier space
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_divergenceFFT(geomdim,field)
|
||||
|
||||
use IO, only: IO_error
|
||||
use numerics, only: fftw_timelimit, fftw_planner_flag
|
||||
use debug, only: debug_math, &
|
||||
debug_level, &
|
||||
debug_levelBasic
|
||||
use IO, only: &
|
||||
IO_error
|
||||
use numerics, only: &
|
||||
fftw_timelimit, &
|
||||
fftw_planner_flag
|
||||
use debug, only: &
|
||||
debug_math, &
|
||||
debug_level, &
|
||||
debug_levelBasic
|
||||
|
||||
implicit none
|
||||
|
||||
real(pReal), intent(in), dimension(3) :: geomdim
|
||||
real(pReal), intent(in), dimension(:,:,:,:,:) :: field
|
||||
! function
|
||||
real(pReal), dimension(size(field,1),size(field,2),size(field,3),size(field,4)) :: math_divergenceFFT
|
||||
! variables with dimension depending on input
|
||||
real(pReal), dimension(size(field,1)/2_pInt+1_pInt,size(field,2),size(field,3),3) :: xi
|
||||
real(pReal), intent(in), dimension(3) :: geomdim
|
||||
! allocatable arrays for fftw c routines
|
||||
type(C_PTR) :: fftw_forth, fftw_back
|
||||
type(C_PTR) :: field_fftw, divergence_fftw
|
||||
|
@ -2932,11 +2847,12 @@ function math_divergenceFFT(geomdim,field)
|
|||
complex(pReal), dimension(:,:,:,:,:), pointer :: field_fourier
|
||||
real(pReal), dimension(:,:,:,:), pointer :: divergence_real
|
||||
complex(pReal), dimension(:,:,:,:), pointer :: divergence_fourier
|
||||
! other variables
|
||||
|
||||
integer(pInt) :: i, j, k, l, res1_red
|
||||
real(pReal) :: wgt
|
||||
integer(pInt), dimension(3) :: k_s, res
|
||||
integer(pInt) :: vec_tens
|
||||
real(pReal) :: wgt
|
||||
complex(pReal), dimension(3) :: xi
|
||||
integer(pInt) :: vec_tens
|
||||
|
||||
res = [size(field,1),size(field,2),size(field,3)]
|
||||
vec_tens = size(field,4)
|
||||
|
@ -2956,6 +2872,7 @@ function math_divergenceFFT(geomdim,field)
|
|||
call IO_error(0_pInt,ext_msg='Resolution in math_divergenceFFT')
|
||||
if (pReal /= C_DOUBLE .or. pInt /= C_INT) &
|
||||
call IO_error(0_pInt,ext_msg='Fortran to C in math_divergenceFFT')
|
||||
|
||||
res1_red = res(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
|
||||
wgt = 1.0_pReal/real(res(1)*res(2)*res(3),pReal)
|
||||
|
||||
|
@ -2967,32 +2884,23 @@ function math_divergenceFFT(geomdim,field)
|
|||
call c_f_pointer(divergence_fftw, divergence_real, [res(1)+2_pInt,res(2),res(3),vec_tens])
|
||||
call c_f_pointer(divergence_fftw, divergence_fourier,[res1_red ,res(2),res(3),vec_tens])
|
||||
|
||||
fftw_forth = fftw_plan_many_dft_r2c(3_pInt,(/res(3),res(2) ,res(1)/),vec_tens*3_pInt,& ! dimensions , length in each dimension in reversed order
|
||||
field_real,(/res(3),res(2) ,res(1)+2_pInt/),& ! input data , physical length in each dimension in reversed order
|
||||
fftw_forth = fftw_plan_many_dft_r2c(3_pInt,[res(3),res(2) ,res(1)],vec_tens*3_pInt,& ! dimensions , length in each dimension in reversed order
|
||||
field_real,[res(3),res(2) ,res(1)+2_pInt],& ! input data , physical length in each dimension in reversed order
|
||||
1_pInt, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
|
||||
field_fourier,(/res(3),res(2) ,res1_red/),&
|
||||
field_fourier,[res(3),res(2) ,res1_red],&
|
||||
1_pInt, res(3)*res(2)* res1_red,fftw_planner_flag)
|
||||
|
||||
fftw_back = fftw_plan_many_dft_c2r(3_pInt,(/res(3),res(2) ,res(1)/),vec_tens,&
|
||||
divergence_fourier,(/res(3),res(2) ,res1_red/),&
|
||||
fftw_back = fftw_plan_many_dft_c2r(3_pInt,[res(3),res(2) ,res(1)],vec_tens,&
|
||||
divergence_fourier,[res(3),res(2) ,res1_red],&
|
||||
1_pInt, res(3)*res(2)* res1_red,&
|
||||
divergence_real,(/res(3),res(2) ,res(1)+2_pInt/),&
|
||||
divergence_real,[res(3),res(2) ,res(1)+2_pInt],&
|
||||
1_pInt, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag) ! padding
|
||||
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
field_real(i,j,k,1:vec_tens,1:3) = field(i,j,k,1:vec_tens,1:3) ! ensure that data is aligned properly (fftw_alloc)
|
||||
enddo; enddo; enddo
|
||||
|
||||
call fftw_execute_dft_r2c(fftw_forth, field_real, field_fourier)
|
||||
do k = 1_pInt, res(3) ! calculation of discrete angular frequencies, ordered as in FFTW (wrap around)
|
||||
k_s(3) = k - 1_pInt
|
||||
if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3)
|
||||
do j = 1_pInt, res(2)
|
||||
k_s(2) = j - 1_pInt
|
||||
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
|
||||
do i = 1_pInt, res1_red
|
||||
k_s(1) = i - 1_pInt
|
||||
xi(i,j,k,1:3) = real(k_s, pReal)/geomdim
|
||||
enddo; enddo; enddo
|
||||
|
||||
!remove highest frequency in each direction
|
||||
if(res(1)>1_pInt) &
|
||||
|
@ -3005,12 +2913,20 @@ function math_divergenceFFT(geomdim,field)
|
|||
field_fourier(1:res1_red ,1:res(2) ,res(3)/2_pInt+1_pInt,&
|
||||
1:vec_tens,1:3) = cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
||||
do l = 1_pInt, vec_tens
|
||||
divergence_fourier(i,j,k,l)=sum(field_fourier(i,j,k,l,1:3)*cmplx(xi(i,j,k,1:3),0.0_pReal,pReal))&
|
||||
*TWOPIIMG
|
||||
enddo
|
||||
do k = 1_pInt, res(3)
|
||||
k_s(3) = k - 1_pInt
|
||||
if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3)
|
||||
do j = 1_pInt, res(2)
|
||||
k_s(2) = j - 1_pInt
|
||||
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
|
||||
do i = 1_pInt, res1_red
|
||||
k_s(1) = i - 1_pInt
|
||||
xi = cmplx(real(k_s, pReal)/geomdim,0.0_pReal)
|
||||
do l = 1_pInt, vec_tens
|
||||
divergence_fourier(i,j,k,l)=sum(field_fourier(i,j,k,l,1:3)*xi)*TWOPIIMG
|
||||
enddo
|
||||
enddo; enddo; enddo
|
||||
|
||||
call fftw_execute_dft_c2r(fftw_back, divergence_fourier, divergence_real)
|
||||
|
||||
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
||||
|
@ -3031,17 +2947,19 @@ end function math_divergenceFFT
|
|||
! use vec_tes to decide if tensor (3) or vector (1)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_divergenceFDM(geomdim,order,field)
|
||||
use IO, only: IO_error
|
||||
use debug, only: debug_math, &
|
||||
debug_level, &
|
||||
debug_levelBasic
|
||||
use IO, only: &
|
||||
IO_error
|
||||
use debug, only: &
|
||||
debug_math, &
|
||||
debug_level, &
|
||||
debug_levelBasic
|
||||
|
||||
implicit none
|
||||
real(pReal), intent(in), dimension(:,:,:,:,:) :: field
|
||||
real(pReal), dimension(size(field,1),size(field,2),size(field,3),size(field,4)) :: math_divergenceFDM
|
||||
integer(pInt), intent(in) :: order
|
||||
real(pReal), intent(in), dimension(3) :: geomdim
|
||||
real(pReal), intent(in), dimension(:,:,:,:,:) :: field
|
||||
! function
|
||||
real(pReal), dimension(size(field,1),size(field,2),size(field,3),size(field,4)) :: math_divergenceFDM
|
||||
! other variables
|
||||
|
||||
integer(pInt), dimension(6,3) :: coordinates
|
||||
integer(pInt) i, j, k, m, l, vec_tens
|
||||
integer(pInt), dimension(3) :: res
|
||||
|
@ -3087,6 +3005,7 @@ function math_divergenceFDM(geomdim,order,field)
|
|||
enddo
|
||||
enddo
|
||||
enddo; enddo; enddo
|
||||
|
||||
contains
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief ! small helper functions for indexing CAREFUL, index and location runs from
|
||||
|
@ -3104,12 +3023,12 @@ function math_divergenceFDM(geomdim,order,field)
|
|||
|
||||
end function periodic_location
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief ! small helper functions for indexing CAREFUL, index and location runs from
|
||||
! 0 to N-1 (python style)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
integer(pInt) pure function periodic_index(location,res)
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in), dimension(3) :: res, location
|
||||
|
||||
|
@ -3127,17 +3046,15 @@ function math_periodicNearestNeighbor(geomdim, Favg, querySet, domainSet)
|
|||
use kdtree2_module
|
||||
use IO, only: &
|
||||
IO_error
|
||||
|
||||
implicit none
|
||||
! input variables
|
||||
real(pReal), dimension(3,3), intent(in) :: Favg
|
||||
real(pReal), dimension(3), intent(in) :: geomdim
|
||||
real(pReal), dimension(:,:), intent(in) :: querySet
|
||||
real(pReal), dimension(:,:), intent(in) :: domainSet
|
||||
! output variable
|
||||
integer(pInt), dimension(size(querySet,2)) :: math_periodicNearestNeighbor
|
||||
|
||||
real(pReal), dimension(size(domainSet,1),(3_pInt**size(domainSet,1))*size(domainSet,2)) &
|
||||
:: domainSetLarge
|
||||
real(pReal), dimension(size(domainSet,1),(3_pInt**size(domainSet,1))*size(domainSet,2)) :: &
|
||||
domainSetLarge
|
||||
|
||||
integer(pInt) :: i,j, l,m,n, spatialDim
|
||||
type(kdtree2), pointer :: tree
|
||||
|
@ -3182,7 +3099,6 @@ function math_periodicNearestNeighborDistances(geomdim, Favg, querySet, domainSe
|
|||
use IO, only: &
|
||||
IO_error
|
||||
implicit none
|
||||
! input variables
|
||||
real(pReal), dimension(3), intent(in) :: geomdim
|
||||
real(pReal), dimension(3,3), intent(in) :: Favg
|
||||
integer(pInt), intent(in) :: Ndist
|
||||
|
@ -3236,12 +3152,10 @@ end function math_periodicNearestNeighborDistances
|
|||
!> @brief calculate average of tensor field
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_tensorAvg(field)
|
||||
|
||||
implicit none
|
||||
! input variables
|
||||
real(pReal), intent(in), dimension(:,:,:,:,:) :: field
|
||||
! output variables
|
||||
real(pReal), dimension(3,3) :: math_tensorAvg
|
||||
! other variables
|
||||
real(pReal), intent(in), dimension(:,:,:,:,:) :: field
|
||||
real(pReal) :: wgt
|
||||
|
||||
wgt = 1.0_pReal/real(size(field,3)*size(field,4)*size(field,5), pReal)
|
||||
|
@ -3254,12 +3168,10 @@ end function math_tensorAvg
|
|||
!> @brief calculate logarithmic strain in spatial configuration for given F field
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_logstrainSpat(F)
|
||||
|
||||
implicit none
|
||||
! input variables
|
||||
real(pReal), intent(in), dimension(:,:,:,:,:) :: F
|
||||
! output variables
|
||||
real(pReal) , dimension(3,3,size(F,3),size(F,4),size(F,5)) :: math_logstrainSpat
|
||||
! other variables
|
||||
integer(pInt), dimension(3) :: res
|
||||
real(pReal), dimension(3,3) :: temp33_Real, temp33_Real2
|
||||
real(pReal), dimension(3,3,3) :: evbasis
|
||||
|
@ -3287,6 +3199,7 @@ end function math_logstrainSpat
|
|||
!> @brief calculate logarithmic strain in material configuration for given F field
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_logstrainMat(F)
|
||||
|
||||
implicit none
|
||||
real(pReal), intent(in), dimension(:,:,:,:,:) :: F
|
||||
real(pReal) , dimension(3,3,size(F,3),size(F,4),size(F,5)) :: math_logstrainMat
|
||||
|
@ -3315,6 +3228,7 @@ end function math_logstrainMat
|
|||
!> @brief calculate cauchy stress for given PK1 stress and F field
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_cauchy(F,P)
|
||||
|
||||
implicit none
|
||||
real(pReal), intent(in), dimension(:,:,:,:,:) :: F
|
||||
real(pReal), intent(in), dimension(:,:,:,:,:) :: P
|
||||
|
|
Loading…
Reference in New Issue