sorted alphabetically
This commit is contained in:
parent
5a5dd24687
commit
1c07152b96
|
@ -1,6 +1,6 @@
|
||||||
"""Finite-strain continuum mechanics."""
|
"""Finite-strain continuum mechanics."""
|
||||||
|
|
||||||
from . import tensor
|
from . import tensor as _tensor
|
||||||
|
|
||||||
import numpy as _np
|
import numpy as _np
|
||||||
|
|
||||||
|
@ -17,10 +17,10 @@ def deformation_Cauchy_Green_left(F):
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
B : numpy.ndarray of shape (...,3,3)
|
B : numpy.ndarray of shape (...,3,3)
|
||||||
Left Cauchy-Green deformation tensor.
|
Left Cauchy-Green deformation _tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return _np.matmul(F,tensor.transpose(F))
|
return _np.matmul(F,_tensor.transpose(F))
|
||||||
|
|
||||||
|
|
||||||
def deformation_Cauchy_Green_right(F):
|
def deformation_Cauchy_Green_right(F):
|
||||||
|
@ -35,32 +35,10 @@ def deformation_Cauchy_Green_right(F):
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
C : numpy.ndarray of shape (...,3,3)
|
C : numpy.ndarray of shape (...,3,3)
|
||||||
Right Cauchy-Green deformation tensor.
|
Right Cauchy-Green deformation _tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return _np.matmul(tensor.transpose(F),F)
|
return _np.matmul(_tensor.transpose(F),F)
|
||||||
|
|
||||||
|
|
||||||
def stress_Cauchy(P,F):
|
|
||||||
"""
|
|
||||||
Calculate the Cauchy stress (true stress).
|
|
||||||
|
|
||||||
Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
P : numpy.ndarray of shape (...,3,3)
|
|
||||||
First Piola-Kirchhoff stress.
|
|
||||||
F : numpy.ndarray of shape (...,3,3)
|
|
||||||
Deformation gradient.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
sigma : numpy.ndarray of shape (...,3,3)
|
|
||||||
Cauchy stress.
|
|
||||||
|
|
||||||
"""
|
|
||||||
return tensor.symmetric(_np.einsum('...,...ij,...kj',1.0/_np.linalg.det(F),P,F))
|
|
||||||
|
|
||||||
|
|
||||||
def deviatoric_part(T):
|
def deviatoric_part(T):
|
||||||
|
@ -81,25 +59,6 @@ def deviatoric_part(T):
|
||||||
return T - spherical_part(T,tensor=True)
|
return T - spherical_part(T,tensor=True)
|
||||||
|
|
||||||
|
|
||||||
def maximum_shear(T_sym):
|
|
||||||
"""
|
|
||||||
Calculate the maximum shear component of a symmetric tensor.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
T_sym : numpy.ndarray of shape (...,3,3)
|
|
||||||
Symmetric tensor of which the maximum shear is computed.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
gamma_max : numpy.ndarray of shape (...)
|
|
||||||
Maximum shear of T_sym.
|
|
||||||
|
|
||||||
"""
|
|
||||||
w = tensor.eigenvalues(T_sym)
|
|
||||||
return (w[...,0] - w[...,2])*0.5
|
|
||||||
|
|
||||||
|
|
||||||
def equivalent_strain_Mises(epsilon):
|
def equivalent_strain_Mises(epsilon):
|
||||||
"""
|
"""
|
||||||
Calculate the Mises equivalent of a strain tensor.
|
Calculate the Mises equivalent of a strain tensor.
|
||||||
|
@ -136,27 +95,23 @@ def equivalent_stress_Mises(sigma):
|
||||||
return _equivalent_Mises(sigma,3.0/2.0)
|
return _equivalent_Mises(sigma,3.0/2.0)
|
||||||
|
|
||||||
|
|
||||||
def stress_second_Piola_Kirchhoff(P,F):
|
def maximum_shear(T_sym):
|
||||||
"""
|
"""
|
||||||
Calculate the second Piola-Kirchhoff stress.
|
Calculate the maximum shear component of a symmetric tensor.
|
||||||
|
|
||||||
Resulting tensor is symmetrized as the second Piola-Kirchhoff stress
|
|
||||||
needs to be symmetric.
|
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
P : numpy.ndarray of shape (...,3,3)
|
T_sym : numpy.ndarray of shape (...,3,3)
|
||||||
First Piola-Kirchhoff stress.
|
Symmetric tensor of which the maximum shear is computed.
|
||||||
F : numpy.ndarray of shape (...,3,3)
|
|
||||||
Deformation gradient.
|
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
S : numpy.ndarray of shape (...,3,3)
|
gamma_max : numpy.ndarray of shape (...)
|
||||||
Second Piola-Kirchhoff stress.
|
Maximum shear of T_sym.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return tensor.symmetric(_np.einsum('...ij,...jk',_np.linalg.inv(F),P))
|
w = _tensor.eigenvalues(T_sym)
|
||||||
|
return (w[...,0] - w[...,2])*0.5
|
||||||
|
|
||||||
|
|
||||||
def rotational_part(T):
|
def rotational_part(T):
|
||||||
|
@ -186,14 +141,14 @@ def spherical_part(T,tensor=False):
|
||||||
T : numpy.ndarray of shape (...,3,3)
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
Tensor of which the hydrostatic part is computed.
|
Tensor of which the hydrostatic part is computed.
|
||||||
tensor : bool, optional
|
tensor : bool, optional
|
||||||
Map spherical part onto identity tensor. Defaults to false
|
Map spherical part onto identity _tensor. Defaults to false
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
p : numpy.ndarray of shape (...)
|
p : numpy.ndarray of shape (...)
|
||||||
unless tensor == True: shape (...,3,3)
|
unless tensor == True: shape (...,3,3)
|
||||||
Spherical part of tensor T, e.g. the hydrostatic part/pressure
|
Spherical part of tensor T, e.g. the hydrostatic part/pressure
|
||||||
of a stress tensor.
|
of a stress _tensor.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
sph = _np.trace(T,axis2=-2,axis1=-1)/3.0
|
sph = _np.trace(T,axis2=-2,axis1=-1)/3.0
|
||||||
|
@ -213,7 +168,7 @@ def strain(F,t,m):
|
||||||
Deformation gradient.
|
Deformation gradient.
|
||||||
t : {‘V’, ‘U’}
|
t : {‘V’, ‘U’}
|
||||||
Type of the polar decomposition, ‘V’ for left stretch tensor
|
Type of the polar decomposition, ‘V’ for left stretch tensor
|
||||||
and ‘U’ for right stretch tensor.
|
and ‘U’ for right stretch _tensor.
|
||||||
m : float
|
m : float
|
||||||
Order of the strain.
|
Order of the strain.
|
||||||
|
|
||||||
|
@ -239,9 +194,55 @@ def strain(F,t,m):
|
||||||
return eps
|
return eps
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def stress_Cauchy(P,F):
|
||||||
|
"""
|
||||||
|
Calculate the Cauchy stress (true stress).
|
||||||
|
|
||||||
|
Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
P : numpy.ndarray of shape (...,3,3)
|
||||||
|
First Piola-Kirchhoff stress.
|
||||||
|
F : numpy.ndarray of shape (...,3,3)
|
||||||
|
Deformation gradient.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
sigma : numpy.ndarray of shape (...,3,3)
|
||||||
|
Cauchy stress.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return _tensor.symmetric(_np.einsum('...,...ij,...kj',1.0/_np.linalg.det(F),P,F))
|
||||||
|
|
||||||
|
|
||||||
|
def stress_second_Piola_Kirchhoff(P,F):
|
||||||
|
"""
|
||||||
|
Calculate the second Piola-Kirchhoff stress.
|
||||||
|
|
||||||
|
Resulting tensor is symmetrized as the second Piola-Kirchhoff stress
|
||||||
|
needs to be symmetric.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
P : numpy.ndarray of shape (...,3,3)
|
||||||
|
First Piola-Kirchhoff stress.
|
||||||
|
F : numpy.ndarray of shape (...,3,3)
|
||||||
|
Deformation gradient.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
S : numpy.ndarray of shape (...,3,3)
|
||||||
|
Second Piola-Kirchhoff stress.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return _tensor.symmetric(_np.einsum('...ij,...jk',_np.linalg.inv(F),P))
|
||||||
|
|
||||||
|
|
||||||
def stretch_left(T):
|
def stretch_left(T):
|
||||||
"""
|
"""
|
||||||
Calculate left stretch of a tensor.
|
Calculate left stretch of a _tensor.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
@ -259,7 +260,7 @@ def stretch_left(T):
|
||||||
|
|
||||||
def stretch_right(T):
|
def stretch_right(T):
|
||||||
"""
|
"""
|
||||||
Calculate right stretch of a tensor.
|
Calculate right stretch of a _tensor.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
|
|
@ -11,42 +11,6 @@ to operate on numpy.ndarrays of shape (...,3,3).
|
||||||
import numpy as _np
|
import numpy as _np
|
||||||
|
|
||||||
|
|
||||||
def symmetric(T):
|
|
||||||
"""
|
|
||||||
Symmetrize tensor.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
T : numpy.ndarray of shape (...,3,3)
|
|
||||||
Tensor of which the symmetrized values are computed.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
T_sym : numpy.ndarray of shape (...,3,3)
|
|
||||||
Symmetrized tensor T.
|
|
||||||
|
|
||||||
"""
|
|
||||||
return (T+transpose(T))*0.5
|
|
||||||
|
|
||||||
|
|
||||||
def transpose(T):
|
|
||||||
"""
|
|
||||||
Transpose tensor.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
T : numpy.ndarray of shape (...,3,3)
|
|
||||||
Tensor of which the transpose is computed.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
T.T : numpy.ndarray of shape (...,3,3)
|
|
||||||
Transpose of tensor T.
|
|
||||||
|
|
||||||
"""
|
|
||||||
return _np.swapaxes(T,axis2=-2,axis1=-1)
|
|
||||||
|
|
||||||
|
|
||||||
def eigenvalues(T_sym):
|
def eigenvalues(T_sym):
|
||||||
"""
|
"""
|
||||||
Eigenvalues, i.e. principal components, of a symmetric tensor.
|
Eigenvalues, i.e. principal components, of a symmetric tensor.
|
||||||
|
@ -89,3 +53,39 @@ def eigenvectors(T_sym,RHS=False):
|
||||||
if RHS:
|
if RHS:
|
||||||
v[_np.linalg.det(v) < 0.0,:,2] *= -1.0
|
v[_np.linalg.det(v) < 0.0,:,2] *= -1.0
|
||||||
return v
|
return v
|
||||||
|
|
||||||
|
|
||||||
|
def symmetric(T):
|
||||||
|
"""
|
||||||
|
Symmetrize tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
|
Tensor of which the symmetrized values are computed.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
T_sym : numpy.ndarray of shape (...,3,3)
|
||||||
|
Symmetrized tensor T.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return (T+transpose(T))*0.5
|
||||||
|
|
||||||
|
|
||||||
|
def transpose(T):
|
||||||
|
"""
|
||||||
|
Transpose tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
T : numpy.ndarray of shape (...,3,3)
|
||||||
|
Tensor of which the transpose is computed.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
T.T : numpy.ndarray of shape (...,3,3)
|
||||||
|
Transpose of tensor T.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return _np.swapaxes(T,axis2=-2,axis1=-1)
|
||||||
|
|
Loading…
Reference in New Issue