diff --git a/python/damask/grid_filters.py b/python/damask/grid_filters.py index 38039ac14..91293f6fa 100644 --- a/python/damask/grid_filters.py +++ b/python/damask/grid_filters.py @@ -75,8 +75,8 @@ def curl(size: _FloatSequence, e[0, 2, 1] = e[2, 1, 0] = e[1, 0, 2] = -1.0 f_fourier = _np.fft.rfftn(f,axes=(0,1,2)) - curl_ = (_np.einsum('slm,ijkl,ijkm ->ijks', e,k_s,f_fourier)*2.0j*_np.pi if n == 3 else # vector, 3 -> 3 - _np.einsum('slm,ijkl,ijknm->ijksn',e,k_s,f_fourier)*2.0j*_np.pi) # tensor, 3x3 -> 3x3 + curl_ = (_np.einsum('slm,ijkl,ijkm ->ijks' if n == 3 else + 'slm,ijkl,ijknm->ijksn',e,k_s,f_fourier)*2.0j*_np.pi) # vector 3->3, tensor 3x3->3x3 return _np.fft.irfftn(curl_,axes=(0,1,2),s=f.shape[:3]) @@ -104,7 +104,7 @@ def divergence(size: _FloatSequence, f_fourier = _np.fft.rfftn(f,axes=(0,1,2)) divergence_ = (_np.einsum('ijkl,ijkl ->ijk' if n==3 else - 'ijkm,ijklm->ijkl', k_s,f_fourier)*2.0j*_np.pi) # vector 3 -> 1, tensor 3x3 -> 3 + 'ijkm,ijklm->ijkl', k_s,f_fourier)*2.0j*_np.pi) # vector 3->1, tensor 3x3->3 return _np.fft.irfftn(divergence_,axes=(0,1,2),s=f.shape[:3]) @@ -132,7 +132,7 @@ def gradient(size: _FloatSequence, f_fourier = _np.fft.rfftn(f,axes=(0,1,2)) gradient_ = (_np.einsum('ijkl,ijkm->ijkm' if n==1 else - 'ijkl,ijkm->ijklm',f_fourier,k_s)*2.0j*_np.pi) # scalar 1 -> 3, vector 3 -> 3x3 + 'ijkl,ijkm->ijklm',f_fourier,k_s)*2.0j*_np.pi) # scalar 1->3, vector 3->3x3 return _np.fft.irfftn(gradient_,axes=(0,1,2),s=f.shape[:3])