trying to simplify

This commit is contained in:
Martin Diehl 2015-10-13 21:00:12 +00:00
parent 3a998ba114
commit 180d4625c1
1 changed files with 213 additions and 225 deletions

View File

@ -1,9 +1,8 @@
#!/usr/bin/python
# -*- coding: UTF-8 no BOM -*-
import threading,time,os,subprocess,shlex,string
import threading,time,os,subprocess,string,sys
import numpy as np
from scipy.linalg import svd
from optparse import OptionParser
import damask
from damask.util import leastsqBound
@ -12,21 +11,23 @@ scriptID = string.replace('$Id$','\n','\\n')
scriptName = os.path.splitext(scriptID.split()[1])[0]
def runFit(exponent, eqStress, dimension, criterion):
global s, threads, myFit
global s, threads, myFit, myLoad
global fitResults, fitErrors, fitResidual, stressAll, strainAll
global N_simulations, Guess, dDim, numParas
global N_simulations, Guess, dDim
fitResults = []; fitErrors = []; fitResidual = []; Guess = []; threads=[]
dDim = dimension - 3
numParas = len(fitCriteria[criterion]['bound'][dDim])
Nparas = len(fitCriteria[criterion]['bound'][dDim])
nExpo = fitCriteria[criterion]['nExpo']
if exponent > 0.0:
numParas = numParas-nExpo # User defines the exponents
fitCriteria[criterion]['bound'][dDim] = fitCriteria[criterion]['bound'][dDim][:numParas]
for i in xrange(numParas):
if exponent > 0.0: # User defined exponents
Nparas = Nparas-nExpo
fitCriteria[criterion]['bound'][dDim] = fitCriteria[criterion]['bound'][dDim][:Nparas]
for i in xrange(Nparas):
temp = fitCriteria[criterion]['bound'][dDim][i]
if fitCriteria[criterion]['bound'][dDim][i] == (None,None): Guess.append(1.0)
if fitCriteria[criterion]['bound'][dDim][i] == (None,None):
Guess.append(1.0)
else:
g = (temp[0]+temp[1])/2.0
if g == 0: g = temp[1]*0.5
@ -36,17 +37,19 @@ def runFit(exponent, eqStress, dimension, criterion):
s=threading.Semaphore(1)
myLoad = Loadcase(options.load[0],options.load[1],options.load[2],
nSet = 10, dimension = dimension, vegter = options.vegter)
stressAll= [np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
strainAll= [np.zeros(0,'d').reshape(0,0) for i in xrange(int(options.yieldValue[2]))]
myFit = Criterion(exponent,eqStress, dimension, criterion)
for i in range(options.threads):
threads.append(myThread(i))
threads[i].start()
for t in range(options.threads):
threads.append(myThread(t))
threads[t].start()
for i in range(options.threads):
threads[i].join()
print fitResidual
for t in range(options.threads):
threads[t].join()
damask.util.croak('Residuals')
damask.util.croak(fitResidual)
def principalStresses(sigmas):
'''
@ -61,32 +64,33 @@ def principalStresses(sigmas):
return lambdas
def principalStress(p):
sin = np.sin; cos = np.cos
I1,I2,I3 = invariant(p)
I = invariant(p)
I1s3I2= (I1**2 - 3.0*I2)**0.5
numer = 2.0*I1**3 - 9.0*I1*I2 + 27.0*I3
I1s3I2= (I[0]**2 - 3.0*I[1])**0.5
numer = 2.0*I[0]**3 - 9.0*I[0]*I[1] + 27.0*I[2]
denom = 2.0*I1s3I2**3
cs = numer/denom
phi = np.arccos(cs)/3.0
t1 = I1/3.0; t2 = 2.0/3.0*I1s3I2
return np.array( [t1 + t2*cos(phi), t1+t2*cos(phi+np.pi*2.0/3.0), t1+t2*cos(phi+np.pi*4.0/3.0)])
t1 = I[0]/3.0; t2 = 2.0/3.0*I1s3I2
return np.array( [t1 + t2*np.cos(phi),
t1 + t2*np.cos(phi+np.pi*2.0/3.0),
t1 + t2*np.cos(phi+np.pi*4.0/3.0)])
def principalStrs_Der(p, (s1, s2, s3, s4, s5, s6), dim, Karafillis=False):
'''
The derivative of principal stress with respect to stress
Derivative of principal stress with respect to stress
'''
sin = np.sin; cos = np.cos
I1,I2,I3 = invariant(p)
third = 1.0/3.0
I1s3I2= np.sqrt(I1**2 - 3.0*I2)
numer, denom = 2.0*I1**3 - 9.0*I1*I2 + 27.0*I3, 2.0*I1s3I2**3
third2 = 2.0*third
I = invariant(p)
I1s3I2= np.sqrt(I[0]**2 - 3.0*I[1])
numer = 2.0*I1**3 - 9.0*I[0]*I[1] + 27.0*I[2]
denom = 2.0*I1s3I2**3
cs = numer/denom
phi = np.arccos(cs)/3.0
dphidcs = -third/np.sqrt(1.0 - cs**2)
dcsddenom = 0.5*numer*(-1.5)*I1s3I2**(-5.0)
dcsdI1 = (6.0*I1**2 - 9.0*I2)*denom + dcsddenom*(2.0*I1)
@ -94,12 +98,13 @@ def principalStrs_Der(p, (s1, s2, s3, s4, s5, s6), dim, Karafillis=False):
dcsdI3 = 27.0*denom
dphidI1, dphidI2, dphidI3 = dphidcs*dcsdI1, dphidcs*dcsdI2, dphidcs*dcsdI3
dI1s3I2dI1= I1/I1s3I2; dI1s3I2dI2 = -1.5/I1s3I2
third2 = 2.0*third; tcoeff = third2*I1s3I2
dI1s3I2dI1 = I1/I1s3I2
dI1s3I2dI2 = -1.5/I1s3I2
tcoeff = third2*I1s3I2
dSidIj = lambda theta : ( tcoeff*(-sin(theta))*dphidI1 + third2*dI1s3I2dI1*cos(theta) + third,
tcoeff*(-sin(theta))*dphidI2 + third2*dI1s3I2dI2*cos(theta),
tcoeff*(-sin(theta))*dphidI3)
dSidIj = lambda theta : ( tcoeff*(-np.sin(theta))*dphidI1 + third2*dI1s3I2dI1*np.cos(theta) + third,
tcoeff*(-np.sin(theta))*dphidI2 + third2*dI1s3I2dI2*np.cos(theta),
tcoeff*(-np.sin(theta))*dphidI3)
dSdI = np.array([dSidIj(phi),dSidIj(phi+np.pi*2.0/3.0),dSidIj(phi+np.pi*4.0/3.0)]) # i=1,2,3; j=1,2,3
# calculate the derivation of principal stress with regards to the anisotropic coefficients
@ -111,8 +116,11 @@ def principalStrs_Der(p, (s1, s2, s3, s4, s5, s6), dim, Karafillis=False):
if Karafillis:
dpdc = np.array([[zero,s1-s3,s1-s2], [s2-s3,zero,s2-s1], [s3-s2,s3-s1,zero]])/3.0
dSdp = np.array([np.dot(dSdI[:,:,i],dIdp[:,:,i]).T for i in xrange(num)]).T
if dim == 2: temp = np.vstack([dSdp[:,3]*s4]).T.reshape(num,1,3).T
else: temp = np.vstack([dSdp[:,3]*s4,dSdp[:,4]*s5,dSdp[:,5]*s6]).T.reshape(num,3,3).T
if dim == 2:
temp = np.vstack([dSdp[:,3]*s4]).T.reshape(num,1,3).T
else:
temp = np.vstack([dSdp[:,3]*s4,dSdp[:,4]*s5,dSdp[:,5]*s6]).T.reshape(num,3,3).T
return np.concatenate((np.array([np.dot(dSdp[:,0:3,i], dpdc[:,:,i]).T for i in xrange(num)]).T,
temp), axis=1)
else:
@ -127,14 +135,12 @@ def principalStrs_Der(p, (s1, s2, s3, s4, s5, s6), dim, Karafillis=False):
return np.array([np.dot(dSdI[:,:,i],dIdc[:,:,i]).T for i in xrange(num)]).T
def invariant(sigmas):
I=np.zeros(3)
s11,s22,s33,s12,s23,s31 = sigmas
I1 = s11 + s22 + s33
I2 = s11*s22 + s22*s33 + s33*s11 - s12**2 - s23**2 - s31**2
I3 = s11*s22*s33 + 2.0*s12*s23*s31 - s12**2*s33 - s23**2*s11 - s31**2*s22
return (I1,I2,I3)
def formatOutput(n, type='%-14.6f'):
return ''.join([type for i in xrange(n)])
I[0] = s11 + s22 + s33
I[1] = s11*s22 + s22*s33 + s33*s11 - s12**2 - s23**2 - s31**2
I[2] = s11*s22*s33 + 2.0*s12*s23*s31 - s12**2*s33 - s23**2*s11 - s31**2*s22
return I
def math_ln(x):
return np.log(x + 1.0e-32)
@ -155,9 +161,9 @@ class Criteria(object):
'''
def __init__(self, criterion, uniaxialStress,exponent, dimension):
self.stress0 = uniaxialStress
if exponent < 0.0: # The exponent m is undetermined
if exponent < 0.0: # Fitting exponent m
self.mFix = [False, exponent]
else: # The exponent m is fixed
else: # fixed exponent m
self.mFix = [True, exponent]
self.func = fitCriteria[criterion]['func']
self.criteria = criterion
@ -234,7 +240,7 @@ def VetgerCriterion(stress,lankford, rhoBi0, theta=0.0):
nps = len(stress)
if nps%4 != 0:
print ('Warning: the number of stress points is uncorrect, stress points of %s are missing in set %i'%(
damask.util.croak('Warning: the number of stress points is uncorrect, stress points of %s are missing in set %i'%(
['eq-biaxial, plane strain & uniaxial', 'eq-biaxial & plane strain','eq-biaxial'][nps%4-1],nps/4+1))
else:
nset = nps/4
@ -338,15 +344,12 @@ def Drucker(eqStress, paras, sigmas, mFix, criteria, dim, Jac = False):
sigma0, C_D = paras[0:2]
if mFix[0]: p = mFix[1]
else: p = paras[-1]
I1,I2,I3 = invariant(sigmas)
#I = invariant(sigmas)
#J = np.zeros([3])
J2 = I1**2/3.0 - I2
#J[1] = I[0]**2/3.0 - I[1]
J3 = I1**3/13.5 - I1*I2/3.0 + I3
#J[2] = I[0]**3/13.5 - I[0]*I[1]/3.0 + I[2] etc.
J2_3p = J2**(3.0*p)
J3_2p = J3**(2.0*p)
I = invariant(sigmas)
J = np.zeros([3])
J[1] = I[0]**2/3.0 - I[1]
J[2] = I[0]**3/13.5 - I[0]*I[1]/3.0 + I[2]
J2_3p = J[1]**(3.0*p)
J3_2p = J[2]**(2.0*p)
left = J2_3p - C_D*J3_2p
r = left**(1.0/(6.0*p))*3.0**0.5/sigma0
@ -501,7 +504,6 @@ def Barlat1991(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
if mFix[0]: m = mFix[1]
else: m = paras[-1]
cos = np.cos; sin = np.sin; pi = np.pi; abs = np.abs
s11,s22,s33,s12,s23,s31 = sigmas
if dim == 2:
dXdx = np.array([s22,-s11,s11-s22,s12])
@ -512,9 +514,9 @@ def Barlat1991(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
I2 = (F*F + G*G + H*H)/3.0+ ((A-C)**2+(C-B)**2+(B-A)**2)/54.0
I3 = (C-B)*(A-C)*(B-A)/54.0 + F*G*H - ((C-B)*F*F + (A-C)*G*G + (B-A)*H*H)/6.0
phi1 = np.arccos(I3/I2**1.5)/3.0 + pi/6.0; absc1 = 2.0*abs(cos(phi1))
phi2 = phi1 + pi/3.0; absc2 = 2.0*abs(cos(phi2))
phi3 = phi2 + pi/3.0; absc3 = 2.0*abs(cos(phi3))
phi1 = np.arccos(I3/I2**1.5)/3.0 + np.pi/6.0; absc1 = 2.0*np.abs(np.cos(phi1))
phi2 = phi1 + np.pi/3.0; absc2 = 2.0*np.abs(np.cos(phi2))
phi3 = phi2 + np.pi/3.0; absc3 = 2.0*np.abs(np.cos(phi3))
left = ( absc1**m + absc2**m + absc3**m )
r = (0.5*left)**(1.0/m)*np.sqrt(3.0*I2)/eqStress
@ -542,7 +544,7 @@ def Barlat1991(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
(G*F*3.0 + (A-B))*H ])/3.0*dXdx
darccos = -1.0/np.sqrt(1.0 - I3**2/I2**3)
dfdcos = lambda phi : dfdl*m*(2.0*abs(cos(phi)))**(m-1.0)*np.sign(cos(phi))*(-sin(phi)/1.5)
dfdcos = lambda phi : dfdl*m*(2.0*abs(np.cos(phi)))**(m-1.0)*np.sign(np.cos(phi))*(-np.sin(phi)/1.5)
dfdthe= (dfdcos(phi1) + dfdcos(phi2) + dfdcos(phi3))
dfdI2, dfdI3 = dfdthe*darccos*I3*(-1.5)*I2**(-2.5)+r/2.0/I2, dfdthe*darccos*I2**(-1.5)
@ -842,150 +844,132 @@ def KarafillisBoyce(eqStress, paras, sigmas, mFix, criteria, dim, Jac=False):
fitCriteria = {
'tresca' :{'func' : Tresca,
'tresca' :{'name': 'Tresca',
'func': Tresca,
'nExpo': 0,'err':np.inf,
'dimen': 3,
'bound': [ [(None,None)] ],
'paras': [ 'sigma0' ],
'text' : '\nCoefficient of Tresca criterion: ',
'error': 'The standard deviation error is: '
'bound': [[(None,None)]],
'labels': [['sigma0']],
},
'vonmises' :{'func' : Hosford,
'vonmises' :{'name': 'Huber-Mises-Hencky',
'func' : Hosford,
'nExpo': 0,'err':np.inf,
'dimen': 3,
'bound': [ [(None,None)] ],
'paras': [ 'sigma0' ],
'text' : '\nCoefficient of Huber-Mises-Hencky criterion: ',
'error': 'The standard deviation error is: '
'bound': [[(None,None)]],
'labels': [['sigma0']],
},
'hershey' :{'func' : Hosford,
'hershey' :{'name': 'Hershey',
'func': Hosford,
'nExpo': 1,'err':np.inf,
'dimen': 3,
'bound': [ [(None,None)]+[(1.0,8.0)] ],
'paras': [ 'sigma0, a' ],
'text' : '\nCoefficients of Hershey criterion: ',
'error': 'The standard deviation errors are: '
'bound': [[(None,None)]+[(1.0,8.0)]],
'labels': [['sigma0','a']],
},
'ghosford' :{'func' : Hosford,
'hosford' :{'name': 'General Hosford',
'func': Hosford,
'nExpo': 1,'err':np.inf,
'dimen': 3,
'bound': [ [(0.0,2.0)]*3+[(1.0,8.0)] ],
'paras': [ 'F, G, H, a' ],
'text' : '\nCoefficients of Hosford criterion: ',
'error': 'The standard deviation errors are: '
'bound': [[(0.0,2.0)]*3+[(1.0,8.0)] ],
'labels': [['F','G','H','a']],
},
'hill1948' :{'func' : Hill1948,
'hill1948' :{'name': 'Hill 1948',
'func': Hill1948,
'nExpo': 0,'err':np.inf,
'dimen': 3,
'bound': [ [(None,None)]*6, [(None,None)]*4 ],
'paras': [ 'F, G, H, L, M, N', 'F, G, H, N'],
'text' : '\nCoefficients of Hill1948 criterion: ',
'error': 'The standard deviation errors are: '
'bound': [[(None,None)]*6, [(None,None)]*4 ],
'labels': [['F','G','H','L','M','N'],['F','G','H','N']],
},
'hill1979' :{'func' : Hill1979,
'hill1979' :{'name': 'Hill 1979',
'func': Hill1979,
'nExpo': 1,'err':np.inf,
'dimen': 3,
'bound': [ [(-2.0,2.0)]*6+[(1.0,8.0)] ],
'paras': [ 'f,g,h,a,b,c,m' ],
'text' : '\nCoefficients of Hill1979 criterion: ' ,
'error': 'The standard deviation errors are: '
'bound': [[(-2.0,2.0)]*6+[(1.0,8.0)] ],
'labels': [['f','g','h','a','b','c','m']],
},
'drucker' :{'func' : Drucker,
'drucker' :{'name': 'Drucker',
'func': Drucker,
'nExpo': 0,'err':np.inf,
'dimen': 3,
'bound': [ [(None,None)]+[(-3.375, 2.25)] ],
'paras': [ 'sigma0, C_D' ],
'text' : '\nCoefficients of Drucker criterion: ',
'error': 'The standard deviation errors are: '
'bound': [[(None,None)]+[(-3.375, 2.25)]],
'labels': [['sigma0','C_D']],
},
'gdrucker' :{'func' : Drucker,
'gdrucker' :{'name': 'General Drucker',
'func': Drucker,
'nExpo': 1,'err':np.inf,
'dimen': 3,
'bound': [ [(None,None)]+[(-3.375, 2.25)]+[(1.0,8.0)] ],
'paras': [ 'sigma0, C_D, p' ],
'text' : '\nCoefficients of general Drucker criterion: ',
'error': 'The standard deviation errors are: '
'bound': [[(None,None)]+[(-3.375, 2.25)]+[(1.0,8.0)] ],
'labels': [['sigma0','C_D', 'p']],
},
'barlat1989' :{'func' : Barlat1989,
'barlat1989' :{'name': 'Barlat 1989',
'func': Barlat1989,
'nExpo': 1,'err':np.inf,
'dimen': 2,
'bound': [ [(-3.0,3.0)]*4+[(1.0,8.0)] ],
'paras': [ 'a,c,h,f, m' ],
'text' : '\nCoefficients of isotropic Barlat 1989 criterion: ',
'error': 'The standard deviation errors are: '
'bound': [[(-3.0,3.0)]*4+[(1.0,8.0)] ],
'labels': [['a','c','h','f', 'm']],
},
'barlat1991' :{'func' : Barlat1991,
'barlat1991' :{'name': 'Barlat 1991',
'func': Barlat1991,
'nExpo': 1,'err':np.inf,
'dimen': 3,
'bound': [ [(-2,2)]*6+[(1.0,8.0)], [(-2,2)]*4+[(1.0,8.0)] ],
'paras': ['a, b, c, f, g, h, m', 'a, b, c, f, m'],
'text' : '\nCoefficients of anisotropic Barlat 1991 criterion: ',
'error': 'The standard deviation errors are: '
'bound': [[(-2,2)]*6+[(1.0,8.0)], [(-2,2)]*4+[(1.0,8.0)]],
'labels': [['a','b','c','f','g','h','m'],['a','b','c','f','m']],
},
'bbc2000' :{'func' : BBC2000,
'bbc2000' :{'name': 'Banabic-Balan-Comsa 2000',
'func': BBC2000,
'nExpo': 1,'err':np.inf,
'dimen': 2,
'bound': [ [(None,None)]*7+[(1.0,8.0)] ], #[(None,None)]*6+[(0.0,1.0)]+[(1.0,9.0)],
'paras': [ 'd,e,f,g, b,c,a, k' ],
'text' : '\nCoefficients of Banabic-Balan-Comsa 2000 criterion: ',
'error': 'The standard deviation errors are: '
'bound': [[(None,None)]*7+[(1.0,8.0)]], #[(None,None)]*6+[(0.0,1.0)]+[(1.0,9.0)],
'labels': [['d','e','f','g','b','c','a','k']],
},
'bbc2003' :{'func' : BBC2003,
'bbc2003' :{'name': 'Banabic-Balan-Comsa 2003',
'func' : BBC2003,
'nExpo': 1,'err':np.inf,
'dimen': 2,
'bound': [ [(None,None)]*8+[(1.0,8.0)] ], #[(None,None)]*7+[(0.0,1.0)]+[(1.0,9.0)],
'paras': [ 'M, N, P, Q, R, S, T, a, k' ],
'text' : '\nCoefficients of Banabic-Balan-Comsa 2003 criterion: ',
'error': 'The standard deviation errors are: '
'bound': [[(None,None)]*8+[(1.0,8.0)]], #[(None,None)]*7+[(0.0,1.0)]+[(1.0,9.0)],
'labels': [['M','N','P','Q','R','S','T','a','k']],
},
'bbc2005' :{'func' : BBC2005,
'bbc2005' :{'name': 'Banabic-Balan-Comsa 2005',
'func' : BBC2005,
'nExpo': 1,'err':np.inf,
'dimen': 2,
'bound': [ [(None,None)]*8+[(1.0,8.0)] ], #[(None,None)]*6+[(0.0,1.0)]*2+[(1.0,9.0)],
'paras': [ 'L ,M, N, P, Q, R, a, b, k' ],
'text' : '\nCoefficients of Banabic-Balan-Comsa 2005 criterion: ',
'error': 'The standard deviation errors are: '
'bound': [[(None,None)]*8+[(1.0,8.0)] ], #[(None,None)]*6+[(0.0,1.0)]*2+[(1.0,9.0)],
'labels': [['L','M','N','P','Q','R','a','b','k']],
},
'cazacu' :{'func' : Cazacu_Barlat,
'cazacu' :{'name': 'Cazacu Barlat',
'func': Cazacu_Barlat,
'nExpo': 0,'err':np.inf,
'dimen': 3,
'bound': [ [(None,None)]*16+[(-2.5,2.5)]+[(None,None)] ],
'paras': [ 'a1,a2,a3,a4,a5,a6; b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11; c','a1,a2,a3,a6; b1,b2,b3,b4,b5,b10; c'],
'text' : '\nCoefficients of Cazacu Barlat yield criterion: ',
'error': 'The standard deviation errors are: '
'bound': [[(None,None)]*16+[(-2.5,2.5)]+[(None,None)]],
'labels': [['a1','a2','a3','a4','a5','a6', 'b1','b2','b3','b4','b5','b6','b7','b8','b9','b10','b11', 'c'],
['a1','a2','a3','a6', 'b1','b2','b3','b4','b5','b10', 'c']],
},
'yld2000' :{'func' : Yld2000,
'yld2000' :{'name': 'Yld2000-2D',
'func': Yld2000,
'nExpo': 1,'err':np.inf,
'dimen': 2,
'bound': [ [(None,None)]*8+[(1.0,8.0)] ],
'paras': [ 'a1,a2,a7,a3,a4,a5,a6,a8,m' ],
'text' : '\nCoefficients of Yld2000-2D yield criterion: ',
'error': 'The standard deviation errors are: '
'bound': [[(None,None)]*8+[(1.0,8.0)]],
'labels': [['a1','a2','a7','a3','a4','a5','a6','a8','m']],
},
'yld200418p' :{'func' : Yld200418p,
'yld200418p' :{'name': 'Yld2004-18p',
'func' : Yld200418p,
'nExpo': 1,'err':np.inf,
'dimen': 3,
'bound': [ [(None,None)]*18+[(1.0,8.0)], [(None,None)]*14+[(1.0,8.0)] ],
'paras': [ 'c12,c21,c23,c32,c31,c13,c44,c55,c66,d12,d21,d23,d32,d31,d13,d44,d55,d66,m', \
'c12,c21,c23,c32,c31,c13,c44,d12,d21,d23,d32,d31,d13,d44,m' ],
'text' : '\nCoefficients of Yld2004-18p yield criterion: ',
'error': 'The standard deviation errors are: '
'bound': [[(None,None)]*18+[(1.0,8.0)], [(None,None)]*14+[(1.0,8.0)]],
'labels': [['c12','c21','c23','c32','c31','c13','c44','c55','c66','d12','d21','d23','d32','d31','d13','d44','d55','d66','m'],
['c12','c21','c23','c32','c31','c13','c44','d12','d21','d23','d32','d31','d13','d44','m']],
},
'karafillis' :{'func' : KarafillisBoyce,
'karafillis' :{'name': 'Karafillis-Boyce',
'func' : KarafillisBoyce,
'nExpo': 1,'err':np.inf,
'dimen': 3,
'bound': [ [(None,None)]*6+[(0.0,1.0)]+[(1.0,8.0)], [(None,None)]*4+[(0.0,1.0)]+[(1.0,8.0)]],
'paras': [ 'c11,c12,c13,c14,c15,c16,c,m', \
'c11,c12,c13,c14,c15,c16,c,m' ],
'text' : '\nCoefficients of Karafillis-Boyce yield criterion: ',
'error': 'The standard deviation errors are: '
'bound': [[(None,None)]*6+[(0.0,1.0)]+[(1.0,8.0)], [(None,None)]*4+[(0.0,1.0)]+[(1.0,8.0)]],
'labels': [['c11','c12','c13','c14','c15','c16','c','m'],
['c11','c12','c13','c14','c15','c16','c','m']],
},
'all' : 'fit all the criteria'
}
thresholdParameter = ['totalshear','equivalentStrain']
#---------------------------------------------------------------------------------------------------
class Loadcase():
#---------------------------------------------------------------------------------------------------
@ -995,7 +979,7 @@ class Loadcase():
# ------------------------------------------------------------------
def __init__(self,finalStrain,incs,time,ND=3,RD=1,nSet=1,dimension=3,vegter=False):
print('using the random load case generator')
damask.util.croak('Using the random load case generator')
self.finalStrain = finalStrain
self.incs = incs
self.time = time
@ -1010,14 +994,14 @@ class Loadcase():
def getLoadcase(self,number):
if self.dimension == 3:
print 'generate random 3D load case'
damask.util.croak('Generate random 3D load case')
return self._getLoadcase3D()
else:
if self.vegter is True:
print 'generate load case for Vegter'
damask.util.croak('Generate load case for Vegter')
return self._getLoadcase2dVegter(number)
else:
print 'generate random 2D load case'
damask.util.croak('Generate random 2D load case')
return self._getLoadcase2dRandom()
def _getLoadcase3D(self):
@ -1127,17 +1111,26 @@ class Criterion(object):
'''
Fitting to certain criterion
'''
def __init__(self, exponent, uniaxial, dimension, name='vonmises'):
self.name = name
def __init__(self, exponent, uniaxial, dimension, label='vonmises'):
self.name = label
self.expo = exponent
self.uniaxial= uniaxial
self.dimen = dimension
self.results = fitCriteria
if self.name.lower() not in map(str.lower, self.results.keys()):
raise Exception('no suitable fitting criterion selected')
raise Exception('No suitable fitting criterion selected')
else:
print('fitting to the %s criterion'%name)
damask.util.croak('Fitting to the %s criterion'%fitCriteria[self.name]['name'])
def report_labels(self):
if len(fitCriteria[self.name]['labels']) > 1 and self.dimen == 2:
return fitCriteria[self.name]['labels'][1]
else:
return fitCriteria[self.name]['labels'][0]
def report_name(self):
return fitCriteria[self.name]['name']
def fit(self,stress):
global fitResults; fitErrors; fitResidual
@ -1145,23 +1138,19 @@ class Criterion(object):
else: nExponent = 0
nameCriterion = self.name.lower()
criteria = Criteria(nameCriterion,self.uniaxial,self.expo, self.dimen)
textParas = fitCriteria[nameCriterion]['text']+fitCriteria[nameCriterion]['paras'][dDim]+':\n' + \
formatOutput(numParas+nExponent)
textError = fitCriteria[nameCriterion]['error']+ formatOutput(numParas+nExponent,'%-14.8f')
bounds = fitCriteria[nameCriterion]['bound'][dDim] # Default bounds, no bound
guess0 = Guess # Default initial guess, depends on bounds
if fitResults == [] : initialguess = guess0
else : initialguess = np.array(fitResults[-1])
weight = get_weight(np.shape(stress)[1])
ydata = np.zeros(np.shape(stress)[1])
try:
popt, pcov, infodict, errmsg, ierr = \
leastsqBound (criteria.fun, initialguess, args=(ydata,stress),
bounds=bounds, Dfun=criteria.jac, full_output=True)
if ierr not in [1, 2, 3, 4]:
raise RuntimeError("Optimal parameters not found: " + errmsg)
raise RuntimeError("Optimal parameters not found: "+errmsg)
else:
residual = criteria.fun(popt, ydata, stress)
fitResidual.append(np.linalg.norm(residual)/np.sqrt(len(residual)))
@ -1175,12 +1164,11 @@ class Criterion(object):
popt = np.concatenate((np.array(popt), np.repeat(options.exponent,nExponent)))
perr = np.concatenate((np.array(perr), np.repeat(0.0,nExponent)))
print (textParas%array2tuple(popt))
print (textError%array2tuple(perr))
print('Number of function calls =', infodict['nfev'])
damask.util.croak('Needed {} function calls for fitting'.format(infodict['nfev']))
except Exception as detail:
print detail
damask.util.croak(detail)
pass
return popt
#---------------------------------------------------------------------------------------------------
@ -1205,9 +1193,10 @@ class myThread (threading.Thread):
def doSim(delay,thread):
s.acquire()
global myLoad
loadNo=loadcaseNo()
if not os.path.isfile('%s.load'%loadNo):
print('generating loadcase for sim %s from %s'%(loadNo,thread))
damask.util.croak('Generating load case for simulation %s (%s)'%(loadNo,thread))
f=open('%s.load'%loadNo,'w')
f.write(myLoad.getLoadcase(loadNo))
f.close()
@ -1216,27 +1205,26 @@ def doSim(delay,thread):
s.acquire()
if not os.path.isfile('%s_%i.spectralOut'%(options.geometry,loadNo)):
print('starting simulation %s from %s'%(loadNo,thread))
damask.util.croak('Starting simulation %i (%s)'%(loadNo,thread))
s.release()
damask.util.execute('DAMASK_spectral -g %s -l %i'%(options.geometry,loadNo))
else: s.release()
s.acquire()
if not os.path.isfile('./postProc/%s_%i.txt'%(options.geometry,loadNo)):
print('starting post processing for sim %i from %s'%(loadNo,thread))
damask.util.croak('Starting post processing for simulation %i (%s)'%(loadNo,thread))
s.release()
try:
damask.util.execute('postResults --cr f,p --co totalshear %s_%i.spectralOut'%(options.geometry,loadNo))
except:
damask.util.execute('postResults --cr f,p %s_%i.spectralOut'%(options.geometry,loadNo))
damask.util.execute('addCauchy ./postProc/%s_%i.txt'%(options.geometry,loadNo))
damask.util.execute('addStrainTensors -l -v ./postProc/%s_%i.txt'%(options.geometry,loadNo))
damask.util.execute('addStrainTensors -0 -v ./postProc/%s_%i.txt'%(options.geometry,loadNo))
damask.util.execute('addMises -s Cauchy -e ln(V) ./postProc/%s_%i.txt'%(options.geometry,loadNo))
else: s.release()
s.acquire()
print('-'*10)
print('reading values for sim %i from %s'%(loadNo,thread))
damask.util.croak('Reading values from simulation %i (%s)'%(loadNo,thread))
s.release()
refFile = './postProc/%s_%i.txt'%(options.geometry,loadNo)
@ -1248,7 +1236,7 @@ def doSim(delay,thread):
thresholdKey = 'totalshear'
s.acquire()
for l in [thresholdKey,'1_Cauchy']:
if l not in table.labels: print '%s not found'%l
if l not in table.labels: damask.util.croak('%s not found'%l)
s.release()
table.data_readArray(['%i_Cauchy'%(i+1) for i in xrange(9)]+[thresholdKey]+['%i_ln(V)'%(i+1) for i in xrange(9)])
@ -1282,23 +1270,25 @@ def doSim(delay,thread):
else:
line+=1
if not validity[i]:
print ('The data of sim %i at the threshold %f is invalid, the fitting at this point is skipped'%(loadNo,threshold))
damask.util.croak('The data of result %i at the threshold %f is invalid,'\
+'the fitting at this point is skipped'%(loadNo,threshold))
s.acquire()
global stressAll, strainAll
print('number of yield points of sim %i: %i'%(loadNo,len(yieldStress)))
print('starting fitting for sim %i from %s'%(loadNo,thread))
f=open(options.geometry+'_'+options.criterion+'.txt','w')
f.write(' '.join([options.fitting]+myFit.report_labels())+'\n')
try:
for i in xrange(int(options.yieldValue[2])):
for i,threshold in enumerate(np.linspace(options.yieldValue[0],options.yieldValue[1],options.yieldValue[2])):
if validity[i]:
a = (yieldStress[0][2]/stressUnit)**2 + (yieldStress[0][4]/stressUnit)**2 + (yieldStress[0][5]/stressUnit)**2
stressAll[i]=np.append(stressAll[i], yieldStress[i]/stressUnit)
strainAll[i]=np.append(strainAll[i], deformationRate[i])
myFit.fit(stressAll[i].reshape(len(stressAll[i])//6,6).transpose())
f.write( str(threshold)+' '+
' '.join(map(str,myFit.fit(stressAll[i].reshape(len(stressAll[i])//6,6).transpose())))+'\n')
except Exception as detail:
print('could not fit for sim %i from %s'%(loadNo,thread))
print detail
damask.util.croak('Could not fit results of simulation (%s)'%thread)
s.release()
return
damask.util.croak('\n')
s.release()
def loadcaseNo():
@ -1312,7 +1302,8 @@ def converged():
if N_simulations < options.max:
if len(fitResidual) > 5:
residualList = np.array(fitResidual[len(fitResidual)-5:])
if np.std(residualList)/np.max(residualList) < 0.05: return True
if np.std(residualList)/np.max(residualList) < 0.05:
return True
return False
else:
return True
@ -1324,8 +1315,8 @@ def converged():
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Performs calculations with various loads on given geometry file and fits yield surface.
""", version=string.replace(scriptID,'\n','\\n')
)
""", version = scriptID)
# maybe make an option to specifiy if 2D/3D fitting should be done?
parser.add_option('-l','--load' , dest='load', type='float', nargs=3,
@ -1387,14 +1378,11 @@ if options.yieldValue[2] != int(options.yieldValue[2]):
parser.error('count must be an integer')
if options.dimension not in [2,3]:
parser.error('Dimension is wrong, should be 2(plane stress state) or 3(general stress state)')
#if options.criterion not in ['tresca', 'vonmises', 'hershey','drucker', 'gdrucker', 'hill1948']:
# if options.eqStress == None:
# parser.error("The equivalent stress is indispensable for the yield criterion '"+ options.criterion+"'")
if not os.path.isfile('numerics.config'):
print('numerics.config file not found')
damask.util.croak('numerics.config file not found')
if not os.path.isfile('material.config'):
print('material.config file not found')
damask.util.croak('material.config file not found')
if options.vegter is True:
@ -1426,4 +1414,4 @@ else:
run = runFit(options.exponent, eqStress, fitCriteria[criter]['dimen'], criter)
fit_allResults[criter] = {'results': fitResults, 'errors': fitErrors, 'residual': fitResidual}
print 'Finished fitting to yield criteria'
damask.util.croak('Finished fitting to yield criteria')