some more simplifications
This commit is contained in:
parent
76b67e88eb
commit
17e75a1e0b
|
@ -2012,8 +2012,7 @@ function math_spectralDecompositionSym33(m)
|
|||
real(pReal), dimension(3,3) :: math_spectralDecompositionSym33
|
||||
real(pReal), dimension(3) :: invariants, values
|
||||
real(pReal), dimension(3,3), intent(in) :: m
|
||||
real(pReal) :: EW1,EW2,EW3
|
||||
real(pReal) :: P, Q, RHO, PHI, Y1, Y2, Y3, D1, D2, D3
|
||||
real(pReal) :: P, Q, rho, phi, D1, D2, D3
|
||||
real(pReal), parameter :: TOL=1.e-14_pReal
|
||||
real(pReal), dimension(3,3) :: M1, M2, M3,EB1, EB2, EB3
|
||||
real(pReal) C1,C2,C3
|
||||
|
@ -2037,62 +2036,61 @@ function math_spectralDecompositionSym33(m)
|
|||
else
|
||||
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
||||
phi=acos(math_limit(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
|
||||
Y1=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal)
|
||||
Y2=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+2.0_pReal/3.0_pReal*PI)
|
||||
Y3=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+4.0_pReal/3.0_pReal*PI)
|
||||
EW1=Y1+invariants(1)/3.0_pReal
|
||||
EW2=Y2+invariants(1)/3.0_pReal
|
||||
EW3=Y3+invariants(1)/3.0_pReal
|
||||
C1=ABS(EW1-EW2)
|
||||
C2=ABS(EW2-EW3)
|
||||
C3=ABS(EW3-EW1)
|
||||
values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
|
||||
[cos(phi/3.0_pReal), &
|
||||
cos((phi+2.0_pReal*PI)/3.0_pReal), &
|
||||
cos((phi+4.0_pReal*PI)/3.0_pReal) &
|
||||
] + invariants(1)/3.0_pReal
|
||||
C1=ABS(values(1)-values(2))
|
||||
C2=ABS(values(2)-values(3))
|
||||
C3=ABS(values(3)-values(1))
|
||||
|
||||
if (C1 < TOL) then
|
||||
! EW1 is equal to EW2
|
||||
D3=1.0_pReal/(EW3-EW1)/(EW3-EW2)
|
||||
M1=M-EW1*math_I3
|
||||
M2=M-EW2*math_I3
|
||||
! values(1) is equal to values(2)
|
||||
D3=1.0_pReal/(values(3)-values(1))/(values(3)-values(2))
|
||||
M1=M-values(1)*math_I3
|
||||
M2=M-values(2)*math_I3
|
||||
EB3=math_mul33x33(M1,M2)*D3
|
||||
|
||||
EB1=math_I3-EB3
|
||||
! both EB2 and EW2 are set to zero so that they do not
|
||||
! both EB2 and values(2) are set to zero so that they do not
|
||||
! contribute to U in PDECOMPOSITION
|
||||
EW2=0.0_pReal
|
||||
values(2)=0.0_pReal
|
||||
elseif (C2 < TOL) then
|
||||
! EW2 is equal to EW3
|
||||
D1=1.0_pReal/(EW1-EW2)/(EW1-EW3)
|
||||
M2=M-math_I3*EW2
|
||||
M3=M-math_I3*EW3
|
||||
! values(2) is equal to values(3)
|
||||
D1=1.0_pReal/(values(1)-values(2))/(values(1)-values(3))
|
||||
M2=M-math_I3*values(2)
|
||||
M3=M-math_I3*values(3)
|
||||
EB1=math_mul33x33(M2,M3)*D1
|
||||
EB2=math_I3-EB1
|
||||
! both EB3 and EW3 are set to zero so that they do not
|
||||
! both EB3 and values(3) are set to zero so that they do not
|
||||
! contribute to U in PDECOMPOSITION
|
||||
EW3=0.0_pReal
|
||||
values(3)=0.0_pReal
|
||||
elseif(C3 < TOL) then
|
||||
! EW1 is equal to EW3
|
||||
D2=1.0_pReal/(EW2-EW1)/(EW2-EW3)
|
||||
M1=M-math_I3*EW1
|
||||
M3=M-math_I3*EW3
|
||||
! values(1) is equal to values(3)
|
||||
D2=1.0_pReal/(values(2)-values(1))/(values(2)-values(3))
|
||||
M1=M-math_I3*values(1)
|
||||
M3=M-math_I3*values(3)
|
||||
EB2=math_mul33x33(M1,M3)*D2
|
||||
EB1=math_I3-EB2
|
||||
! both EB3 and EW3 are set to zero so that they do not
|
||||
! both EB3 and values(3) are set to zero so that they do not
|
||||
! contribute to U in PDECOMPOSITION
|
||||
EW3=0.0_pReal
|
||||
values(3)=0.0_pReal
|
||||
else
|
||||
! all three eigenvectors are different
|
||||
D1=1.0_pReal/(EW1-EW2)/(EW1-EW3)
|
||||
D2=1.0_pReal/(EW2-EW1)/(EW2-EW3)
|
||||
D3=1.0_pReal/(EW3-EW1)/(EW3-EW2)
|
||||
M1=M-EW1*math_I3
|
||||
M2=M-EW2*math_I3
|
||||
M3=M-EW3*math_I3
|
||||
D1=1.0_pReal/(values(1)-values(2))/(values(1)-values(3))
|
||||
D2=1.0_pReal/(values(2)-values(1))/(values(2)-values(3))
|
||||
D3=1.0_pReal/(values(3)-values(1))/(values(3)-values(2))
|
||||
M1=M-values(1)*math_I3
|
||||
M2=M-values(2)*math_I3
|
||||
M3=M-values(3)*math_I3
|
||||
EB1=math_mul33x33(M2,M3)*D1
|
||||
EB2=math_mul33x33(M1,M3)*D2
|
||||
EB3=math_mul33x33(M1,M2)*D3
|
||||
endif
|
||||
endif
|
||||
|
||||
math_spectralDecompositionSym33 = sqrt(EW1) * EB1 + sqrt(EW2) * EB2 + sqrt(EW3) * EB3
|
||||
math_spectralDecompositionSym33 = sqrt(values(1)) * EB1 + sqrt(values(2)) * EB2 + sqrt(values(3)) * EB3
|
||||
|
||||
end function math_spectralDecompositionSym33
|
||||
|
||||
|
|
Loading…
Reference in New Issue