reconstruction of geometry is now working. It is directly implemented in python (file spectral_post.py).

reconstruction in fortran is not working (file reconstruct.f90) due to some problems with f2py
This commit is contained in:
Martin Diehl 2011-01-26 12:56:52 +00:00
parent 05d4d5fef2
commit 17b8205e3f
2 changed files with 713 additions and 259 deletions

View File

@ -1,193 +1,306 @@
! -*- f90 -*-
subroutine simple(defgrad,res_x,res_y,res_z,geomdimension,current_configuration)
function coordinates2(res_x,res_y,res_z,geomdimension,defgrad)
implicit none
integer, parameter :: pDouble = selected_real_kind(15,50)
integer i,j,k
integer res_x, res_y, res_z
integer i,j,k, l,m, s,o, loop, res_x, res_y, res_z
integer, dimension(3) :: res, init, oppo, me, rear
real*8, dimension(3,3) :: defgrad_av
integer, dimension(3) :: resolution
real*8, dimension(3) :: geomdimension
real*8, dimension(3) :: geomdimension, myStep
real*8, dimension(3,3) :: temp33_Real
real*8 current_configuration(res_x, res_y, res_z,3)
real*8 defgrad(res_x, res_y, res_z,3,3)
!f2py intent(in) res_x, res_y, res_z
real*8, dimension(3,res_x, res_y, res_z) :: coordinates2
real*8, dimension(3,3,res_x, res_y, res_z) :: defgrad
real*8, dimension(3,res_x,res_y,res_z,8) :: cornerCoords
real*8, dimension(3,2+res_x,2+res_y,2+res_z,6,8) :: coord
!f2py intent(in) res_x
!f2py intent(in) res_y
!f2py intent(in) res_z
!f2py intent(in) geomdimension
!f2py intent(out) current_configuration
!f2py intent(in) defgrad
!f2py depend(res_x, res_y, res_z) current_configuration
!f2py intent(out) coordinates2
!f2py depend(res_x, res_y, res_z) coordinates2
!f2py depend(res_x, res_y, res_z) defgrad
resolution(1) = res_x; resolution(2) = res_y; resolution(3) = res_z
! integer, dimension(3,8) :: corner = reshape((/ &
! 0, 0, 0,&
! 1, 0, 0,&
! 1, 1, 0,&
! 0, 1, 0,&
! 1, 1, 1,&
! 0, 1, 1,&
! 0, 0, 1,&
! 1, 0, 1 &
! /), &
! (/3,8/))
! integer, dimension(3,8) :: step = reshape((/ &
! 1, 1, 1,&
! -1, 1, 1,&
! -1,-1, 1,&
! 1,-1, 1,&
! -1,-1,-1,&
! 1,-1,-1,&
! 1, 1,-1,&
! -1, 1,-1 &
! /), &
! (/3,8/))
! integer, dimension(3,6) :: order = reshape((/ &
! 1, 2, 3,&
! 1, 3, 2,&
! 2, 1, 3,&
! 2, 3, 1,&
! 3, 1, 2,&
! 3, 2, 1 &
! /), &
! (/3,6/))
resolution = (/res_x,res_y,res_z/)
write(6,*) 'defgrad', defgrad
do i=1, 3; do j=1,3
defgrad_av(i,j) = sum(defgrad(i,j,:,:,:)) /real(res_x*res_y*res_z)
enddo; enddo
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
if((k==1).and.(j==1).and.(i==1)) then
temp33_Real =0.0_pDouble
temp33_Real = real(0.0)
else
if((j==1).and.(i==1)) then
temp33_Real(1,:) = temp33_Real(1,:) + matmul(defgrad(i,j,k,:,:),&
(/0.0_pDouble,0.0_pDouble,geomdimension(3)/(real(resolution(3)))/))
temp33_Real(1,:) = temp33_Real(1,:) + matmul(defgrad(:,:,i,j,k),&
(/real(0.0),real(0.0),real(geomdimension(3))/(real(resolution(3)))/))
temp33_Real(2,:) = temp33_Real(1,:)
temp33_Real(3,:) = temp33_Real(1,:)
current_configuration(i,j,k,:) = temp33_Real(1,:)
coordinates2(:,i,j,k) = temp33_Real(1,:)
else
if(i==1) then
temp33_Real(2,:) = temp33_Real(2,:) + matmul(defgrad(i,j,k,:,:),&
(/0.0_pDouble,geomdimension(2)/(real(resolution(2))),0.0_pDouble/))
temp33_Real(2,:) = temp33_Real(2,:) + matmul(defgrad(:,:,i,j,k),&
(/real(0.0),real(geomdimension(2))/(real(resolution(2))),real(0.0)/))
temp33_Real(3,:) = temp33_Real(2,:)
current_configuration(i,j,k,:) = temp33_Real(2,:)
coordinates2(:,i,j,k) = temp33_Real(2,:)
else
temp33_Real(3,:) = temp33_Real(3,:) + matmul(defgrad(i,j,k,:,:),&
(/geomdimension(1)/(real(resolution(1))),0.0_pDouble,0.0_pDouble/))
current_configuration(i,j,k,:) = temp33_Real(3,:)
temp33_Real(3,:) = temp33_Real(3,:) + matmul(defgrad(:,:,i,j,k),&
(/real(geomdimension(1))/(real(resolution(1))),real(0.0),real(0.0)/))
coordinates2(:,i,j,k) = temp33_Real(3,:)
endif
endif
endif
!print*, current_configuration
enddo; enddo; enddo
end subroutine simple
do i=1, res_x; do j = 1, res_y; do k = 1, res_z
coordinates2(:,i,j,k) = coordinates2(:,i,j,k)+ matmul(defgrad_av,(/geomdimension(1)/real(res_x),geomdimension(2)/real(res_y),geomdimension(3)/real(res_z)/))
enddo; enddo; enddo
res = (/res_x,res_y,res_z/)
do i=1,3; do j=1,3
defgrad_av(i,j) = sum(defgrad(i,j,:,:,:)) /real(res(1)*res(2)*res(3))
enddo; enddo
subroutine advanced(defgrad,res_x,res_y,res_z,geomdimension,current_configuration)
! do s = 1,8
! init = corner(:,s)*(res-(/1,1,1/))
! oppo = corner(:,1+mod(s-1+4,8))*(res-(/1,1,1/))
! do o = 1,6
! do k = init(order(3,o)),oppo(order(3,o)),step(order(3,o),s)
! rear(order(2,o)) = init(order(2,o))
! do j = init(order(2,o)),oppo(order(2,o)),step(order(2,o),s)
! rear(order(1,o)) = init(order(1,o))
! do i = init(order(1,o)),oppo(order(1,o)),step(order(1,o),s)
! ! print*, order(:,o)
! me(order(1,o)) = i
! me(order(2,o)) = j
! me(order(3,o)) = k
! ! print*, me
! ! if (all(me == init)) then
! ! coord(:,1+me(1),1+me(2),1+me(3),o,s) = 0.0 !&
! ! geomdimension*(matmul(defgrad_av,real(corner(:,s),pDouble)) + &
! ! matmul(defGrad(:,:,1+me(1),1+me(2),1+me(3)),step(:,s)/res/2.0_pDouble))
! ! else
! ! myStep = (me-rear)*geomdimension/res
! ! coord(:,1+me(1),1+me(2),1+me(3),o,s) = coord(:,1+rear(1),1+rear(2),1+rear(3),o,s) + &
! ! 0.5_pDouble*matmul(defGrad(:,:,1+me(1),1+me(2),1+me(3)) + &
! ! defGrad(:,:,1+rear(1),1+rear(2),1+rear(3)),&
! ! myStep)
! ! endif
! ! rear = me
! enddo
! enddo
! enddo
! enddo ! orders
! ! cornerCoords(:,:,:,:,s) = sum(coord(:,:,:,:,:,s),5)/6.0_pDouble
! enddo ! corners
! coordinates = sum(cornerCoords(:,:,:,:,:),5)/8.0_pDouble ! plain average no shape functions...
end function
! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
subroutine coordinates5(res_x,res_y,res_z,geomdimension,defgrad)
! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
implicit none
integer, parameter :: pDouble = selected_real_kind(15,50)
integer i,j,k,l
integer a,b,c
integer res_x, res_y, res_z
integer, dimension(3) :: resolution
integer i,j,k, l,m, s,o, loop, res_x, res_y, res_z
integer, dimension(3) :: res, init, oppo, me, rear
real*8, dimension(3) :: geomdimension
real*8, dimension(3,3) :: temp33_Real, defgrad_av !matrix, stores 3 times a 3dim position vector
real*8 current_configuration(res_x, res_y, res_z,3)
real*8 defgrad(res_x, res_y, res_z,3,3)
! some declarations for the wrapping to python
real*8, dimension(3) :: myStep
real*8, dimension(3,3) :: defGrad_av
integer, dimension(3,8) :: corner = reshape((/ &
0, 0, 0,&
1, 0, 0,&
1, 1, 0,&
0, 1, 0,&
1, 1, 1,&
0, 1, 1,&
0, 0, 1,&
1, 0, 1 &
/), &
(/3,8/))
integer, dimension(3,8) :: step = reshape((/ &
1, 1, 1,&
-1, 1, 1,&
-1,-1, 1,&
1,-1, 1,&
-1,-1,-1,&
1,-1,-1,&
1, 1,-1,&
-1, 1,-1 &
/), &
(/3,8/))
integer, dimension(3,6) :: order = reshape((/ &
1, 2, 3,&
1, 3, 2,&
2, 1, 3,&
2, 3, 1,&
3, 1, 2,&
3, 2, 1 &
/), &
(/3,6/))
real*8 defGrad(3,3,res_x,res_y,res_z)
real*8 coordinates(3,res_x,res_y,res_z)
real*8, dimension(3,res_x,res_y,res_z,8) :: cornerCoords
real*8, dimension(3,2+res_x,2+res_y,2+res_z,6,8) :: coord
!f2py intent(in) res_x, res_y, res_z
!f2py intent(in) geomdimension
!f2py intent(out) current_configuration
!f2py intent(out) coordinates
!f2py intent(in) defgrad
!f2py depend(res_x, res_y, res_z) current_configuration
!f2py depend(res_x, res_y, res_z) defgrad
do i=1, 3; do j=1,3 !
defgrad_av(i,j) = sum(defgrad(:,:,:,i,j)) /real(res_x*res_y*res_z)
enddo; enddo
current_configuration(i,j,k,:) = 0.0_pDouble
do l=1,6 ! do 6 different paths, by using 3 'master edges'
select case(l)
case (1)
a = 1; b = 2; c = 3
case (2)
a = 1; b = 3; c = 2
case (3)
a = 2; b = 1; c = 3
case (4)
a = 2; b = 3; c = 1
case (5)
a = 3; b = 1; c = 2
case (6)
a = 3; b = 2; c = 1
end select
resolution(a) = res_x; resolution(b) = res_y; resolution(c) = res_z
do k = 1, resolution(c); do j = 1, resolution(b); do i = 1, resolution(a)
if((k==1).and.(j==1).and.(i==1)) then ! first FP
temp33_Real = 0.0_pDouble ! all positions set to zero
else
if((j==1).and.(i==1)) then ! all FPs on the 'master edge'
temp33_Real(1,:) = temp33_Real(1,:) + matmul((defgrad(i,j,k-1,:,:)+defgrad(i,j,k-1,:,:))/2.0_pDouble,& !using the average defgrad of the current step
(/0.0_pDouble,0.0_pDouble,geomdimension(c)/(real(resolution(c)))/))
temp33_Real(2,:) = temp33_Real(1,:)
temp33_Real(3,:) = temp33_Real(1,:)
current_configuration(i,j,k,:) = current_configuration(i,j,k,:) + temp33_Real(1,:)
else
if(i==1) then
temp33_Real(2,:) = temp33_Real(2,:) + matmul((defgrad(i,j-1,k,:,:)+defgrad(i,j,k,:,:))/2.0_pDouble,&
(/0.0_pDouble,geomdimension(b)/(real(resolution(b))),0.0_pDouble/))
temp33_Real(3,:) = temp33_Real(2,:)
current_configuration(i,j,k,:) = current_configuration(i,j,k,:) + temp33_Real(2,:)
else
temp33_Real(3,:) = temp33_Real(3,:) + matmul((defgrad(i-1,j,k,:,:)+defgrad(i,j,k,:,:))/2.0_pDouble,&
(/geomdimension(a)/(real(resolution(a))),0.0_pDouble,0.0_pDouble/))
current_configuration(i,j,k,:) = current_configuration(i,j,k,:) + temp33_Real(3,:)
endif
endif
endif
enddo; enddo; enddo ! end of one reconstruction
enddo ! end of 6 reconstructions with different pathes
current_configuration = current_configuration/6.0_pDouble
end subroutine advanced
!f2py depend(res_x, res_y, res_z) coordinates
!f2py depend(res_x, res_y, res_z) defgrad
!f2py depend(res_x, res_y, res_z) cornerCoords
!f2py depend(res_x, res_y, res_z) coord
subroutine mesh(inter,res_x,res_y,res_z,gdim,meshgeom)
res = (/res_x,res_y,res_z/)
do i=1,3; do j=1,3
defgrad_av(i,j) = sum(defgrad(i,j,:,:,:)) /real(res(1)*res(2)*res(3))
enddo; enddo
print*, 'defgra', defgrad
do s = 1,8
init = corner(:,s)*(res-(/1,1,1/))
oppo = corner(:,1+mod(s-1+4,8))*(res-(/1,1,1/))
do o = 1,6
do k = init(order(3,o)),oppo(order(3,o)),step(order(3,o),s)
rear(order(2,o)) = init(order(2,o))
do j = init(order(2,o)),oppo(order(2,o)),step(order(2,o),s)
rear(order(1,o)) = init(order(1,o))
do i = init(order(1,o)),oppo(order(1,o)),step(order(1,o),s)
me(order(1,o)) = i
me(order(2,o)) = j
me(order(3,o)) = k
if (all(me == init)) then
coord(:,1+me(1),1+me(2),1+me(3),o,s) = &
geomdimension*(matmul(defgrad_av,real(corner(:,s),pDouble)) + &
matmul(defGrad(:,:,1+me(1),1+me(2),1+me(3)),step(:,s)/res/2.0_pDouble))
else
myStep = (me-rear)*geomdimension/res
coord(:,1+me(1),1+me(2),1+me(3),o,s) = coord(:,1+rear(1),1+rear(2),1+rear(3),o,s) + &
0.5_pDouble*matmul(defGrad(:,:,1+me(1),1+me(2),1+me(3)) + &
defGrad(:,:,1+rear(1),1+rear(2),1+rear(3)),&
myStep)
endif
rear = me
enddo
enddo
enddo
enddo ! orders
cornerCoords(:,:,:,:,s) = sum(coord(:,:,:,:,:,s),5)/6.0_pDouble
enddo ! corners
coordinates = sum(cornerCoords(:,:,:,:,:),5)/8.0_pDouble ! plain average no shape functions...
end subroutine
! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
subroutine mesh(res_x,res_y,res_z,geomdim,defgrad_av,centroids,nodes)
! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
implicit none
integer, parameter :: pDouble = selected_real_kind(15,50)
integer i,j,k
integer i,j,k, n
integer res_x, res_y, res_z
integer, dimension(3) :: resolution
real*8, dimension(3) :: gdim
real*8 inter(res_x, res_y, res_z,3)
real*8 configuration(res_x+2, res_y+2, res_z+2,3)
real*8 meshgeom(res_x+1, res_y+1, res_z+1,3)
integer, dimension(3) :: res, shift, lookup, me
real*8, dimension(3) :: geomdim, diag = (/1,1,1/)
real*8, dimension(3,3) :: defgrad_av
real*8, dimension(3,res_x, res_y, res_z) :: centroids
real*8, dimension(3,res_x+2, res_y+2, res_z+2) :: wrappedCentroids
real*8, dimension(3,res_x+1, res_y+1, res_z+1) :: nodes
integer, dimension(3,8) :: neighbor = reshape((/ &
0, 0, 0,&
1, 0, 0,&
1, 1, 0,&
0, 1, 0,&
0, 0, 1,&
1, 0, 1,&
1, 1, 1,&
0, 1, 1 &
/), &
(/3,8/))
!f2py intent(in) res_x, res_y, res_z
!f2py intent(in) inter
!f2py intent(out) meshgeom
!f2py intent(in) gdim
!f2py depend(res_x, res_y, res_z) inter
!f2py depend(res_x, res_y, res_z) meshgeom
meshgeom = 0.0_pDouble
configuration = 0.0_pDouble
resolution(1) = res_x; resolution(2) = res_y; resolution(3) = res_z
do k = 1, resolution(3)+1; do j = 1, resolution(2)+1; do i = 1, resolution(1)+1
if((i==1).and.(j==1).and.(k==1)) then
configuration(i,j,k,:)=inter(res_x,res_y,res_z,:)-gdim
configuration(res_x+2,j,k,:)=inter(i,res_y,res_z,:)+(/1.0,-1.0,-1.0/)*gdim
configuration(i,res_y+2,k,:)=inter(res_x,j,res_z,:)+(/-1.0,1.0,-1.0/)*gdim
configuration(i,j,res_z+2,:)=inter(res_x,res_y,k,:)+(/-1.0,-1.0,1.0/)*gdim
configuration(res_x+2,res_y+2,k,:)=inter(i,j,res_z,:)+(/1.0,1.0,-1.0/)*gdim
configuration(i,res_y+2,res_z+2,:)=inter(res_x,j,k,:)+(/-1.0,1.0,1.0/)*gdim
configuration(res_x+2,j,res_z+2,:)=inter(i,res_y,k,:)+(/1.0,-1.0,1.0/)*gdim
configuration(res_x+2,res_y+2,res_z+2,:)=inter(i,j,k,:)+gdim
endif
if((i==1).and.(j==1).and.(k/=1)) then
configuration(1,1,k,:)=inter(res_x,res_y,k-1,:)+(/-1.0,-1.0,0.0/)*gdim
configuration(res_x+2,1,k,:)=inter(1,res_y,k-1,:)+(/1.0,-1.0,0.0/)*gdim
configuration(1,res_y+2,k,:)=inter(res_x,1,k-1,:)+(/-1.0,1.0,0.0/)*gdim
configuration(res_x+2,res_y+2,k,:)=inter(1,1,k-1,:)+(/1.0,1.0,0.0/)*gdim
endif
if((i==1).and.(j/=1).and.(k==1)) then
configuration(1,j,1,:)=inter(res_x,j-1,res_z,:)+(/-1.0,0.0,-1.0/)*gdim
configuration(res_x+2,j,1,:)=inter(1,j-1,res_z,:)+(/1.0,0.0,-1.0/)*gdim
configuration(1,j,res_z+2,:)=inter(res_x,j-1,1,:)+(/-1.0,0.0,1.0/)*gdim
configuration(res_x+2,j,res_z+2,:)=inter(1,j-1,1,:)+(/1.0,0.0,1.0/)*gdim
endif
if((i/=1).and.(j==1).and.(k==1)) then
configuration(i,1,1,:)=inter(i-1,res_y,res_z,:)+(/0.0,-1.0,-1.0/)*gdim
configuration(i,1,res_z+2,:)=inter(i-1,res_y,1,:)+(/0.0,-1.0,1.0/)*gdim
configuration(i,res_y+2,1,:)=inter(i-1,1,res_z,:)+(/0.0,1.0,-1.0/)*gdim
configuration(i,res_y+2,res_z+2,:)=inter(i-1,1,1,:)+(/0.0,1.0,1.0/)*gdim
endif
if((i/=1).and.(j/=1).and.(k==1)) then
configuration(i,j,1,:)=inter(i-1,j-1,res_z,:)+(/0.0,0.0,-1.0/)*gdim
configuration(i,j,res_z+2,:)=inter(i-1,j-1,1,:)+(/0.0,0.0,1.0/)*gdim
endif
if((i==1).and.(j/=1).and.(k/=1)) then
configuration(1,j,k,:)=inter(res_x,j-1,k-1,:)+(/-1.0,0.0,0.0/)*gdim
configuration(res_x+2,j,k,:)=inter(i,j-1,k-1,:)+(/1.0,0.0,0.0/)*gdim
endif
if((i/=1).and.(j==1).and.(k/=1)) then
configuration(i,1,k,:)=inter(i-1,res_y,k-1,:)+(/0.0,-1.0,0.0/)*gdim
configuration(i,res_y+2,k,:)=inter(i-1,1,k-1,:)+(/0.0,1.0,0.0/)*gdim
endif
if((i/=1).and.(j/=1).and.(k/=1)) then
configuration(i,j,k,:)=inter(i-1,j-1,k-1,:)
endif
enddo; enddo; enddo
!f2py intent(in) centroids
!f2py intent(in) defgrad_av
!f2py intent(in) geomdim
!f2py intent(out) nodes
!f2py depend(res_x, res_y, res_z) centroids
!f2py depend(res_x, res_y, res_z) nodes
res = (/res_x,res_y,res_z/)
wrappedCentroids(:,2:res(1)+1,2:res(2)+1,2:res(3)+1) = centroids
do k = 0,res(3)+1
do j = 0,res(2)+1
do i = 0,res(1)+1
if (&
k==0 .or. k==res(3)+1 .or. &
j==0 .or. j==res(2)+1 .or. &
i==0 .or. i==res(1)+1 &
) then
me = (/i,j,k/)
shift = (res+diag-2*me)/(res+diag)
lookup = me+shift*res
wrappedCentroids(:,1+i,1+j,1+k) = centroids(:,lookup(1),lookup(2),lookup(3)) - &
matmul(defgrad_av,shift * geomdim)
endif
enddo
enddo
enddo
nodes = 0.0_pDouble
do k = 0,res(3)
do j = 0,res(2)
do i = 0,res(1)
do n = 1,8
nodes(:,1+i,1+j,1+k) = nodes(:,1+i,1+j,1+k) + wrappedCentroids(:,1+i+neighbor(1,n),&
1+j+neighbor(2,n),&
1+k+neighbor(3,n))
enddo
nodes(:,1+i,1+j,1+k) = nodes(:,1+i,1+j,1+k) / 8.0_pDouble
enddo
enddo
enddo
do k = 1, resolution(3)+1; do j = 1, resolution(2)+1; do i = 1, resolution(1)+1
meshgeom(i,j,k,:)=((configuration(i,j,k,:) +configuration(i+1,j,k,:))&
+(configuration(i,j+1,k,:) +configuration(i,j,k+1,:))&
+(configuration(i+1,j+1,k,:) +configuration(i,j+1,k+1,:))&
+(configuration(i+1,j,k+1,:) +configuration(i+1,j+1,k+1,:)))/8.0_pDouble
enddo; enddo; enddo
end subroutine mesh
@ -277,3 +390,32 @@ end subroutine mesh
! enddo ! end looping over steps in current loadcase
! enddo ! end looping over loadcases
! close(539); close(538)
! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
function coordinates3(res_x,res_y,res_z,geomdimension,defgrad)
! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
implicit none
integer i,j,k, l,m, s,o, loop, res_x, res_y, res_z
real*8 defgrad_av(3,3)
real*8 geomdimension(3)
integer res(3)
real*8 defgrad(3,3,res_x,res_y,res_z)
real*8 coordinates3(3,res_x,res_y,res_z)
!f2py intent(in) res_x, res_y, res_z
!f2py depend(res_x, res_y, res_z) coordinates3
!f2py depend(res_x, res_y, res_z) defgrad
!f2py intent(in) geomdimension
!f2py intent(out) coordinates3
!f2py intent(in) defgrad
res = (/res_x,res_y,res_z/)
do i=1,3; do j=1,3
defgrad_av(i,j) = sum(defgrad(i,j,:,:,:)) /real(res(1)*res(2)*res(3))
enddo; enddo
print*, 'defgra', defgrad
coordinates3 = 0.0
end function

View File

@ -6,124 +6,436 @@
# computed using the FEM solvers. Until now, its capable to handle elements with one IP in a regular order
# written by M. Diehl, m.diehl@mpie.de
import array
import struct
import numpy
import reconstruct
import os,sys,re,array,struct,numpy, time
#this funtion finds a string value in the given file for a given keyword, also returns the position
def searchNameForKeyword(searchstring, file):
file.seek(0,0)
begin = file.read(2048).find(searchstring) + len(searchstring) # function will return -1 if string is not found
file.seek(begin -len(searchstring) -4) # position of header (Fortran specific, 4 bit long on msuws4
header = file.read(4) # store header. header will be repeated, thus it allows us to determine the length of the searchstring
file.seek(begin,0) # go back to starting postion
length = file.read(2048).find(header) # find header(footer) a second time
file.seek(begin,0)
return file.read(length), results.tell() # return searchstring and maximum position in file
class vector:
x,y,z = [None,None,None]
def __init__(self,coords):
self.x = coords[0]
self.y = coords[1]
self.z = coords[2]
#this funtion finds an integer value in the given file for a given keyword, works similar as "searchNameForKeyword"
def searchValueForKeyword(searchstring, file):
results.seek(0,0)
begin = file.read(2048).find(searchstring) + len(searchstring)
file.seek(begin,0)
value = struct.unpack('i',results.read(4))[0]
return value, results.tell()
class element:
items = []
type = None
#finds the value for the three integers (a,b,c) following the given keyword
def searchIntegerArrayForKeyword(searchstring, file):
values = array.array('i',[0,0,0])
file.seek(0,0)
begin = file.read(2048).find(searchstring) + len(searchstring) #end position of string "searchstring"
pos = file.read(60).find('a')
file.seek(begin+pos+2,0) #why 2, not 1??
values[0]=struct.unpack('i',file.read(4))[0]
maxpos=file.tell()
file.seek(begin,0)
pos = file.read(60).find('b')
file.seek(begin+pos+1,0)
values[1]=struct.unpack('i',file.read(4))[0]
maxpos = max(maxpos,file.tell())
file.seek(begin,0)
pos = file.read(60).find('c')
file.seek(begin+pos+1,0)
values[2]=struct.unpack('i',file.read(4))[0]
maxpos=max(maxpos,file.tell())
return values, maxpos
def __init__(self,nodes,type):
self.items = nodes
self.type = type
#finds the value for the three doubles (x,y,z) following the given keyword
def searchDoubleArrayForKeyword(searchstring, file):
values = array.array('d',[0,0,0])
file.seek(0,0)
begin = file.read(2048).find(searchstring) + len(searchstring)
pos = file.read(60).find('x')
file.seek(begin+pos+2,0)
values[0]=struct.unpack('d',file.read(8))[0]
maxpos=file.tell()
file.seek(begin,0)
pos = file.read(60).find('y')
file.seek(begin+pos+1,0)
values[1] = struct.unpack('d',file.read(8))[0]
maxpos = max(maxpos,file.tell())
file.seek(begin,0)
pos = file.read(60).find('z')
file.seek(begin+pos+1,0)
values[2] = struct.unpack('d',file.read(8))[0]
maxpos = max(maxpos,file.tell())
return values, maxpos
print '*********************************************************************************'
class element_scalar:
id = None
value = None
def __init__(self,node,value):
self.id = node
self.value = value
class MPIEspectral_result:
file = None
dataOffset = 0
N_elemental_scalars = 0
resolution = [0,0,0]
dimension = [0.0,0.0,0.0]
theTitle = ''
wd = ''
extrapolate = ''
N_increments = 0
increment = 0
N_nodes = 0
N_node_scalars = 0
N_elements = 0
N_element_scalars = 0
N_element_tensors = 0
theNodes = []
theElements = []
def __init__(self,filename):
self.file = open(filename, 'rb')
self.title = self._keyedString('load')
self.wd = self._keyedString('workingdir')
self.geometry = self._keyedString('geometry')
self.N_increments = self._keyedInt('increments')
self.N_element_scalars = self._keyedInt('materialpoint_sizeResults')
self.resolution = self._keyedPackedArray('resolution',3,'i')
self.N_nodes = (self.resolution[0]+1)*(self.resolution[1]+1)*(self.resolution[2]+1)
self.N_elements = self.resolution[0]*self.resolution[1]*self.resolution[2]
self.dimension = self._keyedPackedArray('dimension',3,'d')
a = self.resolution[0]+1
b = self.resolution[1]+1
c = self.resolution[2]+1
self.file.seek(0)
self.dataOffset = self.file.read(2048).find('eoh')+7
def __str__(self):
return '\n'.join([
'title: %s'%self.title,
'workdir: %s'%self.wd,
'extrapolation: %s'%self.extrapolate,
'increments: %i'%self.N_increments,
'increment: %i'%self.increment,
'nodes: %i'%self.N_nodes,
'resolution: %s'%(','.join(map(str,self.resolution))),
'dimension: %s'%(','.join(map(str,self.dimension))),
'elements: %i'%self.N_elements,
'nodal_scalars: %i'%self.N_node_scalars,
'elemental scalars: %i'%self.N_element_scalars,
'end of header: %i'%self.dataOffset,
]
)
def _keyedPackedArray(self,identifier,length = 3,type = 'd'):
match = {'d': 8,'i': 4}
self.file.seek(0)
m = re.search('%s%s'%(identifier,'(.{%i})'%(match[type])*length),self.file.read(2048))
values = []
if m:
for i in m.groups():
values.append(struct.unpack(type,i)[0])
return values
def _keyedInt(self,identifier):
value = None
self.file.seek(0)
m = re.search('%s%s'%(identifier,'(.{4})'),self.file.read(2048))
if m:
value = struct.unpack('i',m.group(1))[0]
return value
def _keyedString(self,identifier):
value = None
self.file.seek(0)
m = re.search(r'(.{4})%s(.*?)\1'%identifier,self.file.read(2048))
if m:
value = m.group(2)
return value
def extrapolation(self,value):
self.extrapolate = value
def element_scalar(self,elem,idx):
self.file.seek(self.dataOffset+(self.increment*(4+self.N_elements*self.N_element_scalars*8+4) + 4+(elem*self.N_element_scalars + idx)*8))
value = struct.unpack('d',self.file.read(8))[0]
return [elemental_scalar(node,value) for node in self.theElements[elem].items]
def readScalar(resolution,file,distance,startingPosition,offset):
currentPosition = startingPosition+offset*8+4 - distance*8 # we add distance later on
field = numpy.zeros([resolution[0],resolution[1],resolution[2]], 'd')
for x in range(0,resolution[0]):
for y in range(0,resolution[1]):
for z in range(0,resolution[2]):
currentPosition = currentPosition + distance*8
p.file.seek(currentPosition)
field[x][y][z]=struct.unpack('d',p.file.read(8))[0]
return field
def readTensor(resolution,file,distance,startingPosition,offset):
currentPosition = startingPosition+offset*8+4 - distance*8 # we add distance later on
field = numpy.zeros([resolution[0],resolution[1],resolution[2],3,3], 'd')
for x in range(0,resolution[0]):
for y in range(0,resolution[1]):
for z in range(0,resolution[2]):
currentPosition = currentPosition + distance*8
p.file.seek(currentPosition)
for i in range(0,3):
for j in range(0,3):
field[x][y][z][i][j]=struct.unpack('d',p.file.read(8))[0]
return field
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
def mesh(res,geomdim,defgrad_av,centroids):
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
neighbor = numpy.array([[0, 0, 0],
[1, 0, 0],
[1, 1, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 1],
[1, 1, 1],
[0, 1, 1]])
wrappedCentroids = numpy.zeros([res[0]+2,res[1]+2,res[2]+2,3],'d')
nodes = numpy.zeros([res[0]+1,res[1]+1,res[2]+1,3],'d')
wrappedCentroids[1:-1,1:-1,1:-1] = centroids
diag = numpy.ones(3,'i')
shift = numpy.zeros(3,'i')
lookup = numpy.zeros(3,'i')
for k in range(res[2]+2):
for j in range(res[1]+2):
for i in range(res[0]+2):
if (k==0 or k==res[2]+1 or \
j==0 or j==res[1]+1 or \
i==0 or i==res[0]+1 ):
me = numpy.array([i,j,k],'i')
shift = numpy.sign(res+diag-2*me)*(numpy.abs(res+diag-2*me)/(res+diag))
lookup = me-diag+shift*res
wrappedCentroids[i,j,k] = centroids[lookup[0],lookup[1],lookup[2]]- \
numpy.dot(defgrad_av, shift*geomdim)
for k in range(res[2]+1):
for j in range(res[1]+1):
for i in range(res[0]+1):
for n in range(8):
nodes[i,j,k] += wrappedCentroids[i+neighbor[n,0],j+neighbor[n,1],k+neighbor[n,2]]
nodes[:,:,:] /=8.0
return nodes
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
def centroids(res,geomdimension,defgrad):
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
corner = numpy.array([[0, 0, 0],
[1, 0, 0],
[1, 1, 0],
[0, 1, 0],
[1, 1, 1],
[0, 1, 1],
[0, 0, 1],
[1, 0, 1]])
step = numpy.array([[ 1, 1, 1],
[-1, 1, 1],
[-1,-1, 1],
[ 1,-1, 1],
[-1,-1,-1],
[ 1,-1,-1],
[ 1, 1,-1],
[-1, 1,-1]])
order = numpy.array([[0, 1, 2],
[0, 2, 1],
[1, 0, 2],
[1, 2, 0],
[2, 0, 1],
[2, 1, 0]])
cornerCoords = numpy.zeros([8,res[0],res[1],res[2],3], 'd')
coord = numpy.zeros([8,6,res[0],res[1],res[2],3], 'd')
centroids = numpy.zeros([res[0],res[1],res[2],3], 'd')
myStep = numpy.zeros(3,'d')
rear = numpy.zeros(3, 'i')
init = numpy.zeros(3, 'i')
oppo = numpy.zeros(3, 'i')
me = numpy.zeros(3, 'i')
ones = numpy.ones(3, 'i')
fones = numpy.ones(3, 'd')
defgrad_av=numpy.average(numpy.average(numpy.average(defgrad,0),0),0)
for s in range(8):# corners
init = corner[s]*(res-ones)
oppo = corner[(s+4)%8]*(res-ones)
for o in range(6): # orders
for k in range(init[order[o,2]],oppo[order[o,2]]+step[s,order[o,2]],step[s,order[o,2]]):
rear[order[o,1]] = init[order[o,1]]
for j in range(init[order[o,1]],oppo[order[o,1]]+step[s,order[o,1]],step[s,order[o,1]]):
rear[order[o,0]] = init[order[o,0]]
for i in range(init[order[o,0]],oppo[order[o,0]]+step[s,order[o,0]],step[s,order[o,0]]):
me[order[o,0]] = i
me[order[o,1]] = j
me[order[o,2]] = k
if (numpy.all(me == init)):
coord[s,o,me[0],me[1],me[2]] = geomdimension * (numpy.dot(defgrad_av,corner[s]) + \
numpy.dot(defgrad[me[0],me[1],me[2]],0.5*step[s]/res))
else:
myStep = (me-rear)*geomdimension/res
coord[s,o,me[0],me[1],me[2]] = coord[s,o,rear[0],rear[1],rear[2]]+ \
0.5*numpy.dot(defgrad[me[0],me[1],me[2]] + \
defgrad[rear[0],rear[1],rear[2]],myStep)
rear[:] = me[:]
cornerCoords[s] = numpy.average(coord[s],0)
for k in range(res[2]):
for j in range(res[1]):
for i in range(res[0]):
parameter_coords=(2.0*numpy.array([i,j,k])-res+fones)/(res-fones)
pos = (fones + parameter_coords)
neg = (fones - parameter_coords)
if(k<3 and j<3 and i<3):
print i,j,k,':',pos, neg,'(',parameter_coords,')'
centroids[i,j,k] = ( cornerCoords[0,i,j,k] *neg[0]*neg[1]*neg[2]\
+ cornerCoords[1,i,j,k] *pos[0]*neg[1]*neg[2]\
+ cornerCoords[2,i,j,k] *pos[0]*pos[1]*neg[2]\
+ cornerCoords[3,i,j,k] *neg[0]*pos[1]*neg[2]\
+ cornerCoords[4,i,j,k] *pos[0]*pos[1]*pos[2]\
+ cornerCoords[5,i,j,k] *neg[0]*pos[1]*pos[2]\
+ cornerCoords[6,i,j,k] *neg[0]*neg[1]*pos[2]\
+ cornerCoords[7,i,j,k] *pos[0]*neg[1]*pos[2])*0.125
return centroids, defgrad_av
# function writes scalar values to a mesh (geometry)
def writeVtkAscii(filename,geometry,scalar,resolution):
prodnn=(p.resolution[0]+1)*(p.resolution[1]+1)*(p.resolution[2]+1)
vtk = open(filename, 'w')
vtk.write('# vtk DataFile Version 3.1\n') # header
vtk.write('just a test\n') # header
vtk.write('ASCII\n') # header
vtk.write('DATASET UNSTRUCTURED_GRID\n') # header
vtk.write('POINTS ') # header
vtk.write(str(prodnn)) # header
vtk.write(' FLOAT\n') # header
# nodes
for k in range (resolution[2]+1):
for j in range (resolution[1]+1):
for i in range (resolution[0]+1):
vtk.write('\t'.join(map(str,geometry[i,j,k]))+'\n')
vtk.write('\n')
vtk.write('CELLS ')
vtk.write(str(resolution[0]*resolution[1]*resolution[2]))
vtk.write('\t')
vtk.write(str(resolution[0]*resolution[1]*resolution[2]*9))
vtk.write('\n')
# elements
for i in range (resolution[2]):
for j in range (resolution[1]):
for k in range (resolution[0]):
vtk.write('8')
vtk.write('\t')
base = i*(resolution[1]+1)*(resolution[2]+1)+j*(resolution[1]+1)+k
vtk.write(str(base))
vtk.write('\t')
vtk.write(str(base+1))
vtk.write('\t')
vtk.write(str(base+resolution[1]+2))
vtk.write('\t')
vtk.write(str(base+resolution[1]+1))
vtk.write('\t')
base = base + (resolution[1]+1)*(resolution[2]+1)
vtk.write(str(base))
vtk.write('\t')
vtk.write(str(base+1))
vtk.write('\t')
vtk.write(str(base+resolution[1]+2))
vtk.write('\t')
vtk.write(str(base+resolution[1]+1))
vtk.write('\n')
vtk.write('\n')
vtk.write('CELL_TYPES ')
vtk.write('\t')
vtk.write(str(resolution[0]*resolution[1]*resolution[2]))
vtk.write('\n')
for i in range (resolution[0]*resolution[1]*resolution[2]):
vtk.write('12\n')
vtk.write('\nCELL_DATA ') # header
vtk.write(str(resolution[0]*resolution[1]*resolution[2])) # header
vtk.write('\n') # header
vtk.write('SCALARS HorizontalSpeed float\n') # header
vtk.write('LOOKUP_TABLE default\n') # header
for k in range (resolution[2]):
for j in range (resolution[1]):
for i in range (resolution[0]):
vtk.write(str(scalar[i,j,k]))
vtk.write('\n')
return
# function writes scalar values to a point field
def writeVtkAsciiDots(filename,coordinates,scalar,resolution):
prodnn=(p.resolution[0])*(p.resolution[1])*(p.resolution[2])
vtk = open(filename, 'w')
vtk.write('# vtk DataFile Version 3.1\n') # header
vtk.write('just a test\n') # header
vtk.write('ASCII\n') # header
vtk.write('DATASET UNSTRUCTURED_GRID\n') # header
vtk.write('POINTS ') # header
vtk.write(str(prodnn)) # header
vtk.write(' FLOAT\n') # header
# points
for k in range (resolution[2]):
for j in range (resolution[1]):
for i in range (resolution[0]):
vtk.write('\t'.join(map(str,coordinates[i,j,k]))+'\n')
vtk.write('\n')
vtk.write('CELLS ')
vtk.write(str(prodnn))
vtk.write('\t')
vtk.write(str(prodnn*2))
vtk.write('\n')
for i in range(prodnn):
vtk.write('1\t' + str(i) + '\n')
vtk.write('CELL_TYPES ')
vtk.write('\t')
vtk.write(str(prodnn))
vtk.write('\n')
for i in range (prodnn):
vtk.write('1\n')
vtk.write('\nPOINT_DATA ') # header
vtk.write(str(prodnn)) # header
vtk.write('\n') # header
vtk.write('SCALARS HorizontalSpeed float\n') # header
vtk.write('LOOKUP_TABLE default\n') # header
for k in range (resolution[2]):
for j in range (resolution[1]):
for i in range (resolution[0]):
vtk.write(str(scalar[i,j,k]))
vtk.write('\n')
return
# functiongives the corner box for the average defgrad
def writeVtkAsciidefgrad_av(filename,diag,defgrad):
points = numpy.array([\
[0.0,0.0,0.0,],\
[diag[0],0.0,0.0,],\
[diag[0],diag[1],0.0,],\
[0.0,diag[1],0.0,],\
[0.0,0.0,diag[2],],\
[diag[0],0.0,diag[2],],\
[diag[0],diag[1],diag[2],],\
[0.0,diag[1],diag[2],]]\
)
vtk = open(filename, 'w')
vtk.write('# vtk DataFile Version 3.1\n') # header
vtk.write('just a test\n') # header
vtk.write('ASCII\n') # header
vtk.write('DATASET UNSTRUCTURED_GRID\n') # header
vtk.write('POINTS 8') # header
vtk.write(' FLOAT\n') # header
# points
for p in range (8):
vtk.write('\t'.join(map(str,numpy.dot(defgrad_av,points[p])))+'\n')
vtk.write('\n')
vtk.write('CELLS 8 16\n')
vtk.write('\n'.join(['1\t%i'%i for i in range(8)])+'\n')
vtk.write('CELL_TYPES 8\n')
vtk.write('\n'.join(['1']*8)+'\n')
return
print '*********************************************************************************'
print 'Post Processing for Material subroutine for BVP solution using spectral method'
print '*********************************************************************************\n'
#reading in the header of the results file
filename ='32x32x32x100.out'
print 'Results Filename:', filename
results = open(filename, 'rb')
loadcase, position = searchNameForKeyword('Loadcase', results)
workingdir, temp = searchNameForKeyword('Workingdir', results)
position = max(temp, position)
jobname, temp = searchNameForKeyword('JobName', results)
position = max(temp, position)
totalincs, temp = searchValueForKeyword('totalincs', results)
position = max(temp, position)
materialpoint_sizeResults, temp = searchValueForKeyword('materialpoint_sizeResults', results)
position = max(temp, position)
resolution, temp = searchIntegerArrayForKeyword('resolution', results)
position = max(temp, position)
geomdimension, temp = searchDoubleArrayForKeyword('geomdimension', results)
print 'Load case:', loadcase
print 'Workingdir:', workingdir
print 'Job Name:', jobname
print 'Total No. of Increments:', totalincs
print 'Materialpoint_sizeResults:', materialpoint_sizeResults
print 'Resolution:', resolution
print 'Geomdimension', geomdimension
print 'Position in File:', position
p = MPIEspectral_result('32x32x32x100.spectralOut')
p.extrapolation('')
print p
# Ended reading of header
# Now starting to read information concerning output of materialpoint_results(:,1,:)
filename = jobname[0:len(jobname)-5]+'.outputCrystallite'
outputCrystallite = open(filename, 'r')
res_x=p.resolution[0]
res_y=p.resolution[1]
res_z=p.resolution[2]
# some funtions that might be useful
def InCharCount(location, character):
subj = file(location, "r")
body = subj.read()
subj.close()
return body.count(character)
def InCharCount(location, character):
subj = file(location, "r")
nbr_of_char = 0
for line in subj:
nbr_of_char = nbr_of_char + line.count(character)
return nbr_of_char
for i in range(120,121):
c_pos = p.dataOffset + i*(p.N_element_scalars*8*p.N_elements + 8) #8 accounts for header&footer
defgrad = readTensor(p.resolution,p.file,p.N_element_scalars,c_pos,16)
grain = readScalar(p.resolution,p.file,p.N_element_scalars,c_pos,7)
centroids, defgrad_av = centroids(p.resolution,p.dimension,defgrad)
print centroids.shape, defgrad_av.shape
ms = mesh(p.resolution,p.dimension,defgrad_av,centroids)
writeVtkAscii('mesh-%i.vtk'%i,ms,grain,p.resolution)
writeVtkAsciidefgrad_av('box-%i.vtk'%i,p.dimension,defgrad_av)
writeVtkAsciiDots('points-%i.vtk'%i,centroids,grain,p.resolution)
sys.stdout.flush()