much improved algorithm to speed up grain identification.
This commit is contained in:
parent
1994b5a4c1
commit
170d377092
|
@ -5,7 +5,6 @@ import numpy as np
|
|||
import damask
|
||||
from optparse import OptionParser
|
||||
from scipy import spatial
|
||||
from collections import defaultdict
|
||||
|
||||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||
scriptID = ' '.join([scriptName,damask.version])
|
||||
|
@ -23,7 +22,7 @@ parser.add_option('-r', '--radius',
|
|||
parser.add_option('-d', '--disorientation',
|
||||
dest = 'disorientation',
|
||||
type = 'float', metavar = 'float',
|
||||
help = 'disorientation threshold per grain [%default] (degrees)')
|
||||
help = 'disorientation threshold in degrees [%default]')
|
||||
parser.add_option('-s', '--symmetry',
|
||||
dest = 'symmetry',
|
||||
type = 'string', metavar = 'string',
|
||||
|
@ -61,7 +60,8 @@ parser.add_option('-p', '--position',
|
|||
type = 'string', metavar = 'string',
|
||||
help = 'spatial position of voxel [%default]')
|
||||
|
||||
parser.set_defaults(symmetry = 'cubic',
|
||||
parser.set_defaults(disorientation = 5,
|
||||
symmetry = 'cubic',
|
||||
coords = 'pos',
|
||||
degrees = False,
|
||||
)
|
||||
|
@ -86,17 +86,16 @@ if np.sum(input) != 1: parser.error('needs exactly one input format.')
|
|||
(options.matrix,9,'matrix'),
|
||||
(options.quaternion,4,'quaternion'),
|
||||
][np.where(input)[0][0]] # select input label that was requested
|
||||
toRadians = np.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
|
||||
cos_disorientation = np.cos(options.disorientation/2.*toRadians)
|
||||
toRadians = np.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
|
||||
cos_disorientation = np.cos(np.radians(options.disorientation/2.)) # cos of half the disorientation angle
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try:
|
||||
table = damask.ASCIItable(name = name,
|
||||
buffered = False)
|
||||
try: table = damask.ASCIItable(name = name,
|
||||
buffered = False)
|
||||
except: continue
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
|
@ -109,8 +108,10 @@ for name in filenames:
|
|||
errors = []
|
||||
remarks = []
|
||||
|
||||
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords))
|
||||
if not np.all(table.label_dimension(label) == dim): errors.append('input {} does not have dimension {}.'.format(label,dim))
|
||||
if not 3 >= table.label_dimension(options.coords) >= 1:
|
||||
errors.append('coordinates "{}" need to have one, two, or three dimensions.'.format(options.coords))
|
||||
if not np.all(table.label_dimension(label) == dim):
|
||||
errors.append('input {} does not have dimension {}.'.format(label,dim))
|
||||
else: column = table.label_index(label)
|
||||
|
||||
if remarks != []: damask.util.croak(remarks)
|
||||
|
@ -122,8 +123,10 @@ for name in filenames:
|
|||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.labels_append('grainID_{}@{}'.format(label,
|
||||
options.disorientation if options.degrees else np.degrees(options.disorientation))) # report orientation source and disorientation in degrees
|
||||
table.labels_append('grainID_{}@{:g}'.format('+'.join(label)
|
||||
if isinstance(label, (list,tuple))
|
||||
else label,
|
||||
options.disorientation)) # report orientation source and disorientation
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
@ -162,7 +165,7 @@ for name in filenames:
|
|||
|
||||
time_delta = (time.clock()-tick) * (len(grainID) - p) / p
|
||||
bg.set_message('(%02i:%02i:%02i) processing point %i of %i (grain count %i)...'\
|
||||
%(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),len(orientations)))
|
||||
%(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),np.count_nonzero(memberCounts)))
|
||||
|
||||
if inputtype == 'eulers':
|
||||
o = damask.Orientation(Eulers = np.array(map(float,table.data[column:column+3]))*toRadians,
|
||||
|
@ -179,84 +182,51 @@ for name in filenames:
|
|||
o = damask.Orientation(quaternion = np.array(map(float,table.data[column:column+4])),
|
||||
symmetry = options.symmetry).reduced()
|
||||
|
||||
matched = False
|
||||
matched = False
|
||||
alreadyChecked = {}
|
||||
candidates = []
|
||||
bestDisorientation = damask.Quaternion([0,0,0,1]) # initialize to 180 deg rotation as worst case
|
||||
|
||||
# check against last matched needs to be really picky. best would be to exclude jumps across the poke (checking distance between last and me?)
|
||||
# when walking through neighborhood first check whether grainID of that point has already been tested, if yes, skip!
|
||||
|
||||
if matchedID != -1: # has matched before?
|
||||
matched = (o.quaternion.conjugated() * orientations[matchedID].quaternion).w > cos_disorientation
|
||||
|
||||
if not matched:
|
||||
alreadyChecked = {}
|
||||
bestDisorientation = damask.Quaternion([0,0,0,1]) # initialize to 180 deg rotation as worst case
|
||||
for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring points
|
||||
gID = grainID[i]
|
||||
if gID != -1 and gID not in alreadyChecked: # indexed point belonging to a grain not yet tested?
|
||||
alreadyChecked[gID] = True # remember not to check again
|
||||
disorientation = o.disorientation(orientations[gID],SST = False)[0] # compare against other orientation
|
||||
if disorientation.quaternion.w > cos_disorientation and \
|
||||
disorientation.quaternion.w >= bestDisorientation.w: # within threshold and betterthan current best?
|
||||
for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring points
|
||||
gID = grainID[i]
|
||||
if gID != -1 and gID not in alreadyChecked: # indexed point belonging to a grain not yet tested?
|
||||
alreadyChecked[gID] = True # remember not to check again
|
||||
disorientation = o.disorientation(orientations[gID],SST = False)[0] # compare against other orientation
|
||||
if disorientation.quaternion.w > cos_disorientation: # within threshold ...
|
||||
candidates.append(gID) # remember as potential candidate
|
||||
if disorientation.quaternion.w >= bestDisorientation.w: # ... and better than current best?
|
||||
matched = True
|
||||
matchedID = gID # remember that grain
|
||||
bestDisorientation = disorientation.quaternion
|
||||
|
||||
if not matched: # no match -> new grain found
|
||||
memberCounts += [1] # start new membership counter
|
||||
if matched: # did match existing grain
|
||||
memberCounts[matchedID] += 1
|
||||
if len(candidates) > 1: # ambiguity in grain identification?
|
||||
largestGrain = sorted(candidates,key=lambda x:memberCounts[x])[-1] # find largest among potential candidate grains
|
||||
matchedID = largestGrain
|
||||
for c in [c for c in candidates if c != largestGrain]: # loop over smaller candidates
|
||||
memberCounts[largestGrain] += memberCounts[c] # reassign member count of smaller to largest
|
||||
memberCounts[c] = 0
|
||||
grainID = np.where(np.in1d(grainID,candidates), largestGrain, grainID) # relabel grid points of smaller candidates as largest one
|
||||
|
||||
else: # no match -> new grain found
|
||||
orientations += [o] # initialize with current orientation
|
||||
memberCounts += [1] # start new membership counter
|
||||
matchedID = g
|
||||
g += 1 # increment grain counter
|
||||
|
||||
else: # did match existing grain
|
||||
memberCounts[matchedID] += 1
|
||||
|
||||
grainID[p] = matchedID # remember grain index assigned to point
|
||||
p += 1 # increment point
|
||||
|
||||
bg.set_message('identifying similar orientations among {} grains...'.format(len(orientations)))
|
||||
|
||||
memberCounts = np.array(memberCounts)
|
||||
similarOrientations = [[] for i in xrange(len(orientations))]
|
||||
|
||||
for i,orientation in enumerate(orientations[:-1]): # compare each identified orientation...
|
||||
for j in xrange(i+1,len(orientations)): # ...against all others that were defined afterwards
|
||||
if orientation.disorientation(orientations[j],SST = False)[0].quaternion.w > cos_disorientation: # similar orientations in both grainIDs?
|
||||
similarOrientations[i].append(j) # remember in upper triangle...
|
||||
similarOrientations[j].append(i) # ...and lower triangle of matrix
|
||||
|
||||
if similarOrientations[i] != []:
|
||||
bg.set_message('grainID {} is as: {}'.format(i,' '.join(map(str,similarOrientations[i]))))
|
||||
|
||||
stillShifting = True
|
||||
while stillShifting:
|
||||
stillShifting = False
|
||||
tick = time.clock()
|
||||
|
||||
for p,gID in enumerate(grainID): # walk through all points
|
||||
if p > 0 and p % 1000 == 0:
|
||||
|
||||
time_delta = (time.clock()-tick) * (len(grainID) - p) / p
|
||||
bg.set_message('(%02i:%02i:%02i) shifting ID of point %i out of %i (grain count %i)...'
|
||||
%(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),len(orientations)))
|
||||
if similarOrientations[gID] != []: # orientation of my grainID is similar to someone else?
|
||||
similarNeighbors = defaultdict(int) # frequency of neighboring grainIDs sharing my orientation
|
||||
for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring point
|
||||
if grainID[i] in similarOrientations[gID]: # neighboring point shares my orientation?
|
||||
similarNeighbors[grainID[i]] += 1 # remember its grainID
|
||||
if similarNeighbors != {}: # found similar orientation(s) in neighborhood
|
||||
candidates = np.array([gID]+similarNeighbors.keys()) # possible replacement grainIDs for me
|
||||
grainID[p] = candidates[np.argsort(memberCounts[candidates])[-1]] # adopt ID that is most frequent in overall dataset
|
||||
memberCounts[gID] -= 1 # my former ID loses one fellow
|
||||
memberCounts[grainID[p]] += 1 # my new ID gains one fellow
|
||||
bg.set_message('{}:{} --> {}'.format(p,gID,grainID[p])) # report switch of grainID
|
||||
stillShifting = True
|
||||
|
||||
grainIDs = np.where(np.array(memberCounts) > 0)[0] # identify "live" grain identifiers
|
||||
packingMap = dict(zip(list(grainIDs),range(len(grainIDs)))) # map to condense into consecutive IDs
|
||||
|
||||
table.data_rewind()
|
||||
|
||||
outputAlive = True
|
||||
p = 0
|
||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||
table.data_append(1+grainID[p]) # add grain ID
|
||||
table.data_append(1+packingMap[grainID[p]]) # add (condensed) grain ID
|
||||
outputAlive = table.data_write() # output processed line
|
||||
p += 1
|
||||
|
||||
|
|
Loading…
Reference in New Issue