much improved algorithm to speed up grain identification.

This commit is contained in:
Philip Eisenlohr 2016-04-13 19:33:46 -04:00
parent 1994b5a4c1
commit 170d377092
1 changed files with 44 additions and 74 deletions

View File

@ -5,7 +5,6 @@ import numpy as np
import damask import damask
from optparse import OptionParser from optparse import OptionParser
from scipy import spatial from scipy import spatial
from collections import defaultdict
scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version]) scriptID = ' '.join([scriptName,damask.version])
@ -23,7 +22,7 @@ parser.add_option('-r', '--radius',
parser.add_option('-d', '--disorientation', parser.add_option('-d', '--disorientation',
dest = 'disorientation', dest = 'disorientation',
type = 'float', metavar = 'float', type = 'float', metavar = 'float',
help = 'disorientation threshold per grain [%default] (degrees)') help = 'disorientation threshold in degrees [%default]')
parser.add_option('-s', '--symmetry', parser.add_option('-s', '--symmetry',
dest = 'symmetry', dest = 'symmetry',
type = 'string', metavar = 'string', type = 'string', metavar = 'string',
@ -61,7 +60,8 @@ parser.add_option('-p', '--position',
type = 'string', metavar = 'string', type = 'string', metavar = 'string',
help = 'spatial position of voxel [%default]') help = 'spatial position of voxel [%default]')
parser.set_defaults(symmetry = 'cubic', parser.set_defaults(disorientation = 5,
symmetry = 'cubic',
coords = 'pos', coords = 'pos',
degrees = False, degrees = False,
) )
@ -87,15 +87,14 @@ if np.sum(input) != 1: parser.error('needs exactly one input format.')
(options.quaternion,4,'quaternion'), (options.quaternion,4,'quaternion'),
][np.where(input)[0][0]] # select input label that was requested ][np.where(input)[0][0]] # select input label that was requested
toRadians = np.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians toRadians = np.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
cos_disorientation = np.cos(options.disorientation/2.*toRadians) cos_disorientation = np.cos(np.radians(options.disorientation/2.)) # cos of half the disorientation angle
# --- loop over input files ------------------------------------------------------------------------- # --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = [None] if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
try: try: table = damask.ASCIItable(name = name,
table = damask.ASCIItable(name = name,
buffered = False) buffered = False)
except: continue except: continue
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
@ -109,8 +108,10 @@ for name in filenames:
errors = [] errors = []
remarks = [] remarks = []
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords)) if not 3 >= table.label_dimension(options.coords) >= 1:
if not np.all(table.label_dimension(label) == dim): errors.append('input {} does not have dimension {}.'.format(label,dim)) errors.append('coordinates "{}" need to have one, two, or three dimensions.'.format(options.coords))
if not np.all(table.label_dimension(label) == dim):
errors.append('input {} does not have dimension {}.'.format(label,dim))
else: column = table.label_index(label) else: column = table.label_index(label)
if remarks != []: damask.util.croak(remarks) if remarks != []: damask.util.croak(remarks)
@ -122,8 +123,10 @@ for name in filenames:
# ------------------------------------------ assemble header --------------------------------------- # ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append('grainID_{}@{}'.format(label, table.labels_append('grainID_{}@{:g}'.format('+'.join(label)
options.disorientation if options.degrees else np.degrees(options.disorientation))) # report orientation source and disorientation in degrees if isinstance(label, (list,tuple))
else label,
options.disorientation)) # report orientation source and disorientation
table.head_write() table.head_write()
# ------------------------------------------ process data ------------------------------------------ # ------------------------------------------ process data ------------------------------------------
@ -162,7 +165,7 @@ for name in filenames:
time_delta = (time.clock()-tick) * (len(grainID) - p) / p time_delta = (time.clock()-tick) * (len(grainID) - p) / p
bg.set_message('(%02i:%02i:%02i) processing point %i of %i (grain count %i)...'\ bg.set_message('(%02i:%02i:%02i) processing point %i of %i (grain count %i)...'\
%(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),len(orientations))) %(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),np.count_nonzero(memberCounts)))
if inputtype == 'eulers': if inputtype == 'eulers':
o = damask.Orientation(Eulers = np.array(map(float,table.data[column:column+3]))*toRadians, o = damask.Orientation(Eulers = np.array(map(float,table.data[column:column+3]))*toRadians,
@ -180,83 +183,50 @@ for name in filenames:
symmetry = options.symmetry).reduced() symmetry = options.symmetry).reduced()
matched = False matched = False
# check against last matched needs to be really picky. best would be to exclude jumps across the poke (checking distance between last and me?)
# when walking through neighborhood first check whether grainID of that point has already been tested, if yes, skip!
if matchedID != -1: # has matched before?
matched = (o.quaternion.conjugated() * orientations[matchedID].quaternion).w > cos_disorientation
if not matched:
alreadyChecked = {} alreadyChecked = {}
candidates = []
bestDisorientation = damask.Quaternion([0,0,0,1]) # initialize to 180 deg rotation as worst case bestDisorientation = damask.Quaternion([0,0,0,1]) # initialize to 180 deg rotation as worst case
for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring points for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring points
gID = grainID[i] gID = grainID[i]
if gID != -1 and gID not in alreadyChecked: # indexed point belonging to a grain not yet tested? if gID != -1 and gID not in alreadyChecked: # indexed point belonging to a grain not yet tested?
alreadyChecked[gID] = True # remember not to check again alreadyChecked[gID] = True # remember not to check again
disorientation = o.disorientation(orientations[gID],SST = False)[0] # compare against other orientation disorientation = o.disorientation(orientations[gID],SST = False)[0] # compare against other orientation
if disorientation.quaternion.w > cos_disorientation and \ if disorientation.quaternion.w > cos_disorientation: # within threshold ...
disorientation.quaternion.w >= bestDisorientation.w: # within threshold and betterthan current best? candidates.append(gID) # remember as potential candidate
if disorientation.quaternion.w >= bestDisorientation.w: # ... and better than current best?
matched = True matched = True
matchedID = gID # remember that grain matchedID = gID # remember that grain
bestDisorientation = disorientation.quaternion bestDisorientation = disorientation.quaternion
if not matched: # no match -> new grain found if matched: # did match existing grain
memberCounts += [1] # start new membership counter memberCounts[matchedID] += 1
if len(candidates) > 1: # ambiguity in grain identification?
largestGrain = sorted(candidates,key=lambda x:memberCounts[x])[-1] # find largest among potential candidate grains
matchedID = largestGrain
for c in [c for c in candidates if c != largestGrain]: # loop over smaller candidates
memberCounts[largestGrain] += memberCounts[c] # reassign member count of smaller to largest
memberCounts[c] = 0
grainID = np.where(np.in1d(grainID,candidates), largestGrain, grainID) # relabel grid points of smaller candidates as largest one
else: # no match -> new grain found
orientations += [o] # initialize with current orientation orientations += [o] # initialize with current orientation
memberCounts += [1] # start new membership counter
matchedID = g matchedID = g
g += 1 # increment grain counter g += 1 # increment grain counter
else: # did match existing grain
memberCounts[matchedID] += 1
grainID[p] = matchedID # remember grain index assigned to point grainID[p] = matchedID # remember grain index assigned to point
p += 1 # increment point p += 1 # increment point
bg.set_message('identifying similar orientations among {} grains...'.format(len(orientations))) grainIDs = np.where(np.array(memberCounts) > 0)[0] # identify "live" grain identifiers
packingMap = dict(zip(list(grainIDs),range(len(grainIDs)))) # map to condense into consecutive IDs
memberCounts = np.array(memberCounts)
similarOrientations = [[] for i in xrange(len(orientations))]
for i,orientation in enumerate(orientations[:-1]): # compare each identified orientation...
for j in xrange(i+1,len(orientations)): # ...against all others that were defined afterwards
if orientation.disorientation(orientations[j],SST = False)[0].quaternion.w > cos_disorientation: # similar orientations in both grainIDs?
similarOrientations[i].append(j) # remember in upper triangle...
similarOrientations[j].append(i) # ...and lower triangle of matrix
if similarOrientations[i] != []:
bg.set_message('grainID {} is as: {}'.format(i,' '.join(map(str,similarOrientations[i]))))
stillShifting = True
while stillShifting:
stillShifting = False
tick = time.clock()
for p,gID in enumerate(grainID): # walk through all points
if p > 0 and p % 1000 == 0:
time_delta = (time.clock()-tick) * (len(grainID) - p) / p
bg.set_message('(%02i:%02i:%02i) shifting ID of point %i out of %i (grain count %i)...'
%(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),len(orientations)))
if similarOrientations[gID] != []: # orientation of my grainID is similar to someone else?
similarNeighbors = defaultdict(int) # frequency of neighboring grainIDs sharing my orientation
for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring point
if grainID[i] in similarOrientations[gID]: # neighboring point shares my orientation?
similarNeighbors[grainID[i]] += 1 # remember its grainID
if similarNeighbors != {}: # found similar orientation(s) in neighborhood
candidates = np.array([gID]+similarNeighbors.keys()) # possible replacement grainIDs for me
grainID[p] = candidates[np.argsort(memberCounts[candidates])[-1]] # adopt ID that is most frequent in overall dataset
memberCounts[gID] -= 1 # my former ID loses one fellow
memberCounts[grainID[p]] += 1 # my new ID gains one fellow
bg.set_message('{}:{} --> {}'.format(p,gID,grainID[p])) # report switch of grainID
stillShifting = True
table.data_rewind() table.data_rewind()
outputAlive = True outputAlive = True
p = 0 p = 0
while outputAlive and table.data_read(): # read next data line of ASCII table while outputAlive and table.data_read(): # read next data line of ASCII table
table.data_append(1+grainID[p]) # add grain ID table.data_append(1+packingMap[grainID[p]]) # add (condensed) grain ID
outputAlive = table.data_write() # output processed line outputAlive = table.data_write() # output processed line
p += 1 p += 1