Merge branch 'development' into misc-improvements

This commit is contained in:
Martin Diehl 2020-04-24 20:01:40 +02:00
commit 1610d5a5d2
36 changed files with 531 additions and 588 deletions

View File

@ -203,7 +203,6 @@ Post_OrientationConversion:
stage: postprocessing
script:
- OrientationConversion/test.py
- OrientationConversion/test2.py
except:
- master
- release

View File

@ -1 +1 @@
v2.0.3-2303-g2a6132b7
v2.0.3-2364-g62f7363a

View File

@ -33,7 +33,7 @@ for filename in options.filenames:
results = damask.Result(filename)
if not results.structured: continue
coords = damask.grid_filters.cell_coord0(results.grid,results.size,results.origin)
coords = damask.grid_filters.cell_coord0(results.grid,results.size,results.origin).reshape(-1,3,order='F')
N_digits = int(np.floor(np.log10(int(results.increments[-1][3:]))))+1
N_digits = 5 # hack to keep test intact

View File

@ -16,8 +16,8 @@ scriptID = ' '.join([scriptName,damask.version])
def volTetrahedron(coords):
"""
Return the volume of the tetrahedron with given vertices or sides.
Ifvertices are given they must be in a NumPy array with shape (4,3): the
If vertices are given they must be in a NumPy array with shape (4,3): the
position vectors of the 4 vertices in 3 dimensions; if the six sides are
given, they must be an array of length 6. If both are given, the sides
will be used in the calculation.
@ -62,19 +62,18 @@ def volTetrahedron(coords):
def volumeMismatch(size,F,nodes):
"""
Calculates the volume mismatch.
volume mismatch is defined as the difference between volume of reconstructed
volume mismatch is defined as the difference between volume of reconstructed
(compatible) cube and determinant of deformation gradient at Fourier point.
"""
coords = np.empty([8,3])
vMismatch = np.empty(grid[::-1])
volInitial = size.prod()/grid.prod()
vMismatch = np.empty(F.shape[:3])
#--------------------------------------------------------------------------------------------------
# calculate actual volume and volume resulting from deformation gradient
for k in range(grid[2]):
for k in range(grid[0]):
for j in range(grid[1]):
for i in range(grid[0]):
for i in range(grid[2]):
coords[0,0:3] = nodes[k, j, i ,0:3]
coords[1,0:3] = nodes[k ,j, i+1,0:3]
coords[2,0:3] = nodes[k ,j+1,i+1,0:3]
@ -91,47 +90,45 @@ def volumeMismatch(size,F,nodes):
+ abs(volTetrahedron([coords[6,0:3],coords[4,0:3],coords[1,0:3],coords[5,0:3]])) \
+ abs(volTetrahedron([coords[6,0:3],coords[4,0:3],coords[1,0:3],coords[0,0:3]]))) \
/np.linalg.det(F[k,j,i,0:3,0:3])
return vMismatch/volInitial
return vMismatch/(size.prod()/grid.prod())
def shapeMismatch(size,F,nodes,centres):
"""
Routine to calculate the shape mismatch.
shape mismatch is defined as difference between the vectors from the central point to
the corners of reconstructed (combatible) volume element and the vectors calculated by deforming
the initial volume element with the current deformation gradient.
"""
coordsInitial = np.empty([8,3])
sMismatch = np.empty(grid[::-1])
sMismatch = np.empty(F.shape[:3])
#--------------------------------------------------------------------------------------------------
# initial positions
coordsInitial[0,0:3] = [-size[0]/grid[0],-size[1]/grid[1],-size[2]/grid[2]]
coordsInitial[1,0:3] = [+size[0]/grid[0],-size[1]/grid[1],-size[2]/grid[2]]
coordsInitial[2,0:3] = [+size[0]/grid[0],+size[1]/grid[1],-size[2]/grid[2]]
coordsInitial[3,0:3] = [-size[0]/grid[0],+size[1]/grid[1],-size[2]/grid[2]]
coordsInitial[4,0:3] = [-size[0]/grid[0],-size[1]/grid[1],+size[2]/grid[2]]
coordsInitial[5,0:3] = [+size[0]/grid[0],-size[1]/grid[1],+size[2]/grid[2]]
coordsInitial[6,0:3] = [+size[0]/grid[0],+size[1]/grid[1],+size[2]/grid[2]]
coordsInitial[7,0:3] = [-size[0]/grid[0],+size[1]/grid[1],+size[2]/grid[2]]
coordsInitial = coordsInitial/2.0
delta = size/grid*.5
coordsInitial = np.vstack((delta * np.array((-1,-1,-1)),
delta * np.array((+1,-1,-1)),
delta * np.array((+1,+1,-1)),
delta * np.array((-1,+1,-1)),
delta * np.array((-1,-1,+1)),
delta * np.array((+1,-1,+1)),
delta * np.array((+1,+1,+1)),
delta * np.array((-1,+1,+1))))
#--------------------------------------------------------------------------------------------------
# compare deformed original and deformed positions to actual positions
for k in range(grid[2]):
for k in range(grid[0]):
for j in range(grid[1]):
for i in range(grid[0]):
for i in range(grid[2]):
sMismatch[k,j,i] = \
+ np.linalg.norm(nodes[k, j, i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[0,0:3]))\
+ np.linalg.norm(nodes[k, j, i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[1,0:3]))\
+ np.linalg.norm(nodes[k, j+1,i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[2,0:3]))\
+ np.linalg.norm(nodes[k+1,j, i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[1,0:3]))\
+ np.linalg.norm(nodes[k+1,j+1,i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[2,0:3]))\
+ np.linalg.norm(nodes[k, j+1,i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[3,0:3]))\
+ np.linalg.norm(nodes[k+1,j, i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[4,0:3]))\
+ np.linalg.norm(nodes[k, j, i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[4,0:3]))\
+ np.linalg.norm(nodes[k+1,j, i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[5,0:3]))\
+ np.linalg.norm(nodes[k+1,j+1,i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[6,0:3]))\
+ np.linalg.norm(nodes[k+1,j+1,i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[7,0:3]))
+ np.linalg.norm(nodes[k ,j+1,i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[7,0:3]))
return sMismatch
@ -174,24 +171,24 @@ if filenames == []: filenames = [None]
for name in filenames:
damask.util.report(scriptName,name)
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid,size,origin = damask.grid_filters.cell_coord0_gridSizeOrigin(table.get(options.pos))
F = table.get(options.defgrad).reshape(grid[2],grid[1],grid[0],3,3)
F = table.get(options.defgrad).reshape(tuple(grid)+(-1,),order='F').reshape(tuple(grid)+(3,3))
nodes = damask.grid_filters.node_coord(size,F)
if options.shape:
centers = damask.grid_filters.cell_coord(size,F)
shapeMismatch = shapeMismatch( size,table.get(options.defgrad).reshape(grid[2],grid[1],grid[0],3,3),nodes,centers)
shapeMismatch = shapeMismatch(size,F,nodes,centers)
table.add('shapeMismatch(({}))'.format(options.defgrad),
shapeMismatch.reshape(-1,1),
shapeMismatch.reshape(-1,1,order='F'),
scriptID+' '+' '.join(sys.argv[1:]))
if options.volume:
volumeMismatch = volumeMismatch(size,table.get(options.defgrad).reshape(grid[2],grid[1],grid[0],3,3),nodes)
volumeMismatch = volumeMismatch(size,F,nodes)
table.add('volMismatch(({}))'.format(options.defgrad),
volumeMismatch.reshape(-1,1),
volumeMismatch.reshape(-1,1,order='F'),
scriptID+' '+' '.join(sys.argv[1:]))
table.to_ASCII(sys.stdout if name is None else name)

View File

@ -49,9 +49,10 @@ for name in filenames:
for label in options.labels:
field = table.get(label)
shape = (3,) if np.prod(field.shape)//np.prod(grid) == 3 else (3,3) # vector or tensor
field = field.reshape(np.append(grid[::-1],shape))
field = field.reshape(tuple(grid)+(-1,),order='F').reshape(tuple(grid)+shape)
curl = damask.grid_filters.curl(size,field)
table.add('curlFFT({})'.format(label),
damask.grid_filters.curl(size[::-1],field).reshape(-1,np.prod(shape)),
curl.reshape(tuple(grid)+(-1,)).reshape(-1,np.prod(shape),order='F'),
scriptID+' '+' '.join(sys.argv[1:]))
table.to_ASCII(sys.stdout if name is None else name)

View File

@ -5,8 +5,6 @@ import sys
from io import StringIO
from optparse import OptionParser
import numpy as np
import damask
@ -51,23 +49,23 @@ for name in filenames:
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid,size,origin = damask.grid_filters.cell_coord0_gridSizeOrigin(table.get(options.pos))
F = table.get(options.f).reshape(np.append(grid[::-1],(3,3)))
F = table.get(options.f).reshape(tuple(grid)+(-1,),order='F').reshape(tuple(grid)+(3,3))
if options.nodal:
table = damask.Table(damask.grid_filters.node_coord0(grid[::-1],size[::-1]).reshape(-1,3),
table = damask.Table(damask.grid_filters.node_coord0(grid,size).reshape(-1,3,order='F'),
{'pos':(3,)})
table.add('avg({}).{}'.format(options.f,options.pos),
damask.grid_filters.node_displacement_avg(size[::-1],F).reshape(-1,3),
damask.grid_filters.node_displacement_avg(size,F).reshape(-1,3,order='F'),
scriptID+' '+' '.join(sys.argv[1:]))
table.add('fluct({}).{}'.format(options.f,options.pos),
damask.grid_filters.node_displacement_fluct(size[::-1],F).reshape(-1,3),
damask.grid_filters.node_displacement_fluct(size,F).reshape(-1,3,order='F'),
scriptID+' '+' '.join(sys.argv[1:]))
table.to_ASCII(sys.stdout if name is None else os.path.splitext(name)[0]+'_nodal.txt')
else:
table.add('avg({}).{}'.format(options.f,options.pos),
damask.grid_filters.cell_displacement_avg(size[::-1],F).reshape(-1,3),
damask.grid_filters.cell_displacement_avg(size,F).reshape(-1,3,order='F'),
scriptID+' '+' '.join(sys.argv[1:]))
table.add('fluct({}).{}'.format(options.f,options.pos),
damask.grid_filters.cell_displacement_fluct(size[::-1],F).reshape(-1,3),
damask.grid_filters.cell_displacement_fluct(size,F).reshape(-1,3,order='F'),
scriptID+' '+' '.join(sys.argv[1:]))
table.to_ASCII(sys.stdout if name is None else name)

View File

@ -49,9 +49,10 @@ for name in filenames:
for label in options.labels:
field = table.get(label)
shape = (3,) if np.prod(field.shape)//np.prod(grid) == 3 else (3,3) # vector or tensor
field = field.reshape(np.append(grid[::-1],shape))
field = field.reshape(tuple(grid)+(-1,),order='F').reshape(tuple(grid)+shape)
div = damask.grid_filters.divergence(size,field)
table.add('divFFT({})'.format(label),
damask.grid_filters.divergence(size[::-1],field).reshape(-1,np.prod(shape)//3),
div.reshape(tuple(grid)+(-1,)).reshape(-1,np.prod(shape)//3,order='F'),
scriptID+' '+' '.join(sys.argv[1:]))
table.to_ASCII(sys.stdout if name is None else name)

View File

@ -49,9 +49,10 @@ for name in filenames:
for label in options.labels:
field = table.get(label)
shape = (1,) if np.prod(field.shape)//np.prod(grid) == 1 else (3,) # scalar or vector
field = field.reshape(np.append(grid[::-1],shape))
field = field.reshape(tuple(grid)+(-1,),order='F')
grad = damask.grid_filters.gradient(size,field)
table.add('gradFFT({})'.format(label),
damask.grid_filters.gradient(size[::-1],field).reshape(-1,np.prod(shape)*3),
grad.reshape(tuple(grid)+(-1,)).reshape(-1,np.prod(shape)*3,order='F'),
scriptID+' '+' '.join(sys.argv[1:]))
table.to_ASCII(sys.stdout if name is None else name)

View File

@ -61,7 +61,7 @@ if any(shift != 0): prefix += 'shift{:+}{:+}{:+}_'.format(*shift)
for name in filenames:
damask.util.report(scriptName,name)
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
if (options.grid is None or options.size is None):
@ -87,11 +87,11 @@ for name in filenames:
origin = list(-(packing//2)) + [0])\
[::packing[0],::packing[1],::packing[2],:].reshape((packedGrid.prod(),-1),order = 'F')
table = damask.Table(averagedDown,table.shapes,table.comments)
coords = damask.grid_filters.cell_coord0(packedGrid,size,shift/packedGrid*size+origin)
table.set(options.pos, coords.reshape(-1,3))
table.set(options.pos, coords.reshape(-1,3,order='F'))
outname = os.path.join(os.path.dirname(name),prefix+os.path.basename(name))

View File

@ -59,13 +59,13 @@ for name in filenames:
packing = np.array(options.packing,'i')
outSize = grid*packing
data = table.data.values.reshape(tuple(grid)+(-1,))
blownUp = ndimage.interpolation.zoom(data,tuple(packing)+(1,),order=0,mode='nearest').reshape(outSize.prod(),-1)
data = table.data.values.reshape(tuple(grid)+(-1,),order='F')
blownUp = ndimage.interpolation.zoom(data,tuple(packing)+(1,),order=0,mode='nearest').reshape(outSize.prod(),-1,order='F')
table = damask.Table(blownUp,table.shapes,table.comments)
coords = damask.grid_filters.cell_coord0(outSize,size,origin)
table.set(options.pos,coords.reshape(-1,3))
table.set(options.pos,coords.reshape(-1,3,order='F'))
table.set('elem',np.arange(1,outSize.prod()+1))
outname = os.path.join(os.path.dirname(name),prefix+os.path.basename(name))

View File

@ -60,7 +60,7 @@ for name in filenames:
table.head_read()
# ------------------------------------------ process labels ---------------------------------------
# ------------------------------------------ process labels ---------------------------------------
errors = []
remarks = []
@ -80,7 +80,7 @@ for name in filenames:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header ---------------------------------------
randomSeed = int(os.urandom(4).hex(), 16) if options.randomSeed is None else options.randomSeed # random seed per file
@ -97,17 +97,17 @@ for name in filenames:
for col,dim in zip(columns,dims):
if options.unique:
s = set(map(tuple,table.data[:,col:col+dim])) # generate set of (unique) values
uniques = np.array(map(np.array,s)) # translate set to np.array
uniques = np.array(list(map(np.array,s))) # translate set to np.array
shuffler = dict(zip(s,np.random.permutation(len(s)))) # random permutation
table.data[:,col:col+dim] = uniques[np.array(map(lambda x: shuffler[tuple(x)],
table.data[:,col:col+dim]))] # fill table with mapped uniques
table.data[:,col:col+dim] = uniques[np.array(list(map(lambda x: shuffler[tuple(x)],
table.data[:,col:col+dim])))] # fill table with mapped uniques
else:
np.random.shuffle(table.data[:,col:col+dim]) # independently shuffle every row
# ------------------------------------------ output result -----------------------------------------
# ------------------------------------------ output result -----------------------------------------
table.data_writeArray()
# ------------------------------------------ output finalization -----------------------------------
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables

View File

@ -24,22 +24,22 @@ def findClosestSeed(seeds, weights, point):
def Laguerre_tessellation(grid, size, seeds, weights, origin = np.zeros(3), periodic = True, cpus = 2):
if periodic:
weights_p = np.tile(weights,27).flatten(order='F') # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
weights_p = np.tile(weights.squeeze(),27) # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
seeds_p = np.vstack((seeds -np.array([size[0],0.,0.]),seeds, seeds +np.array([size[0],0.,0.])))
seeds_p = np.vstack((seeds_p-np.array([0.,size[1],0.]),seeds_p,seeds_p+np.array([0.,size[1],0.])))
seeds_p = np.vstack((seeds_p-np.array([0.,0.,size[2]]),seeds_p,seeds_p+np.array([0.,0.,size[2]])))
coords = damask.grid_filters.cell_coord0(grid*3,size*3,-origin-size).reshape(-1,3,order='F')
coords = damask.grid_filters.cell_coord0(grid*3,size*3,-origin-size).reshape(-1,3)
else:
weights_p = weights.flatten()
weights_p = weights.squeeze()
seeds_p = seeds
coords = damask.grid_filters.cell_coord0(grid,size,-origin).reshape(-1,3,order='F')
coords = damask.grid_filters.cell_coord0(grid,size,-origin).reshape(-1,3)
if cpus > 1:
pool = multiprocessing.Pool(processes = cpus)
result = pool.map_async(partial(findClosestSeed,seeds_p,weights_p), [coord for coord in coords])
pool.close()
pool.join()
closest_seed = np.array(result.get())
closest_seed = np.array(result.get()).reshape(-1,3)
else:
closest_seed= np.array([findClosestSeed(seeds_p,weights_p,coord) for coord in coords])
@ -52,7 +52,7 @@ def Laguerre_tessellation(grid, size, seeds, weights, origin = np.zeros(3), peri
def Voronoi_tessellation(grid, size, seeds, origin = np.zeros(3), periodic = True):
coords = damask.grid_filters.cell_coord0(grid,size,-origin).reshape(-1,3,order='F')
coords = damask.grid_filters.cell_coord0(grid,size,-origin).reshape(-1,3)
KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds)
devNull,closest_seed = KDTree.query(coords)

View File

@ -45,7 +45,7 @@ options.blacklist = [int(i) for i in options.blacklist]
for name in filenames:
damask.util.report(scriptName,name)
geom = damask.Geom.from_file(StringIO(''.join(sys.stdin.read())) if name is None else name)
microstructure = geom.get_microstructure().reshape((-1,1),order='F')
@ -53,9 +53,9 @@ for name in filenames:
np.full(geom.grid.prod(),True,dtype=bool),
np.in1d(microstructure,options.blacklist,invert=True) if options.blacklist else \
np.full(geom.grid.prod(),True,dtype=bool))
seeds = damask.grid_filters.cell_coord0(geom.grid,geom.size).reshape(-1,3)
seeds = damask.grid_filters.cell_coord0(geom.grid,geom.size).reshape(-1,3,order='F')
comments = geom.comments \
+ [scriptID + ' ' + ' '.join(sys.argv[1:]),
'grid\ta {}\tb {}\tc {}'.format(*geom.grid),

View File

@ -128,7 +128,7 @@ for name in filenames:
if not options.selective:
coords = damask.grid_filters.cell_coord0(grid,size).reshape(-1,3)
coords = damask.grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F')
seeds = coords[np.random.choice(np.prod(grid), options.N, replace=False)] \
+ np.broadcast_to(size/grid,(options.N,3))*(np.random.rand(options.N,3)*.5-.25) # wobble without leaving grid
else:

View File

@ -322,11 +322,10 @@ class Geom:
if i != grid.prod():
raise TypeError('Invalid file: expected {} entries, found {}'.format(grid.prod(),i))
microstructure = microstructure.reshape(grid,order='F')
if not np.any(np.mod(microstructure.flatten(),1) != 0.0): # no float present
if not np.any(np.mod(microstructure,1) != 0.0): # no float present
microstructure = microstructure.astype('int')
return Geom(microstructure.reshape(grid),size,origin,homogenization,comments)
return Geom(microstructure.reshape(grid,order='F'),size,origin,homogenization,comments)
@staticmethod
@ -352,16 +351,15 @@ class Geom:
"""
if periodic:
weights_p = np.tile(weights,27).flatten(order='F') # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
weights_p = np.tile(weights,27) # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
seeds_p = np.vstack((seeds -np.array([size[0],0.,0.]),seeds, seeds +np.array([size[0],0.,0.])))
seeds_p = np.vstack((seeds_p-np.array([0.,size[1],0.]),seeds_p,seeds_p+np.array([0.,size[1],0.])))
seeds_p = np.vstack((seeds_p-np.array([0.,0.,size[2]]),seeds_p,seeds_p+np.array([0.,0.,size[2]])))
coords = grid_filters.cell_coord0(grid*3,size*3,-size).reshape(-1,3,order='F')
coords = grid_filters.cell_coord0(grid*3,size*3,-size).reshape(-1,3)
else:
weights_p = weights.flatten()
weights_p = weights
seeds_p = seeds
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F')
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3)
pool = multiprocessing.Pool(processes = int(Environment().options['DAMASK_NUM_THREADS']))
result = pool.map_async(partial(Geom._find_closest_seed,seeds_p,weights_p), [coord for coord in coords])
@ -396,7 +394,7 @@ class Geom:
perform a periodic tessellation. Defaults to True.
"""
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F')
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3)
KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds)
devNull,microstructure = KDTree.query(coords)

View File

@ -111,7 +111,7 @@ class Result:
select from 'set', 'add', and 'del'
what : str
attribute to change (must be from self.selection)
datasets : list of str or Boolean
datasets : list of str or bool
name of datasets as list, supports ? and * wildcards.
True is equivalent to [*], False is equivalent to []
@ -203,7 +203,7 @@ class Result:
----------
what : str
attribute to change (must be from self.selection)
datasets : list of str or Boolean
datasets : list of str or bool
name of datasets as list, supports ? and * wildcards.
True is equivalent to [*], False is equivalent to []
@ -219,7 +219,7 @@ class Result:
----------
what : str
attribute to change (must be from self.selection)
datasets : list of str or Boolean
datasets : list of str or bool
name of datasets as list, supports ? and * wildcards.
True is equivalent to [*], False is equivalent to []
@ -235,7 +235,7 @@ class Result:
----------
what : str
attribute to change (must be from self.selection)
datasets : list of str or Boolean
datasets : list of str or bool
name of datasets as list, supports ? and * wildcards.
True is equivalent to [*], False is equivalent to []
@ -262,10 +262,10 @@ class Result:
datasets : iterable or str
component : int
homogenization component to consider for constituent data
tagged : Boolean
tagged : bool
tag Table.column name with '#component'
defaults to False
split : Boolean
split : bool
split Table by increment and return dictionary of Tables
defaults to True
@ -326,7 +326,7 @@ class Result:
Parameters
----------
datasets : iterable or str or Boolean
datasets : iterable or str or bool
Examples
--------
@ -460,7 +460,7 @@ class Result:
def cell_coordinates(self):
"""Return initial coordinates of the cell centers."""
if self.structured:
return grid_filters.cell_coord0(self.grid,self.size,self.origin).reshape(-1,3)
return grid_filters.cell_coord0(self.grid,self.size,self.origin).reshape(-1,3,order='F')
else:
with h5py.File(self.fname,'r') as f:
return f['geometry/x_c'][()]

View File

@ -1,3 +1,17 @@
"""
Filters for operations on regular grids.
Notes
-----
The grids are defined as (x,y,z,...) where x is fastest and z is slowest.
This convention is consistent with the geom file format.
When converting to/from a plain list (e.g. storage in ASCII table),
the following operations are required for tensorial data:
D3 = D1.reshape(grid+(-1,),order='F').reshape(grid+(3,3))
D1 = D3.reshape(grid+(-1,)).reshape(-1,9,order='F')
"""
from scipy import spatial as _spatial
import numpy as _np
@ -7,8 +21,12 @@ def _ks(size,grid,first_order=False):
Parameters
----------
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size of the periodic field.
grid : numpy.ndarray of shape (3)
number of grid points.
first_order : bool, optional
correction for first order derivatives, defaults to False.
"""
k_sk = _np.where(_np.arange(grid[0])>grid[0]//2,_np.arange(grid[0])-grid[0],_np.arange(grid[0]))/size[0]
@ -19,8 +37,7 @@ def _ks(size,grid,first_order=False):
k_si = _np.arange(grid[2]//2+1)/size[2]
kk, kj, ki = _np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij')
return _np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3)
return _np.stack(_np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij'), axis=-1)
def curl(size,field):
@ -29,8 +46,10 @@ def curl(size,field):
Parameters
----------
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size of the periodic field.
field : numpy.ndarray of shape (:,:,:,3) or (:,:,:,3,3)
periodic field of which the curl is calculated.
"""
n = _np.prod(field.shape[3:])
@ -53,8 +72,10 @@ def divergence(size,field):
Parameters
----------
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size of the periodic field.
field : numpy.ndarray of shape (:,:,:,3) or (:,:,:,3,3)
periodic field of which the divergence is calculated.
"""
n = _np.prod(field.shape[3:])
@ -69,12 +90,14 @@ def divergence(size,field):
def gradient(size,field):
"""
Calculate gradient of a vector or scalar field in Fourier space.
Calculate gradient of a scalar or vector field in Fourier space.
Parameters
----------
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size of the periodic field.
field : numpy.ndarray of shape (:,:,:,1) or (:,:,:,3)
periodic field of which the gradient is calculated.
"""
n = _np.prod(field.shape[3:])
@ -93,9 +116,9 @@ def cell_coord0(grid,size,origin=_np.zeros(3)):
Parameters
----------
grid : numpy.ndarray
grid : numpy.ndarray of shape (3)
number of grid points.
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size of the periodic field.
origin : numpy.ndarray, optional
physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
@ -103,7 +126,11 @@ def cell_coord0(grid,size,origin=_np.zeros(3)):
"""
start = origin + size/grid*.5
end = origin + size - size/grid*.5
return _np.mgrid[start[0]:end[0]:grid[0]*1j,start[1]:end[1]:grid[1]*1j,start[2]:end[2]:grid[2]*1j].T
return _np.stack(_np.meshgrid(_np.linspace(start[0],end[0],grid[0]),
_np.linspace(start[1],end[1],grid[1]),
_np.linspace(start[2],end[2],grid[2]),indexing = 'ij'),
axis = -1)
def cell_displacement_fluct(size,F):
@ -112,7 +139,7 @@ def cell_displacement_fluct(size,F):
Parameters
----------
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size of the periodic field.
F : numpy.ndarray
deformation gradient field.
@ -139,14 +166,14 @@ def cell_displacement_avg(size,F):
Parameters
----------
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size of the periodic field.
F : numpy.ndarray
deformation gradient field.
"""
F_avg = _np.average(F,axis=(0,1,2))
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),cell_coord0(F.shape[:3][::-1],size))
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),cell_coord0(F.shape[:3],size))
def cell_displacement(size,F):
@ -155,7 +182,7 @@ def cell_displacement(size,F):
Parameters
----------
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size of the periodic field.
F : numpy.ndarray
deformation gradient field.
@ -170,25 +197,25 @@ def cell_coord(size,F,origin=_np.zeros(3)):
Parameters
----------
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size of the periodic field.
F : numpy.ndarray
deformation gradient field.
origin : numpy.ndarray, optional
origin : numpy.ndarray of shape (3), optional
physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
"""
return cell_coord0(F.shape[:3][::-1],size,origin) + cell_displacement(size,F)
return cell_coord0(F.shape[:3],size,origin) + cell_displacement(size,F)
def cell_coord0_gridSizeOrigin(coord0,ordered=True):
"""
Return grid 'DNA', i.e. grid, size, and origin from array of cell positions.
Return grid 'DNA', i.e. grid, size, and origin from 1D array of cell positions.
Parameters
----------
coord0 : numpy.ndarray
array of undeformed cell coordinates.
coord0 : numpy.ndarray of shape (:,3)
undeformed cell coordinates.
ordered : bool, optional
expect coord0 data to be ordered (x fast, z slow).
@ -210,15 +237,15 @@ def cell_coord0_gridSizeOrigin(coord0,ordered=True):
start = origin + delta*.5
end = origin - delta*.5 + size
atol = 1e-4*_np.max(size)
if not _np.allclose(coords[0],_np.linspace(start[0],end[0],grid[0]),atol=atol) and \
_np.allclose(coords[1],_np.linspace(start[1],end[1],grid[1]),atol=atol) and \
_np.allclose(coords[2],_np.linspace(start[2],end[2],grid[2]),atol=atol):
atol = _np.max(size)
if not (_np.allclose(coords[0],_np.linspace(start[0],end[0],grid[0]),atol=atol) and \
_np.allclose(coords[1],_np.linspace(start[1],end[1],grid[1]),atol=atol) and \
_np.allclose(coords[2],_np.linspace(start[2],end[2],grid[2]),atol=atol)):
raise ValueError('Regular grid spacing violated.')
if ordered and not _np.allclose(coord0.reshape(tuple(grid[::-1])+(3,)),cell_coord0(grid,size,origin),atol=atol):
raise ValueError('Input data is not a regular grid.')
if ordered and not _np.allclose(coord0.reshape(tuple(grid)+(3,),order='F'),cell_coord0(grid,size,origin),atol=atol):
raise ValueError('Input data is not ordered (x fast, z slow).')
return (grid,size,origin)
@ -242,17 +269,18 @@ def node_coord0(grid,size,origin=_np.zeros(3)):
Parameters
----------
grid : numpy.ndarray
grid : numpy.ndarray of shape (3)
number of grid points.
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size of the periodic field.
origin : numpy.ndarray, optional
origin : numpy.ndarray of shape (3), optional
physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
"""
return _np.mgrid[origin[0]:size[0]+origin[0]:(grid[0]+1)*1j,
origin[1]:size[1]+origin[1]:(grid[1]+1)*1j,
origin[2]:size[2]+origin[2]:(grid[2]+1)*1j].T
return _np.stack(_np.meshgrid(_np.linspace(origin[0],size[0]+origin[0],grid[0]+1),
_np.linspace(origin[1],size[1]+origin[1],grid[1]+1),
_np.linspace(origin[2],size[2]+origin[2],grid[2]+1),indexing = 'ij'),
axis = -1)
def node_displacement_fluct(size,F):
@ -261,7 +289,7 @@ def node_displacement_fluct(size,F):
Parameters
----------
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size of the periodic field.
F : numpy.ndarray
deformation gradient field.
@ -276,14 +304,14 @@ def node_displacement_avg(size,F):
Parameters
----------
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size of the periodic field.
F : numpy.ndarray
deformation gradient field.
"""
F_avg = _np.average(F,axis=(0,1,2))
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),node_coord0(F.shape[:3][::-1],size))
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),node_coord0(F.shape[:3],size))
def node_displacement(size,F):
@ -292,7 +320,7 @@ def node_displacement(size,F):
Parameters
----------
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size of the periodic field.
F : numpy.ndarray
deformation gradient field.
@ -307,15 +335,15 @@ def node_coord(size,F,origin=_np.zeros(3)):
Parameters
----------
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size of the periodic field.
F : numpy.ndarray
deformation gradient field.
origin : numpy.ndarray, optional
origin : numpy.ndarray of shape (3), optional
physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
"""
return node_coord0(F.shape[:3][::-1],size,origin) + node_displacement(size,F)
return node_coord0(F.shape[:3],size,origin) + node_displacement(size,F)
def cell_2_node(cell_data):
@ -336,14 +364,14 @@ def node_2_cell(node_data):
return c[:-1,:-1,:-1]
def node_coord0_gridSizeOrigin(coord0,ordered=False):
def node_coord0_gridSizeOrigin(coord0,ordered=True):
"""
Return grid 'DNA', i.e. grid, size, and origin from array of nodal positions.
Return grid 'DNA', i.e. grid, size, and origin from 1D array of nodal positions.
Parameters
----------
coord0 : numpy.ndarray
array of undeformed nodal coordinates.
coord0 : numpy.ndarray of shape (:,3)
undeformed nodal coordinates.
ordered : bool, optional
expect coord0 data to be ordered (x fast, z slow).
@ -359,13 +387,13 @@ def node_coord0_gridSizeOrigin(coord0,ordered=False):
raise ValueError('Data count {} does not match grid {}.'.format(len(coord0),grid))
atol = _np.max(size)
if not _np.allclose(coords[0],_np.linspace(mincorner[0],maxcorner[0],grid[0]+1),atol=atol) and \
_np.allclose(coords[1],_np.linspace(mincorner[1],maxcorner[1],grid[1]+1),atol=atol) and \
_np.allclose(coords[2],_np.linspace(mincorner[2],maxcorner[2],grid[2]+1),atol=atol):
if not (_np.allclose(coords[0],_np.linspace(mincorner[0],maxcorner[0],grid[0]+1),atol=atol) and \
_np.allclose(coords[1],_np.linspace(mincorner[1],maxcorner[1],grid[1]+1),atol=atol) and \
_np.allclose(coords[2],_np.linspace(mincorner[2],maxcorner[2],grid[2]+1),atol=atol)):
raise ValueError('Regular grid spacing violated.')
if ordered and not _np.allclose(coord0.reshape(tuple((grid+1)[::-1])+(3,)),node_coord0(grid,size,origin),atol=atol):
raise ValueError('Input data is not a regular grid.')
if ordered and not _np.allclose(coord0.reshape(tuple(grid+1)+(3,),order='F'),node_coord0(grid,size,origin),atol=atol):
raise ValueError('Input data is not ordered (x fast, z slow).')
return (grid,size,origin)
@ -376,15 +404,15 @@ def regrid(size,F,new_grid):
Parameters
----------
size : numpy.ndarray
size : numpy.ndarray of shape (3)
physical size
F : numpy.ndarray
F : numpy.ndarray of shape (:,:,:,3,3)
deformation gradient field
new_grid : numpy.ndarray
new_grid : numpy.ndarray of shape (3)
new grid for undeformed coordinates
"""
c = cell_coord0(F.shape[:3][::-1],size) \
c = cell_coord0(F.shape[:3],size) \
+ cell_displacement_avg(size,F) \
+ cell_displacement_fluct(size,F)

View File

@ -4,18 +4,18 @@ import numpy as np
from damask import grid_filters
class TestGridFilters:
def test_cell_coord0(self):
size = np.random.random(3)
grid = np.random.randint(8,32,(3))
coord = grid_filters.cell_coord0(grid,size)
assert np.allclose(coord[0,0,0],size/grid*.5) and coord.shape == tuple(grid[::-1]) + (3,)
assert np.allclose(coord[0,0,0],size/grid*.5) and coord.shape == tuple(grid) + (3,)
def test_node_coord0(self):
size = np.random.random(3)
grid = np.random.randint(8,32,(3))
coord = grid_filters.node_coord0(grid,size)
assert np.allclose(coord[-1,-1,-1],size) and coord.shape == tuple(grid[::-1]+1) + (3,)
assert np.allclose(coord[-1,-1,-1],size) and coord.shape == tuple(grid+1) + (3,)
def test_coord0(self):
size = np.random.random(3)
@ -31,7 +31,7 @@ class TestGridFilters:
size = np.random.random(3)
origin = np.random.random(3)
coord0 = eval('grid_filters.{}_coord0(grid,size,origin)'.format(mode)) # noqa
_grid,_size,_origin = eval('grid_filters.{}_coord0_gridSizeOrigin(coord0.reshape(-1,3))'.format(mode))
_grid,_size,_origin = eval('grid_filters.{}_coord0_gridSizeOrigin(coord0.reshape(-1,3,order="F"))'.format(mode))
assert np.allclose(grid,_grid) and np.allclose(size,_size) and np.allclose(origin,_origin)
def test_displacement_fluct_equivalence(self):
@ -57,9 +57,9 @@ class TestGridFilters:
shifted = eval('grid_filters.{}_coord0(grid,size,origin)'.format(mode))
unshifted = eval('grid_filters.{}_coord0(grid,size)'.format(mode))
if mode == 'cell':
assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(grid[::-1]) +(3,)))
assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(grid) +(3,)))
elif mode == 'node':
assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(grid[::-1]+1)+(3,)))
assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(grid+1)+(3,)))
@pytest.mark.parametrize('function',[grid_filters.cell_displacement_avg,
grid_filters.node_displacement_avg])
@ -80,8 +80,43 @@ class TestGridFilters:
F = np.broadcast_to(np.random.random((3,3)), tuple(grid)+(3,3))
assert np.allclose(function(size,F),0.0)
@pytest.mark.parametrize('function',[grid_filters.coord0_check,
grid_filters.node_coord0_gridSizeOrigin,
grid_filters.cell_coord0_gridSizeOrigin])
def test_invalid_coordinates(self,function):
invalid_coordinates = np.random.random((np.random.randint(12,52),3))
with pytest.raises(ValueError):
function(invalid_coordinates)
@pytest.mark.parametrize('function',[grid_filters.node_coord0_gridSizeOrigin,
grid_filters.cell_coord0_gridSizeOrigin])
def test_uneven_spaced_coordinates(self,function):
start = np.random.random(3)
end = np.random.random(3)*10. + start
grid = np.random.randint(8,32,(3))
uneven = np.stack(np.meshgrid(np.logspace(start[0],end[0],grid[0]),
np.logspace(start[1],end[1],grid[1]),
np.logspace(start[2],end[2],grid[2]),indexing = 'ij'),
axis = -1).reshape((grid.prod(),3),order='F')
with pytest.raises(ValueError):
function(uneven)
@pytest.mark.parametrize('mode',[True,False])
@pytest.mark.parametrize('function',[grid_filters.node_coord0_gridSizeOrigin,
grid_filters.cell_coord0_gridSizeOrigin])
def test_unordered_coordinates(self,function,mode):
origin = np.random.random(3)
size = np.random.random(3)*10.+origin
grid = np.random.randint(8,32,(3))
unordered = grid_filters.node_coord0(grid,size,origin).reshape(-1,3)
if mode:
with pytest.raises(ValueError):
function(unordered,mode)
else:
function(unordered,mode)
def test_regrid(self):
size = np.random.random(3)
grid = np.random.randint(8,32,(3))
F = np.broadcast_to(np.eye(3), tuple(grid[::-1])+(3,3))
F = np.broadcast_to(np.eye(3), tuple(grid)+(3,3))
assert all(grid_filters.regrid(size,F,grid) == np.arange(grid.prod()))

View File

@ -327,7 +327,7 @@ module constitutive
constitutive_initialFi, &
constitutive_SandItsTangents, &
constitutive_collectDotState, &
constitutive_collectDeltaState, &
constitutive_deltaState, &
constitutive_results
contains
@ -709,12 +709,14 @@ end subroutine constitutive_hooke_SandItsTangents
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
subroutine constitutive_collectDotState(S, FArray, Fi, FpArray, subdt, ipc, ip, el)
function constitutive_collectDotState(S, FArray, Fi, FpArray, subdt, ipc, ip, el,phase,of) result(broken)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
el, & !< element
phase, &
of
real(pReal), intent(in) :: &
subdt !< timestep
real(pReal), intent(in), dimension(3,3,homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: &
@ -730,16 +732,16 @@ subroutine constitutive_collectDotState(S, FArray, Fi, FpArray, subdt, ipc, ip,
ho, & !< homogenization
tme, & !< thermal member position
i, & !< counter in source loop
instance, of
instance
logical :: broken
ho = material_homogenizationAt(el)
tme = thermalMapping(ho)%p(ip,el)
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
instance = phase_plasticityInstance(phase)
Mp = matmul(matmul(transpose(Fi),Fi),S)
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
plasticityType: select case (phase_plasticity(phase))
case (PLASTICITY_ISOTROPIC_ID) plasticityType
call plastic_isotropic_dotState (Mp,instance,of)
@ -760,10 +762,11 @@ subroutine constitutive_collectDotState(S, FArray, Fi, FpArray, subdt, ipc, ip,
call plastic_nonlocal_dotState (Mp,FArray,FpArray,temperature(ho)%p(tme),subdt, &
instance,of,ip,el)
end select plasticityType
broken = any(IEEE_is_NaN(plasticState(phase)%dotState(:,of)))
SourceLoop: do i = 1, phase_Nsources(material_phaseAt(ipc,el))
SourceLoop: do i = 1, phase_Nsources(phase)
sourceType: select case (phase_source(i,material_phaseAt(ipc,el)))
sourceType: select case (phase_source(i,phase))
case (SOURCE_damage_anisoBrittle_ID) sourceType
call source_damage_anisoBrittle_dotState (S, ipc, ip, el) !< correct stress?
@ -775,25 +778,29 @@ subroutine constitutive_collectDotState(S, FArray, Fi, FpArray, subdt, ipc, ip,
call source_damage_anisoDuctile_dotState ( ipc, ip, el)
case (SOURCE_thermal_externalheat_ID) sourceType
call source_thermal_externalheat_dotState(material_phaseAt(ipc,el),of)
call source_thermal_externalheat_dotState(phase,of)
end select sourceType
broken = broken .or. any(IEEE_is_NaN(sourceState(phase)%p(i)%dotState(:,of)))
enddo SourceLoop
end subroutine constitutive_collectDotState
end function constitutive_collectDotState
!--------------------------------------------------------------------------------------------------
!> @brief for constitutive models having an instantaneous change of state
!> will return false if delta state is not needed/supported by the constitutive model
!--------------------------------------------------------------------------------------------------
subroutine constitutive_collectDeltaState(S, Fe, Fi, ipc, ip, el)
function constitutive_deltaState(S, Fe, Fi, ipc, ip, el, phase, of) result(broken)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
el, & !< element
phase, &
of
real(pReal), intent(in), dimension(3,3) :: &
S, & !< 2nd Piola Kirchhoff stress
Fe, & !< elastic deformation gradient
@ -802,35 +809,62 @@ subroutine constitutive_collectDeltaState(S, Fe, Fi, ipc, ip, el)
Mp
integer :: &
i, &
instance, of
instance, &
myOffset, &
mySize
logical :: &
broken
Mp = matmul(matmul(transpose(Fi),Fi),S)
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
instance = phase_plasticityInstance(phase)
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
plasticityType: select case (phase_plasticity(phase))
case (PLASTICITY_KINEHARDENING_ID) plasticityType
call plastic_kinehardening_deltaState(Mp,instance,of)
broken = any(IEEE_is_NaN(plasticState(phase)%deltaState(:,of)))
case (PLASTICITY_NONLOCAL_ID) plasticityType
call plastic_nonlocal_deltaState(Mp,instance,of,ip,el)
broken = any(IEEE_is_NaN(plasticState(phase)%deltaState(:,of)))
case default
broken = .false.
end select plasticityType
sourceLoop: do i = 1, phase_Nsources(material_phaseAt(ipc,el))
if(.not. broken) then
select case(phase_plasticity(phase))
case (PLASTICITY_NONLOCAL_ID,PLASTICITY_KINEHARDENING_ID)
sourceType: select case (phase_source(i,material_phaseAt(ipc,el)))
myOffset = plasticState(phase)%offsetDeltaState
mySize = plasticState(phase)%sizeDeltaState
plasticState(phase)%state(myOffset + 1:myOffset + mySize,of) = &
plasticState(phase)%state(myOffset + 1:myOffset + mySize,of) + plasticState(phase)%deltaState(1:mySize,of)
end select
endif
sourceLoop: do i = 1, phase_Nsources(phase)
sourceType: select case (phase_source(i,phase))
case (SOURCE_damage_isoBrittle_ID) sourceType
call source_damage_isoBrittle_deltaState (constitutive_homogenizedC(ipc,ip,el), Fe, &
ipc, ip, el)
broken = broken .or. any(IEEE_is_NaN(sourceState(phase)%p(i)%deltaState(:,of)))
if(.not. broken) then
myOffset = sourceState(phase)%p(i)%offsetDeltaState
mySize = sourceState(phase)%p(i)%sizeDeltaState
sourceState(phase)%p(i)%state(myOffset + 1: myOffset + mySize,of) = &
sourceState(phase)%p(i)%state(myOffset + 1: myOffset + mySize,of) + sourceState(phase)%p(i)%deltaState(1:mySize,of)
endif
end select sourceType
enddo SourceLoop
end subroutine constitutive_collectDeltaState
end function constitutive_deltaState
!--------------------------------------------------------------------------------------------------

View File

@ -209,7 +209,7 @@ module subroutine plastic_disloUCLA_init
sizeDotState = size(['rho_mob ','rho_dip ','gamma_sl']) * prm%sum_N_sl
sizeState = sizeDotState
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,0)
call material_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,0)
!--------------------------------------------------------------------------------------------------
! state aliases and initialization

View File

@ -399,7 +399,7 @@ module subroutine plastic_dislotwin_init
+ size(['f_tr']) * prm%sum_N_tr
sizeState = sizeDotState
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,0)
call material_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,0)
!--------------------------------------------------------------------------------------------------
! locally defined state aliases and initialization of state0 and atol

View File

@ -117,7 +117,7 @@ module subroutine plastic_isotropic_init
sizeDotState = size(['xi ','accumulated_shear'])
sizeState = sizeDotState
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,0)
call material_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,0)
!--------------------------------------------------------------------------------------------------
! state aliases and initialization

View File

@ -164,7 +164,7 @@ module subroutine plastic_kinehardening_init
sizeDeltaState = size(['sense ', 'chi0 ', 'gamma0' ]) * prm%sum_N_sl
sizeState = sizeDotState + sizeDeltaState
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,sizeDeltaState)
call material_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,sizeDeltaState)
!--------------------------------------------------------------------------------------------------
! state aliases and initialization

View File

@ -29,7 +29,7 @@ module subroutine plastic_none_init
if (phase_plasticity(p) /= PLASTICITY_NONE_ID) cycle
NipcMyPhase = count(material_phaseAt == p) * discretization_nIP
call material_allocatePlasticState(p,NipcMyPhase,0,0,0)
call material_allocateState(plasticState(p),NipcMyPhase,0,0,0)
enddo

View File

@ -320,6 +320,7 @@ module subroutine plastic_nonlocal_init
prm%fEdgeMultiplication = config%getFloat('edgemultiplication')
prm%shortRangeStressCorrection = config%keyExists('/shortrangestresscorrection/')
!--------------------------------------------------------------------------------------------------
! sanity checks
if (any(prm%burgers < 0.0_pReal)) extmsg = trim(extmsg)//' burgers'
@ -384,9 +385,9 @@ module subroutine plastic_nonlocal_init
'maxDipoleHeightEdge ','maxDipoleHeightScrew' ]) * prm%sum_N_sl !< other dependent state variables that are not updated by microstructure
sizeDeltaState = sizeDotState
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,sizeDeltaState)
call material_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,sizeDeltaState)
plasticState(p)%nonlocal = .true.
plasticState(p)%nonlocal = config%KeyExists('/nonlocal/')
plasticState(p)%offsetDeltaState = 0 ! ToDo: state structure does not follow convention
st0%rho => plasticState(p)%state0 (0*prm%sum_N_sl+1:10*prm%sum_N_sl,:)

View File

@ -213,7 +213,7 @@ module subroutine plastic_phenopowerlaw_init
+ size(['xi_tw ','gamma_tw']) * prm%sum_N_tw
sizeState = sizeDotState
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,0)
call material_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,0)
!--------------------------------------------------------------------------------------------------
! state aliases and initialization

View File

@ -15,7 +15,6 @@ module crystallite
use DAMASK_interface
use config
use debug
use numerics
use rotations
use math
use FEsolving
@ -70,9 +69,7 @@ module crystallite
logical, dimension(:,:,:), allocatable, public :: &
crystallite_requested !< used by upper level (homogenization) to request crystallite calculation
logical, dimension(:,:,:), allocatable :: &
crystallite_converged, & !< convergence flag
crystallite_todo, & !< flag to indicate need for further computation
crystallite_localPlasticity !< indicates this grain to have purely local constitutive law
crystallite_converged !< convergence flag
type :: tOutput !< new requested output (per phase)
character(len=pStringLen), allocatable, dimension(:) :: &
@ -84,7 +81,8 @@ module crystallite
integer :: &
iJacoLpresiduum, & !< frequency of Jacobian update of residuum in Lp
nState, & !< state loop limit
nStress !< stress loop limit
nStress, & !< stress loop limit
integrator !< integration scheme (ToDo: better use a string)
real(pReal) :: &
subStepMinCryst, & !< minimum (relative) size of sub-step allowed during cutback
subStepSizeCryst, & !< size of first substep when cutback
@ -98,7 +96,7 @@ module crystallite
type(tNumerics) :: num ! numerics parameters. Better name?
procedure(), pointer :: integrateState
procedure(integrateStateFPI), pointer :: integrateState
public :: &
crystallite_init, &
@ -159,9 +157,7 @@ subroutine crystallite_init
allocate(crystallite_orientation(cMax,iMax,eMax))
allocate(crystallite_localPlasticity(cMax,iMax,eMax), source=.true.)
allocate(crystallite_requested(cMax,iMax,eMax), source=.false.)
allocate(crystallite_todo(cMax,iMax,eMax), source=.false.)
allocate(crystallite_converged(cMax,iMax,eMax), source=.true.)
num%subStepMinCryst = config_numerics%getFloat('substepmincryst', defaultVal=1.0e-3_pReal)
@ -177,6 +173,8 @@ subroutine crystallite_init
num%iJacoLpresiduum = config_numerics%getInt ('ijacolpresiduum', defaultVal=1)
num%integrator = config_numerics%getInt ('integrator', defaultVal=1)
num%nState = config_numerics%getInt ('nstate', defaultVal=20)
num%nStress = config_numerics%getInt ('nstress', defaultVal=40)
@ -193,10 +191,14 @@ subroutine crystallite_init
if(num%iJacoLpresiduum < 1) call IO_error(301,ext_msg='iJacoLpresiduum')
if(num%integrator < 1 .or. num%integrator > 5) &
call IO_error(301,ext_msg='integrator')
if(num%nState < 1) call IO_error(301,ext_msg='nState')
if(num%nStress< 1) call IO_error(301,ext_msg='nStress')
select case(numerics_integrator)
select case(num%integrator)
case(1)
integrateState => integrateStateFPI
case(2)
@ -234,7 +236,6 @@ subroutine crystallite_init
/ math_det33(crystallite_Fp0(1:3,1:3,c,i,e))**(1.0_pReal/3.0_pReal)
crystallite_Fi0(1:3,1:3,c,i,e) = constitutive_initialFi(c,i,e)
crystallite_F0(1:3,1:3,c,i,e) = math_I3
crystallite_localPlasticity(c,i,e) = phase_localPlasticity(material_phaseAt(c,e))
crystallite_Fe(1:3,1:3,c,i,e) = math_inv33(matmul(crystallite_Fi0(1:3,1:3,c,i,e), &
crystallite_Fp0(1:3,1:3,c,i,e))) ! assuming that euler angles are given in internal strain free configuration
crystallite_Fp(1:3,1:3,c,i,e) = crystallite_Fp0(1:3,1:3,c,i,e)
@ -244,7 +245,7 @@ subroutine crystallite_init
enddo
!$OMP END PARALLEL DO
if(any(.not. crystallite_localPlasticity) .and. .not. usePingPong) call IO_error(601) ! exit if nonlocal but no ping-pong ToDo: Why not check earlier? or in nonlocal?
if(any(plasticState%nonlocal) .and. .not. usePingPong) call IO_error(601) ! exit if nonlocal but no ping-pong ToDo: Why not check earlier? or in nonlocal?
crystallite_partionedFp0 = crystallite_Fp0
crystallite_partionedFi0 = crystallite_Fi0
@ -271,9 +272,8 @@ subroutine crystallite_init
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0) then
write(6,'(a42,1x,i10)') ' # of elements: ', eMax
write(6,'(a42,1x,i10)') 'max # of integration points/element: ', iMax
write(6,'(a42,1x,i10)') ' # of integration points/element: ', iMax
write(6,'(a42,1x,i10)') 'max # of constituents/integration point: ', cMax
write(6,'(a42,1x,i10)') ' # of nonlocal constituents: ',count(.not. crystallite_localPlasticity)
flush(6)
endif
@ -301,6 +301,7 @@ function crystallite_stress(dummyArgumentToPreventInternalCompilerErrorWithGCC)
e, & !< counter in element loop
startIP, endIP, &
s
logical, dimension(homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: todo !ToDo: need to set some values to false for different Ngrains
#ifdef DEBUG
if (iand(debug_level(debug_crystallite),debug_levelSelective) /= 0 &
@ -344,7 +345,7 @@ function crystallite_stress(dummyArgumentToPreventInternalCompilerErrorWithGCC)
crystallite_subF0(1:3,1:3,c,i,e) = crystallite_partionedF0(1:3,1:3,c,i,e)
crystallite_subFrac(c,i,e) = 0.0_pReal
crystallite_subStep(c,i,e) = 1.0_pReal/num%subStepSizeCryst
crystallite_todo(c,i,e) = .true.
todo(c,i,e) = .true.
crystallite_converged(c,i,e) = .false. ! pretend failed step of 1/subStepSizeCryst
endif homogenizationRequestsCalculation
enddo; enddo
@ -361,7 +362,7 @@ function crystallite_stress(dummyArgumentToPreventInternalCompilerErrorWithGCC)
endif singleRun
NiterationCrystallite = 0
cutbackLooping: do while (any(crystallite_todo(:,startIP:endIP,FEsolving_execELem(1):FEsolving_execElem(2))))
cutbackLooping: do while (any(todo(:,startIP:endIP,FEsolving_execELem(1):FEsolving_execElem(2))))
NiterationCrystallite = NiterationCrystallite + 1
#ifdef DEBUG
@ -380,8 +381,8 @@ function crystallite_stress(dummyArgumentToPreventInternalCompilerErrorWithGCC)
crystallite_subStep(c,i,e) = min(1.0_pReal - crystallite_subFrac(c,i,e), &
num%stepIncreaseCryst * crystallite_subStep(c,i,e))
crystallite_todo(c,i,e) = crystallite_subStep(c,i,e) > 0.0_pReal ! still time left to integrate on?
if (crystallite_todo(c,i,e)) then
todo(c,i,e) = crystallite_subStep(c,i,e) > 0.0_pReal ! still time left to integrate on?
if (todo(c,i,e)) then
crystallite_subF0 (1:3,1:3,c,i,e) = crystallite_subF(1:3,1:3,c,i,e)
crystallite_subLp0(1:3,1:3,c,i,e) = crystallite_Lp (1:3,1:3,c,i,e)
crystallite_subLi0(1:3,1:3,c,i,e) = crystallite_Li (1:3,1:3,c,i,e)
@ -415,12 +416,12 @@ function crystallite_stress(dummyArgumentToPreventInternalCompilerErrorWithGCC)
enddo
! cant restore dotState here, since not yet calculated in first cutback after initialization
crystallite_todo(c,i,e) = crystallite_subStep(c,i,e) > num%subStepMinCryst ! still on track or already done (beyond repair)
todo(c,i,e) = crystallite_subStep(c,i,e) > num%subStepMinCryst ! still on track or already done (beyond repair)
endif
!--------------------------------------------------------------------------------------------------
! prepare for integration
if (crystallite_todo(c,i,e)) then
if (todo(c,i,e)) then
crystallite_subF(1:3,1:3,c,i,e) = crystallite_subF0(1:3,1:3,c,i,e) &
+ crystallite_subStep(c,i,e) *( crystallite_partionedF (1:3,1:3,c,i,e) &
-crystallite_partionedF0(1:3,1:3,c,i,e))
@ -438,9 +439,9 @@ function crystallite_stress(dummyArgumentToPreventInternalCompilerErrorWithGCC)
!--------------------------------------------------------------------------------------------------
! integrate --- requires fully defined state array (basic + dependent state)
if (any(crystallite_todo)) call integrateState ! TODO: unroll into proper elementloop to avoid N^2 for single point evaluation
if (any(todo)) call integrateState(todo) ! TODO: unroll into proper elementloop to avoid N^2 for single point evaluation
where(.not. crystallite_converged .and. crystallite_subStep > num%subStepMinCryst) & ! do not try non-converged but fully cutbacked any further
crystallite_todo = .true. ! TODO: again unroll this into proper elementloop to avoid N^2 for single point evaluation
todo = .true. ! TODO: again unroll this into proper elementloop to avoid N^2 for single point evaluation
enddo cutbackLooping
@ -610,14 +611,16 @@ subroutine crystallite_orientations
enddo; enddo; enddo
!$OMP END PARALLEL DO
nonlocalPresent: if (any(plasticState%nonLocal)) then
nonlocalPresent: if (any(plasticState%nonlocal)) then
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
if (plasticState(material_phaseAt(1,e))%nonLocal) &
if (plasticState(material_phaseAt(1,e))%nonlocal) then
do i = FEsolving_execIP(1),FEsolving_execIP(2)
call plastic_nonlocal_updateCompatibility(crystallite_orientation, &
phase_plasticityInstance(material_phaseAt(i,e)),i,e)
enddo; enddo
enddo
endif
enddo
!$OMP END PARALLEL DO
endif nonlocalPresent
@ -777,7 +780,7 @@ end subroutine crystallite_results
!> @brief calculation of stress (P) with time integration based on a residuum in Lp and
!> intermediate acceleration of the Newton-Raphson correction
!--------------------------------------------------------------------------------------------------
logical function integrateStress(ipc,ip,el,timeFraction)
function integrateStress(ipc,ip,el,timeFraction) result(broken)
integer, intent(in):: el, & ! element index
ip, & ! integration point index
@ -834,9 +837,9 @@ logical function integrateStress(ipc,ip,el,timeFraction)
p, &
jacoCounterLp, &
jacoCounterLi ! counters to check for Jacobian update
logical :: error
logical :: error,broken
integrateStress = .false.
broken = .true.
if (present(timeFraction)) then
dt = crystallite_subdt(ipc,ip,el) * timeFraction
@ -847,6 +850,9 @@ logical function integrateStress(ipc,ip,el,timeFraction)
F = crystallite_subF(1:3,1:3,ipc,ip,el)
endif
call constitutive_dependentState(crystallite_partionedF(1:3,1:3,ipc,ip,el), &
crystallite_Fp(1:3,1:3,ipc,ip,el),ipc,ip,el)
Lpguess = crystallite_Lp(1:3,1:3,ipc,ip,el) ! take as first guess
Liguess = crystallite_Li(1:3,1:3,ipc,ip,el) ! take as first guess
@ -977,7 +983,6 @@ logical function integrateStress(ipc,ip,el,timeFraction)
call math_invert33(Fp_new,devNull,error,invFp_new)
if (error) return ! error
integrateStress = .true.
crystallite_P (1:3,1:3,ipc,ip,el) = matmul(matmul(F,invFp_new),matmul(S,transpose(invFp_new)))
crystallite_S (1:3,1:3,ipc,ip,el) = S
crystallite_Lp (1:3,1:3,ipc,ip,el) = Lpguess
@ -985,6 +990,7 @@ logical function integrateStress(ipc,ip,el,timeFraction)
crystallite_Fp (1:3,1:3,ipc,ip,el) = Fp_new / math_det33(Fp_new)**(1.0_pReal/3.0_pReal) ! regularize
crystallite_Fi (1:3,1:3,ipc,ip,el) = Fi_new
crystallite_Fe (1:3,1:3,ipc,ip,el) = matmul(matmul(F,invFp_new),invFi_new)
broken = .false.
end function integrateStress
@ -993,8 +999,9 @@ end function integrateStress
!> @brief integrate stress, state with adaptive 1st order explicit Euler method
!> using Fixed Point Iteration to adapt the stepsize
!--------------------------------------------------------------------------------------------------
subroutine integrateStateFPI
subroutine integrateStateFPI(todo)
logical, dimension(:,:,:), intent(in) :: todo
integer :: &
NiterationState, & !< number of iterations in state loop
e, & !< element index in element loop
@ -1003,118 +1010,107 @@ subroutine integrateStateFPI
p, &
c, &
s, &
sizeDotState
size_pl
integer, dimension(maxval(phase_Nsources)) :: &
size_so
real(pReal) :: &
zeta
real(pReal), dimension(max(constitutive_plasticity_maxSizeDotState,constitutive_source_maxSizeDotState)) :: &
r ! state residuum
real(pReal), dimension(:), allocatable :: plastic_dotState_p1, plastic_dotState_p2
real(pReal), dimension(constitutive_plasticity_maxSizeDotState,2) :: &
plastic_dotState
real(pReal), dimension(constitutive_source_maxSizeDotState,2,maxval(phase_Nsources)) :: source_dotState
logical :: &
nonlocalBroken
nonlocalBroken, broken
nonlocalBroken = .false.
!$OMP PARALLEL DO PRIVATE(sizeDotState,r,zeta,p,c,plastic_dotState_p1, plastic_dotState_p2,source_dotState)
!$OMP PARALLEL DO PRIVATE(size_pl,size_so,r,zeta,p,c,plastic_dotState,source_dotState,broken)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if(crystallite_todo(g,i,e) .and. (.not. nonlocalBroken .or. crystallite_localPlasticity(g,i,e)) ) then
p = material_phaseAt(g,e)
if(todo(g,i,e) .and. .not. (nonlocalBroken .and. plasticState(p)%nonlocal)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
c = material_phaseMemberAt(g,i,e)
call constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e)
crystallite_todo(g,i,e) = all(.not. IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do s = 1, phase_Nsources(p)
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. all(.not. IEEE_is_NaN(sourceState(p)%p(s)%dotState(:,c)))
enddo
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken .and. plasticState(p)%nonlocal) nonlocalBroken = .true.
if(broken) cycle
sizeDotState = plasticState(p)%sizeDotState
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) &
+ plasticState(p)%dotState (1:sizeDotState,c) &
* crystallite_subdt(g,i,e)
plastic_dotState_p2 = 0.0_pReal * plasticState(p)%dotState (1:sizeDotState,c) ! ToDo can be done smarter/clearer
size_pl = plasticState(p)%sizeDotState
plasticState(p)%state(1:size_pl,c) = plasticState(p)%subState0(1:size_pl,c) &
+ plasticState(p)%dotState (1:size_pl,c) &
* crystallite_subdt(g,i,e)
plastic_dotState(1:size_pl,2) = 0.0_pReal
do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState
sourceState(p)%p(s)%state(1:sizeDotState,c) = sourceState(p)%p(s)%subState0(1:sizeDotState,c) &
+ sourceState(p)%p(s)%dotState (1:sizeDotState,c) &
* crystallite_subdt(g,i,e)
source_dotState(1:sizeDotState,2,s) = 0.0_pReal
size_so(s) = sourceState(p)%p(s)%sizeDotState
sourceState(p)%p(s)%state(1:size_so(s),c) = sourceState(p)%p(s)%subState0(1:size_so(s),c) &
+ sourceState(p)%p(s)%dotState (1:size_so(s),c) &
* crystallite_subdt(g,i,e)
source_dotState(1:size_so(s),2,s) = 0.0_pReal
enddo
iteration: do NiterationState = 1, num%nState
if(nIterationState > 1) plastic_dotState_p2 = plastic_dotState_p1
plastic_dotState_p1 = plasticState(p)%dotState(:,c)
if(nIterationState > 1) plastic_dotState(1:size_pl,2) = plastic_dotState(1:size_pl,1)
plastic_dotState(1:size_pl,1) = plasticState(p)%dotState(:,c)
do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState
if(nIterationState > 1) source_dotState(1:sizeDotState,2,s) = source_dotState(1:sizeDotState,1,s)
source_dotState(1:sizeDotState,1,s) = sourceState(p)%p(s)%dotState(:,c)
if(nIterationState > 1) source_dotState(1:size_so(s),2,s) = source_dotState(1:size_so(s),1,s)
source_dotState(1:size_so(s),1,s) = sourceState(p)%p(s)%dotState(:,c)
enddo
call constitutive_dependentState(crystallite_partionedF(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e)
broken = integrateStress(g,i,e)
if(broken) exit iteration
crystallite_todo(g,i,e) = integrateStress(g,i,e)
if(.not. crystallite_todo(g,i,e)) exit iteration
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) exit iteration
call constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e)
crystallite_todo(g,i,e) = all(.not. IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do s = 1, phase_Nsources(p)
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. all(.not. IEEE_is_NaN(sourceState(p)%p(s)%dotState(:,c)))
enddo
if(.not. crystallite_todo(g,i,e)) exit iteration
sizeDotState = plasticState(p)%sizeDotState
zeta = damper(plasticState(p)%dotState(:,c),plastic_dotState_p1,plastic_dotState_p2)
zeta = damper(plasticState(p)%dotState(:,c),plastic_dotState(1:size_pl,1),&
plastic_dotState(1:size_pl,2))
plasticState(p)%dotState(:,c) = plasticState(p)%dotState(:,c) * zeta &
+ plastic_dotState_p1 * (1.0_pReal - zeta)
r(1:SizeDotState) = plasticState(p)%state (1:sizeDotState,c) &
- plasticState(p)%subState0(1:sizeDotState,c) &
- plasticState(p)%dotState (1:sizeDotState,c) * crystallite_subdt(g,i,e)
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%state(1:sizeDotState,c) &
- r(1:sizeDotState)
crystallite_converged(g,i,e) = converged(r(1:sizeDotState), &
plasticState(p)%state(1:sizeDotState,c), &
plasticState(p)%atol(1:sizeDotState))
+ plastic_dotState(1:size_pl,1) * (1.0_pReal - zeta)
r(1:size_pl) = plasticState(p)%state (1:size_pl,c) &
- plasticState(p)%subState0(1:size_pl,c) &
- plasticState(p)%dotState (1:size_pl,c) * crystallite_subdt(g,i,e)
plasticState(p)%state(1:size_pl,c) = plasticState(p)%state(1:size_pl,c) &
- r(1:size_pl)
crystallite_converged(g,i,e) = converged(r(1:size_pl), &
plasticState(p)%state(1:size_pl,c), &
plasticState(p)%atol(1:size_pl))
do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState
zeta = damper(sourceState(p)%p(s)%dotState(:,c), &
source_dotState(1:sizeDotState,1,s),&
source_dotState(1:sizeDotState,2,s))
source_dotState(1:size_so(s),1,s),&
source_dotState(1:size_so(s),2,s))
sourceState(p)%p(s)%dotState(:,c) = sourceState(p)%p(s)%dotState(:,c) * zeta &
+ source_dotState(1:sizeDotState,1,s)* (1.0_pReal - zeta)
r(1:sizeDotState) = sourceState(p)%p(s)%state (1:sizeDotState,c) &
- sourceState(p)%p(s)%subState0(1:sizeDotState,c) &
- sourceState(p)%p(s)%dotState (1:sizeDotState,c) * crystallite_subdt(g,i,e)
sourceState(p)%p(s)%state(1:sizeDotState,c) = sourceState(p)%p(s)%state(1:sizeDotState,c) &
- r(1:sizeDotState)
+ source_dotState(1:size_so(s),1,s)* (1.0_pReal - zeta)
r(1:size_so(s)) = sourceState(p)%p(s)%state (1:size_so(s),c) &
- sourceState(p)%p(s)%subState0(1:size_so(s),c) &
- sourceState(p)%p(s)%dotState (1:size_so(s),c) * crystallite_subdt(g,i,e)
sourceState(p)%p(s)%state(1:size_so(s),c) = sourceState(p)%p(s)%state(1:size_so(s),c) &
- r(1:size_so(s))
crystallite_converged(g,i,e) = &
crystallite_converged(g,i,e) .and. converged(r(1:sizeDotState), &
sourceState(p)%p(s)%state(1:sizeDotState,c), &
sourceState(p)%p(s)%atol(1:sizeDotState))
crystallite_converged(g,i,e) .and. converged(r(1:size_so(s)), &
sourceState(p)%p(s)%state(1:size_so(s),c), &
sourceState(p)%p(s)%atol(1:size_so(s)))
enddo
if(crystallite_converged(g,i,e)) then
crystallite_todo(g,i,e) = stateJump(g,i,e)
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
exit iteration
endif
enddo iteration
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(broken .and. plasticState(p)%nonlocal) nonlocalBroken = .true.
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
@ -1149,7 +1145,9 @@ end subroutine integrateStateFPI
!--------------------------------------------------------------------------------------------------
!> @brief integrate state with 1st order explicit Euler method
!--------------------------------------------------------------------------------------------------
subroutine integrateStateEuler
subroutine integrateStateEuler(todo)
logical, dimension(:,:,:), intent(in) :: todo
integer :: &
e, & !< element index in element loop
@ -1160,29 +1158,25 @@ subroutine integrateStateEuler
s, &
sizeDotState
logical :: &
nonlocalBroken
nonlocalBroken, broken
nonlocalBroken = .false.
!$OMP PARALLEL DO PRIVATE (sizeDotState,p,c)
!$OMP PARALLEL DO PRIVATE (sizeDotState,p,c,broken)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if(crystallite_todo(g,i,e) .and. (.not. nonlocalBroken .or. crystallite_localPlasticity(g,i,e)) ) then
p = material_phaseAt(g,e)
if(todo(g,i,e) .and. .not. (nonlocalBroken .and. plasticState(p)%nonlocal)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
c = material_phaseMemberAt(g,i,e)
call constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e)
crystallite_todo(g,i,e) = all(.not. IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do s = 1, phase_Nsources(p)
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. all(.not. IEEE_is_NaN(sourceState(p)%p(s)%dotState(:,c)))
enddo
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken .and. plasticState(p)%nonlocal) nonlocalBroken = .true.
if(broken) cycle
sizeDotState = plasticState(p)%sizeDotState
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) &
@ -1195,21 +1189,15 @@ subroutine integrateStateEuler
* crystallite_subdt(g,i,e)
enddo
crystallite_todo(g,i,e) = stateJump(g,i,e)
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
call constitutive_dependentState(crystallite_partionedF(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e)
crystallite_todo(g,i,e) = integrateStress(g,i,e)
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
crystallite_converged(g,i,e) = crystallite_todo(g,i,e)
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
if(broken .and. plasticState(p)%nonlocal) nonlocalBroken = .true.
if(broken) cycle
broken = integrateStress(g,i,e)
if(broken .and. plasticState(p)%nonlocal) nonlocalBroken = .true.
crystallite_converged(g,i,e) = .not. broken
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
@ -1222,7 +1210,9 @@ end subroutine integrateStateEuler
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 1st order Euler method with adaptive step size
!--------------------------------------------------------------------------------------------------
subroutine integrateStateAdaptiveEuler
subroutine integrateStateAdaptiveEuler(todo)
logical, dimension(:,:,:), intent(in) :: todo
integer :: &
e, & ! element index in element loop
@ -1233,32 +1223,28 @@ subroutine integrateStateAdaptiveEuler
s, &
sizeDotState
logical :: &
nonlocalBroken
nonlocalBroken, broken
real(pReal), dimension(constitutive_plasticity_maxSizeDotState) :: residuum_plastic
real(pReal), dimension(constitutive_source_maxSizeDotState,maxval(phase_Nsources)) :: residuum_source
nonlocalBroken = .false.
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,c,residuum_plastic,residuum_source)
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,c,residuum_plastic,residuum_source,broken)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if(crystallite_todo(g,i,e) .and. (.not. nonlocalBroken .or. crystallite_localPlasticity(g,i,e)) ) then
broken = .false.
p = material_phaseAt(g,e)
if(todo(g,i,e) .and. .not. (nonlocalBroken .and. plasticState(p)%nonlocal)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
c = material_phaseMemberAt(g,i,e)
call constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e)
crystallite_todo(g,i,e) = all(.not. IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do s = 1, phase_Nsources(p)
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. all(.not. IEEE_is_NaN(sourceState(p)%p(s)%dotState(:,c)))
enddo
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) cycle
sizeDotState = plasticState(p)%sizeDotState
@ -1274,36 +1260,23 @@ subroutine integrateStateAdaptiveEuler
+ sourceState(p)%p(s)%dotstate(1:sizeDotState,c) * crystallite_subdt(g,i,e)
enddo
crystallite_todo(g,i,e) = stateJump(g,i,e)
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
if(broken) cycle
call constitutive_dependentState(crystallite_partionedF(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e)
broken = integrateStress(g,i,e)
if(broken) cycle
crystallite_todo(g,i,e) = integrateStress(g,i,e)
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
call constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e)
crystallite_todo(g,i,e) = all(.not. IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do s = 1, phase_Nsources(p)
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. all(.not. IEEE_is_NaN(sourceState(p)%p(s)%dotState(:,c)))
enddo
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) cycle
sizeDotState = plasticState(p)%sizeDotState
crystallite_converged(g,i,e) = converged(residuum_plastic(1:sizeDotState) &
+ 0.5_pReal * plasticState(p)%dotState(:,c) * crystallite_subdt(g,i,e), &
plasticState(p)%state(1:sizeDotState,c), &
@ -1311,7 +1284,6 @@ subroutine integrateStateAdaptiveEuler
do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState
crystallite_converged(g,i,e) = &
crystallite_converged(g,i,e) .and. converged(residuum_source(1:sizeDotState,s) &
+ 0.5_pReal*sourceState(p)%p(s)%dotState(:,c)*crystallite_subdt(g,i,e), &
@ -1320,6 +1292,7 @@ subroutine integrateStateAdaptiveEuler
enddo
endif
if(broken .and. plasticState(p)%nonlocal) nonlocalBroken = .true.
enddo; enddo; enddo
!$OMP END PARALLEL DO
@ -1331,18 +1304,20 @@ end subroutine integrateStateAdaptiveEuler
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 4th order explicit Runge Kutta method
!--------------------------------------------------------------------------------------------------
subroutine integrateStateRK4
subroutine integrateStateRK4(todo)
real(pReal), dimension(3,3), parameter :: &
A = reshape([&
logical, dimension(:,:,:), intent(in) :: todo
real(pReal), dimension(3,3), parameter :: &
A = reshape([&
0.5_pReal, 0.0_pReal, 0.0_pReal, &
0.0_pReal, 0.5_pReal, 0.0_pReal, &
0.0_pReal, 0.0_pReal, 1.0_pReal], &
[3,3])
real(pReal), dimension(3), parameter :: &
CC = [0.5_pReal, 0.5_pReal, 1.0_pReal] ! factor giving the fraction of the original timestep used for Runge Kutta Integration
real(pReal), dimension(4), parameter :: &
B = [1.0_pReal/6.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/6.0_pReal] ! weight of slope used for Runge Kutta integration (final weight divided by 6)
real(pReal), dimension(3), parameter :: &
CC = [0.5_pReal, 0.5_pReal, 1.0_pReal] ! factor giving the fraction of the original timestep used for Runge Kutta Integration
real(pReal), dimension(4), parameter :: &
B = [1.0_pReal/6.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/6.0_pReal] ! weight of slope used for Runge Kutta integration (final weight divided by 6)
integer :: &
e, & ! element index in element loop
@ -1355,31 +1330,28 @@ subroutine integrateStateRK4
s, &
sizeDotState
logical :: &
nonlocalBroken
nonlocalBroken, broken
real(pReal), dimension(constitutive_plasticity_maxSizeDotState,4) :: plastic_RK4dotState
real(pReal), dimension(constitutive_source_maxSizeDotState,4,maxval(phase_Nsources)) :: source_RK4dotState
real(pReal), dimension(constitutive_plasticity_maxSizeDotState,4) :: plastic_RK4dotState
nonlocalBroken = .false.
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,c,plastic_RK4dotState,source_RK4dotState)
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,c,source_RK4dotState,plastic_RK4dotState,broken)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if(crystallite_todo(g,i,e) .and. (.not. nonlocalBroken .or. crystallite_localPlasticity(g,i,e)) ) then
broken = .false.
p = material_phaseAt(g,e)
if(todo(g,i,e) .and. .not. (nonlocalBroken .and. plasticState(p)%nonlocal)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
c = material_phaseMemberAt(g,i,e)
call constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e)
crystallite_todo(g,i,e) = all(.not. IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do s = 1, phase_Nsources(p)
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. all(.not. IEEE_is_NaN(sourceState(p)%p(s)%dotState(:,c)))
enddo
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) cycle
do stage = 1,3
sizeDotState = plasticState(p)%sizeDotState
@ -1413,31 +1385,18 @@ subroutine integrateStateRK4
* crystallite_subdt(g,i,e)
enddo
call constitutive_dependentState(crystallite_partionedF(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e)
broken = integrateStress(g,i,e,CC(stage))
if(broken) exit
crystallite_todo(g,i,e) = integrateStress(g,i,e,CC(stage))
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) exit
call constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, &
crystallite_subdt(g,i,e)*CC(stage), g,i,e)
crystallite_todo(g,i,e) = all(.not. IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do s = 1, phase_Nsources(p)
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. all(.not. IEEE_is_NaN(sourceState(p)%p(s)%dotState(:,c)))
enddo
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) exit
crystallite_subdt(g,i,e)*CC(stage), g,i,e,p,c)
if(broken) exit
enddo
if(.not. crystallite_todo(g,i,e)) cycle
if(broken) cycle
sizeDotState = plasticState(p)%sizeDotState
@ -1459,25 +1418,16 @@ subroutine integrateStateRK4
* crystallite_subdt(g,i,e)
enddo
crystallite_todo(g,i,e) = stateJump(g,i,e)
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
if(broken) cycle
call constitutive_dependentState(crystallite_partionedF(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e)
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
crystallite_todo(g,i,e) = integrateStress(g,i,e)
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
crystallite_converged(g,i,e) = crystallite_todo(g,i,e) ! consider converged if not broken
broken = integrateStress(g,i,e)
crystallite_converged(g,i,e) = .not. broken
endif
if(broken .and. plasticState(p)%nonlocal) nonlocalBroken = .true.
enddo; enddo; enddo
!$OMP END PARALLEL DO
@ -1490,7 +1440,9 @@ end subroutine integrateStateRK4
!> @brief integrate stress, state with 5th order Runge-Kutta Cash-Karp method with
!> adaptive step size (use 5th order solution to advance = "local extrapolation")
!--------------------------------------------------------------------------------------------------
subroutine integrateStateRKCK45
subroutine integrateStateRKCK45(todo)
logical, dimension(:,:,:), intent(in) :: todo
real(pReal), dimension(5,5), parameter :: &
A = reshape([&
@ -1523,31 +1475,27 @@ subroutine integrateStateRKCK45
s, &
sizeDotState
logical :: &
nonlocalBroken
real(pReal), dimension(constitutive_plasticity_maxSizeDotState,6) :: plastic_RKdotState
nonlocalBroken, broken
real(pReal), dimension(constitutive_source_maxSizeDotState,6,maxval(phase_Nsources)) :: source_RKdotState
real(pReal), dimension(constitutive_plasticity_maxSizeDotState,6) :: plastic_RKdotState
nonlocalBroken = .false.
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,c,plastic_RKdotState,source_RKdotState)
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,c,plastic_RKdotState,source_RKdotState,broken)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if(crystallite_todo(g,i,e) .and. (.not. nonlocalBroken .or. crystallite_localPlasticity(g,i,e)) ) then
broken = .false.
p = material_phaseAt(g,e)
if(todo(g,i,e) .and. .not. (nonlocalBroken .and. plasticState(p)%nonlocal)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
c = material_phaseMemberAt(g,i,e)
call constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, &
crystallite_subdt(g,i,e), g,i,e)
crystallite_todo(g,i,e) = all(.not. IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do s = 1, phase_Nsources(p)
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. all(.not. IEEE_is_NaN(sourceState(p)%p(s)%dotState(:,c)))
enddo
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) cycle
do stage = 1,5
sizeDotState = plasticState(p)%sizeDotState
@ -1581,31 +1529,18 @@ subroutine integrateStateRKCK45
* crystallite_subdt(g,i,e)
enddo
call constitutive_dependentState(crystallite_partionedF(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e)
broken = integrateStress(g,i,e,CC(stage))
if(broken) exit
crystallite_todo(g,i,e) = integrateStress(g,i,e,CC(stage))
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) exit
call constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partionedFp0, &
crystallite_subdt(g,i,e)*CC(stage), g,i,e)
crystallite_todo(g,i,e) = all(.not. IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do s = 1, phase_Nsources(p)
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. all(.not. IEEE_is_NaN(sourceState(p)%p(s)%dotState(:,c)))
enddo
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) exit
crystallite_subdt(g,i,e)*CC(stage), g,i,e,p,c)
if(broken) exit
enddo
if(.not. crystallite_todo(g,i,e)) cycle
if(broken) cycle
sizeDotState = plasticState(p)%sizeDotState
@ -1614,7 +1549,7 @@ subroutine integrateStateRKCK45
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) &
+ plasticState(p)%dotState (1:sizeDotState,c) &
* crystallite_subdt(g,i,e)
crystallite_todo(g,i,e) = converged( matmul(plastic_RKdotState(1:sizeDotState,1:6),DB) &
broken = .not. converged( matmul(plastic_RKdotState(1:sizeDotState,1:6),DB) &
* crystallite_subdt(g,i,e), &
plasticState(p)%state(1:sizeDotState,c), &
plasticState(p)%atol(1:sizeDotState))
@ -1627,35 +1562,28 @@ subroutine integrateStateRKCK45
sourceState(p)%p(s)%state(1:sizeDotState,c) = sourceState(p)%p(s)%subState0(1:sizeDotState,c) &
+ sourceState(p)%p(s)%dotState (1:sizeDotState,c) &
* crystallite_subdt(g,i,e)
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. &
broken = broken .and. .not. &
converged(matmul(source_RKdotState(1:sizeDotState,1:6,s),DB) &
* crystallite_subdt(g,i,e), &
sourceState(p)%p(s)%state(1:sizeDotState,c), &
sourceState(p)%p(s)%atol(1:sizeDotState))
enddo
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
if(broken) cycle
crystallite_todo(g,i,e) = stateJump(g,i,e)
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
if(.not. crystallite_todo(g,i,e)) cycle
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
if(broken) cycle
call constitutive_dependentState(crystallite_partionedF(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e)
crystallite_todo(g,i,e) = integrateStress(g,i,e)
if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) &
nonlocalBroken = .true.
crystallite_converged(g,i,e) = crystallite_todo(g,i,e) ! consider converged if not broken
broken = integrateStress(g,i,e)
crystallite_converged(g,i,e) = .not. broken
endif
if(broken .and. plasticState(p)%nonlocal) nonlocalBroken = .true.
enddo; enddo; enddo
!$OMP END PARALLEL DO
if (nonlocalBroken) call nonlocalConvergenceCheck
if(nonlocalBroken) call nonlocalConvergenceCheck
end subroutine integrateStateRKCK45
@ -1666,7 +1594,16 @@ end subroutine integrateStateRKCK45
!--------------------------------------------------------------------------------------------------
subroutine nonlocalConvergenceCheck
where( .not. crystallite_localPlasticity) crystallite_converged = .false.
integer :: e,i,p
!$OMP PARALLEL DO PRIVATE(p)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
p = material_phaseAt(1,e)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
if(plasticState(p)%nonlocal) crystallite_converged(1,i,e) = .false.
enddo
enddo
!$OMP END PARALLEL DO
end subroutine nonlocalConvergenceCheck
@ -1688,59 +1625,6 @@ logical pure function converged(residuum,state,atol)
end function converged
!--------------------------------------------------------------------------------------------------
!> @brief calculates a jump in the state according to the current state and the current stress
!> returns true, if state jump was successfull or not needed. false indicates NaN in delta state
!--------------------------------------------------------------------------------------------------
logical function stateJump(ipc,ip,el)
integer, intent(in):: &
el, & ! element index
ip, & ! integration point index
ipc ! grain index
integer :: &
c, &
p, &
mySource, &
myOffset, &
mySize
c = material_phaseMemberAt(ipc,ip,el)
p = material_phaseAt(ipc,el)
call constitutive_collectDeltaState(crystallite_S(1:3,1:3,ipc,ip,el), &
crystallite_Fe(1:3,1:3,ipc,ip,el), &
crystallite_Fi(1:3,1:3,ipc,ip,el), &
ipc,ip,el)
myOffset = plasticState(p)%offsetDeltaState
mySize = plasticState(p)%sizeDeltaState
if( any(IEEE_is_NaN(plasticState(p)%deltaState(1:mySize,c)))) then
stateJump = .false.
return
endif
plasticState(p)%state(myOffset + 1:myOffset + mySize,c) = &
plasticState(p)%state(myOffset + 1:myOffset + mySize,c) + plasticState(p)%deltaState(1:mySize,c)
do mySource = 1, phase_Nsources(p)
myOffset = sourceState(p)%p(mySource)%offsetDeltaState
mySize = sourceState(p)%p(mySource)%sizeDeltaState
if (any(IEEE_is_NaN(sourceState(p)%p(mySource)%deltaState(1:mySize,c)))) then
stateJump = .false.
return
endif
sourceState(p)%p(mySource)%state(myOffset + 1: myOffset + mySize,c) = &
sourceState(p)%p(mySource)%state(myOffset + 1: myOffset + mySize,c) + sourceState(p)%p(mySource)%deltaState(1:mySize,c)
enddo
stateJump = .true.
end function stateJump
!--------------------------------------------------------------------------------------------------
!> @brief Write current restart information (Field and constitutive data) to file.
! ToDo: Merge data into one file for MPI, move state to constitutive and homogenization, respectively

View File

@ -11,7 +11,6 @@ module material
use results
use IO
use debug
use numerics
use rotations
use discretization
@ -174,8 +173,7 @@ module material
public :: &
material_init, &
material_allocatePlasticState, &
material_allocateSourceState, &
material_allocateState, &
ELASTICITY_HOOKE_ID ,&
PLASTICITY_NONE_ID, &
PLASTICITY_ISOTROPIC_ID, &
@ -700,63 +698,35 @@ end subroutine material_parseTexture
!--------------------------------------------------------------------------------------------------
!> @brief allocates the plastic state of a phase
!> @brief Allocate the components of the state structure for a given phase
!--------------------------------------------------------------------------------------------------
subroutine material_allocatePlasticState(phase,NipcMyPhase,&
sizeState,sizeDotState,sizeDeltaState)
subroutine material_allocateState(state, &
NipcMyPhase,sizeState,sizeDotState,sizeDeltaState)
class(tState), intent(out) :: &
state
integer, intent(in) :: &
phase, &
NipcMyPhase, &
sizeState, &
sizeDotState, &
sizeDeltaState
plasticState(phase)%sizeState = sizeState
plasticState(phase)%sizeDotState = sizeDotState
plasticState(phase)%sizeDeltaState = sizeDeltaState
plasticState(phase)%offsetDeltaState = sizeState-sizeDeltaState ! deltaState occupies latter part of state by definition
state%sizeState = sizeState
state%sizeDotState = sizeDotState
state%sizeDeltaState = sizeDeltaState
state%offsetDeltaState = sizeState-sizeDeltaState ! deltaState occupies latter part of state by definition
allocate(plasticState(phase)%atol (sizeState), source=0.0_pReal)
allocate(plasticState(phase)%state0 (sizeState,NipcMyPhase), source=0.0_pReal)
allocate(plasticState(phase)%partionedState0 (sizeState,NipcMyPhase), source=0.0_pReal)
allocate(plasticState(phase)%subState0 (sizeState,NipcMyPhase), source=0.0_pReal)
allocate(plasticState(phase)%state (sizeState,NipcMyPhase), source=0.0_pReal)
allocate(state%atol (sizeState), source=0.0_pReal)
allocate(state%state0 (sizeState,NipcMyPhase), source=0.0_pReal)
allocate(state%partionedState0(sizeState,NipcMyPhase), source=0.0_pReal)
allocate(state%subState0 (sizeState,NipcMyPhase), source=0.0_pReal)
allocate(state%state (sizeState,NipcMyPhase), source=0.0_pReal)
allocate(plasticState(phase)%dotState (sizeDotState,NipcMyPhase),source=0.0_pReal)
allocate(state%dotState (sizeDotState,NipcMyPhase), source=0.0_pReal)
allocate(plasticState(phase)%deltaState (sizeDeltaState,NipcMyPhase),source=0.0_pReal)
allocate(state%deltaState(sizeDeltaState,NipcMyPhase), source=0.0_pReal)
end subroutine material_allocatePlasticState
end subroutine material_allocateState
!--------------------------------------------------------------------------------------------------
!> @brief allocates the source state of a phase
!--------------------------------------------------------------------------------------------------
subroutine material_allocateSourceState(phase,of,NipcMyPhase,&
sizeState,sizeDotState,sizeDeltaState)
integer, intent(in) :: &
phase, &
of, &
NipcMyPhase, &
sizeState, sizeDotState,sizeDeltaState
sourceState(phase)%p(of)%sizeState = sizeState
sourceState(phase)%p(of)%sizeDotState = sizeDotState
sourceState(phase)%p(of)%sizeDeltaState = sizeDeltaState
sourceState(phase)%p(of)%offsetDeltaState = sizeState-sizeDeltaState ! deltaState occupies latter part of state by definition
allocate(sourceState(phase)%p(of)%atol (sizeState), source=0.0_pReal)
allocate(sourceState(phase)%p(of)%state0 (sizeState,NipcMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(of)%partionedState0 (sizeState,NipcMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(of)%subState0 (sizeState,NipcMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(of)%state (sizeState,NipcMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(of)%dotState (sizeDotState,NipcMyPhase),source=0.0_pReal)
allocate(sourceState(phase)%p(of)%deltaState (sizeDeltaState,NipcMyPhase),source=0.0_pReal)
end subroutine material_allocateSourceState
end module material

View File

@ -20,8 +20,7 @@ module numerics
iJacoStiffness = 1, & !< frequency of stiffness update
randomSeed = 0, & !< fixed seeding for pseudo-random number generator, Default 0: use random seed
worldrank = 0, & !< MPI worldrank (/=0 for MPI simulations only)
worldsize = 1, & !< MPI worldsize (/=1 for MPI simulations only)
numerics_integrator = 1 !< method used for state integration Default 1: fix-point iteration
worldsize = 1 !< MPI worldsize (/=1 for MPI simulations only)
integer(4), protected, public :: &
DAMASK_NumThreadsInt = 0 !< value stored in environment variable DAMASK_NUM_THREADS, set to zero if no OpenMP directive
real(pReal), protected, public :: &
@ -134,8 +133,6 @@ subroutine numerics_init
defgradTolerance = IO_floatValue(line,chunkPos,2)
case ('ijacostiffness')
iJacoStiffness = IO_intValue(line,chunkPos,2)
case ('integrator')
numerics_integrator = IO_intValue(line,chunkPos,2)
case ('usepingpong')
usepingpong = IO_intValue(line,chunkPos,2) > 0
case ('unitlength')
@ -176,6 +173,11 @@ subroutine numerics_init
case ('maxstaggerediter')
stagItMax = IO_intValue(line,chunkPos,2)
#ifdef PETSC
case ('petsc_options')
petsc_options = trim(line(chunkPos(4):))
#endif
!--------------------------------------------------------------------------------------------------
! spectral parameters
#ifdef Grid
@ -187,8 +189,6 @@ subroutine numerics_init
err_stress_tolrel = IO_floatValue(line,chunkPos,2)
case ('err_stress_tolabs')
err_stress_tolabs = IO_floatValue(line,chunkPos,2)
case ('petsc_options')
petsc_options = trim(line(chunkPos(4):))
case ('err_curl_tolabs')
err_curl_tolAbs = IO_floatValue(line,chunkPos,2)
case ('err_curl_tolrel')
@ -206,8 +206,6 @@ subroutine numerics_init
integrationorder = IO_intValue(line,chunkPos,2)
case ('structorder')
structorder = IO_intValue(line,chunkPos,2)
case ('petsc_options')
petsc_options = trim(line(chunkPos(4):))
case ('bbarstabilisation')
BBarStabilisation = IO_intValue(line,chunkPos,2) > 0
#endif
@ -223,7 +221,6 @@ subroutine numerics_init
! writing parameters to output
write(6,'(a24,1x,es8.1)') ' defgradTolerance: ',defgradTolerance
write(6,'(a24,1x,i8)') ' iJacoStiffness: ',iJacoStiffness
write(6,'(a24,1x,i8)') ' integrator: ',numerics_integrator
write(6,'(a24,1x,L8)') ' use ping pong scheme: ',usepingpong
write(6,'(a24,1x,es8.1,/)')' unitlength: ',numerics_unitlength
@ -266,7 +263,6 @@ subroutine numerics_init
write(6,'(a24,1x,es8.1)') ' err_curl_tolRel: ',err_curl_tolRel
write(6,'(a24,1x,es8.1)') ' polarAlpha: ',polarAlpha
write(6,'(a24,1x,es8.1)') ' polarBeta: ',polarBeta
write(6,'(a24,1x,a)') ' PETSc_options: ',trim(petsc_options)
#endif
!--------------------------------------------------------------------------------------------------
@ -274,16 +270,17 @@ subroutine numerics_init
#ifdef FEM
write(6,'(a24,1x,i8)') ' integrationOrder: ',integrationOrder
write(6,'(a24,1x,i8)') ' structOrder: ',structOrder
write(6,'(a24,1x,a)') ' PETSc_options: ',trim(petsc_options)
write(6,'(a24,1x,L8)') ' B-Bar stabilisation: ',BBarStabilisation
#endif
#ifdef PETSC
write(6,'(a24,1x,a)') ' PETSc_options: ',trim(petsc_options)
#endif
!--------------------------------------------------------------------------------------------------
! sanity checks
if (defgradTolerance <= 0.0_pReal) call IO_error(301,ext_msg='defgradTolerance')
if (iJacoStiffness < 1) call IO_error(301,ext_msg='iJacoStiffness')
if (numerics_integrator <= 0 .or. numerics_integrator >= 6) &
call IO_error(301,ext_msg='integrator')
if (numerics_unitlength <= 0.0_pReal) call IO_error(301,ext_msg='unitlength')
if (residualStiffness < 0.0_pReal) call IO_error(301,ext_msg='residualStiffness')
if (itmax <= 1) call IO_error(301,ext_msg='itmax')

View File

@ -53,8 +53,7 @@ module prec
logical :: &
nonlocal = .false.
real(pReal), pointer, dimension(:,:) :: &
slipRate, & !< slip rate
accumulatedSlip !< accumulated plastic slip
slipRate !< slip rate
end type
type :: tSourceState

View File

@ -107,7 +107,7 @@ subroutine source_damage_anisoBrittle_init
if (any(prm%critDisp < 0.0_pReal)) extmsg = trim(extmsg)//' anisobrittle_critDisp'
NipcMyPhase = count(material_phaseAt==p) * discretization_nIP
call material_allocateSourceState(p,sourceOffset,NipcMyPhase,1,1,0)
call material_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,0)
sourceState(p)%p(sourceOffset)%atol = config%getFloat('anisobrittle_atol',defaultVal=1.0e-3_pReal)
if(any(sourceState(p)%p(sourceOffset)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' anisobrittle_atol'

View File

@ -89,7 +89,7 @@ subroutine source_damage_anisoDuctile_init
if (any(prm%critPlasticStrain < 0.0_pReal)) extmsg = trim(extmsg)//' anisoductile_criticalplasticstrain'
NipcMyPhase=count(material_phaseAt==p) * discretization_nIP
call material_allocateSourceState(p,sourceOffset,NipcMyPhase,1,1,0)
call material_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,0)
sourceState(p)%p(sourceOffset)%atol = config%getFloat('anisoductile_atol',defaultVal=1.0e-3_pReal)
if(any(sourceState(p)%p(sourceOffset)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' anisoductile_atol'

View File

@ -83,7 +83,7 @@ subroutine source_damage_isoBrittle_init
if (prm%critStrainEnergy <= 0.0_pReal) extmsg = trim(extmsg)//' isobrittle_criticalstrainenergy'
NipcMyPhase = count(material_phaseAt==p) * discretization_nIP
call material_allocateSourceState(p,sourceOffset,NipcMyPhase,1,1,1)
call material_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,1)
sourceState(p)%p(sourceOffset)%atol = config%getFloat('isobrittle_atol',defaultVal=1.0e-3_pReal)
if(any(sourceState(p)%p(sourceOffset)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' isobrittle_atol'

View File

@ -82,7 +82,7 @@ subroutine source_damage_isoDuctile_init
if (prm%critPlasticStrain <= 0.0_pReal) extmsg = trim(extmsg)//' isoductile_criticalplasticstrain'
NipcMyPhase=count(material_phaseAt==p) * discretization_nIP
call material_allocateSourceState(p,sourceOffset,NipcMyPhase,1,1,0)
call material_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,0)
sourceState(p)%p(sourceOffset)%atol = config%getFloat('isoductile_atol',defaultVal=1.0e-3_pReal)
if(any(sourceState(p)%p(sourceOffset)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' isoductile_atol'

View File

@ -67,7 +67,7 @@ subroutine source_thermal_dissipation_init
prm%kappa = config%getFloat('dissipation_coldworkcoeff')
NipcMyPhase = count(material_phaseAt==p) * discretization_nIP
call material_allocateSourceState(p,sourceOffset,NipcMyPhase,0,0,0)
call material_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,0,0,0)
end associate
enddo

View File

@ -74,7 +74,7 @@ subroutine source_thermal_externalheat_init
prm%heat_rate = config%getFloats('externalheat_rate',requiredSize = size(prm%time))
NipcMyPhase = count(material_phaseAt==p) * discretization_nIP
call material_allocateSourceState(p,sourceOffset,NipcMyPhase,1,1,0)
call material_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,0)
end associate
enddo