math_QuaternionToAxisAngle now safe for small or close to 2pi rotations.
This commit is contained in:
parent
e8719cb6b8
commit
15e5dcf8f2
|
@ -1386,22 +1386,15 @@ pure function math_transpose3x3(A)
|
||||||
real(pReal) halfAngle, sinHalfAngle
|
real(pReal) halfAngle, sinHalfAngle
|
||||||
real(pReal), dimension(4) :: math_QuaternionToAxisAngle
|
real(pReal), dimension(4) :: math_QuaternionToAxisAngle
|
||||||
|
|
||||||
halfAngle=acos(Q(1))
|
halfAngle = dacos(Q(1)) ! value range 0 to 180 deg
|
||||||
sinHalfAngle=sin(halfAngle)
|
sinHalfAngle = dsin(halfAngle)
|
||||||
|
|
||||||
math_QuaternionToAxisAngle(1)=Q(2)/sinHalfAngle
|
if (sinHalfAngle <= 1.0e-4_pReal) then ! very small rotation angle?
|
||||||
math_QuaternionToAxisAngle(2)=Q(3)/sinHalfAngle
|
math_QuaternionToAxisAngle = 0.0_pReal
|
||||||
math_QuaternionToAxisAngle(3)=Q(4)/sinHalfAngle
|
else
|
||||||
! Remark: the above calculations gives problems
|
math_QuaternionToAxisAngle(1:3) = Q(2:4)/sinHalfAngle
|
||||||
! for HalfAngle->0, i.e. for very small rotation angles
|
math_QuaternionToAxisAngle(4) = halfAngle*2.0_pReal*inDeg
|
||||||
! and always at inrement 0 where identical orientations
|
endif
|
||||||
! are compared in the calculation of the grainrotation;
|
|
||||||
! the correct interpretation of these special cases
|
|
||||||
! is left to the postprocessing.
|
|
||||||
! A possible integrity check would be to check for
|
|
||||||
! the unit length of the resulting axis.
|
|
||||||
|
|
||||||
math_QuaternionToAxisAngle(4)=halfAngle*2.0_pReal*inDeg
|
|
||||||
|
|
||||||
ENDFUNCTION
|
ENDFUNCTION
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue