parent
3f63a4fdbc
commit
15b43bcebf
|
@ -325,13 +325,13 @@ class Rotation:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
q: numpy.ndarray of shape (...,4)
|
||||
q : numpy.ndarray of shape (...,4)
|
||||
Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3),
|
||||
|q|=1, q_0 ≥ 0.
|
||||
accept_homomorph: boolean, optional
|
||||
accept_homomorph : boolean, optional
|
||||
Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere).
|
||||
Defaults to False.
|
||||
P: integer ∈ {-1,1}, optional
|
||||
P : integer ∈ {-1,1}, optional
|
||||
Convention used. Defaults to -1.
|
||||
|
||||
"""
|
||||
|
@ -362,10 +362,10 @@ class Rotation:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
phi: numpy.ndarray of shape (...,3)
|
||||
phi : numpy.ndarray of shape (...,3)
|
||||
Bunge-Euler angles: (φ_1, ϕ, φ_2), φ_1 ∈ [0,2π], ϕ ∈ [0,π], φ_2 ∈ [0,2π]
|
||||
unless degrees == True: φ_1 ∈ [0,360], ϕ ∈ [0,180], φ_2 ∈ [0,360].
|
||||
degrees: boolean, optional
|
||||
degrees : boolean, optional
|
||||
Bunge-Euler angles are given in degrees. Defaults to False.
|
||||
|
||||
"""
|
||||
|
@ -389,14 +389,14 @@ class Rotation:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
axis_angle: numpy.ndarray of shape (...,4)
|
||||
axis_angle : numpy.ndarray of shape (...,4)
|
||||
Axis angle pair: [n_1, n_2, n_3, ω], |n| = 1 and ω ∈ [0,π]
|
||||
unless degrees = True: ω ∈ [0,180].
|
||||
degrees: boolean, optional
|
||||
degrees : boolean, optional
|
||||
Angle ω is given in degrees. Defaults to False.
|
||||
normalize: boolean, optional
|
||||
Allow |n| ≠ 1. Defaults to False.
|
||||
P: integer ∈ {-1,1}, optional
|
||||
P : integer ∈ {-1,1}, optional
|
||||
Convention used. Defaults to -1.
|
||||
|
||||
"""
|
||||
|
@ -421,16 +421,16 @@ class Rotation:
|
|||
orthonormal = True,
|
||||
reciprocal = False):
|
||||
"""
|
||||
Initialize from tbd.
|
||||
Initialize from lattice basis vectors.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
basis: numpy.ndarray of shape (...,3,3)
|
||||
tbd
|
||||
orthonormal: boolean, optional
|
||||
tbd. Defaults to True.
|
||||
reciprocal: boolean, optional
|
||||
tbd. Defaults to False.
|
||||
basis : numpy.ndarray of shape (...,3,3)
|
||||
Three lattice basis vectors in three dimensions.
|
||||
orthonormal : boolean, optional
|
||||
Basis is strictly orthonormal, i.e. is free of stretch components. Defaults to True.
|
||||
reciprocal : boolean, optional
|
||||
Basis vectors are given in reciprocal (instead of real) space. Defaults to False.
|
||||
|
||||
"""
|
||||
om = np.array(basis,dtype=float)
|
||||
|
@ -452,27 +452,6 @@ class Rotation:
|
|||
|
||||
return Rotation(Rotation._om2qu(om))
|
||||
|
||||
@staticmethod
|
||||
def from_directions(hkl,uvw):
|
||||
"""
|
||||
Initialize from pair of directions/planes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
hkl: numpy.ndarray of shape (...,3)
|
||||
Direction parallel to z direction, i.e. (h k l) || (0,0,1).
|
||||
uvw: numpy.ndarray of shape (...,3)
|
||||
Direction parallel to x direction, i.e. <u v w> || (1,0,0).
|
||||
|
||||
"""
|
||||
hkl_ = hkl/np.linalg.norm(hkl,axis=-1,keepdims=True)
|
||||
uvw_ = uvw/np.linalg.norm(uvw,axis=-1,keepdims=True)
|
||||
v_1 = np.block([uvw_,np.cross(hkl_,uvw_),hkl_]).reshape(hkl_.shape+(3,))
|
||||
v_2 = np.block([uvw_,np.cross(uvw_,hkl_),hkl_]).reshape(hkl_.shape+(3,))
|
||||
R = np.where(np.broadcast_to(np.expand_dims(np.expand_dims(np.linalg.det(v_1)>0,-1),-1),v_1.shape),
|
||||
v_1,v_2)
|
||||
return Rotation.from_basis(np.swapaxes(R,axis2=-2,axis1=-1))
|
||||
|
||||
@staticmethod
|
||||
def from_matrix(R):
|
||||
"""
|
||||
|
@ -480,7 +459,7 @@ class Rotation:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
R: numpy.ndarray of shape (...,3,3)
|
||||
R : numpy.ndarray of shape (...,3,3)
|
||||
Rotation matrix: det(R) = 1, R.T∙R=I.
|
||||
|
||||
"""
|
||||
|
@ -495,12 +474,12 @@ class Rotation:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
rho: numpy.ndarray of shape (...,4)
|
||||
rho : numpy.ndarray of shape (...,4)
|
||||
Rodrigues-Frank vector (angle separated from axis).
|
||||
(n_1, n_2, n_3, tan(ω/2)), |n| = 1 and ω ∈ [0,π].
|
||||
normalize: boolean, optional
|
||||
normalize : boolean, optional
|
||||
Allow |n| ≠ 1. Defaults to False.
|
||||
P: integer ∈ {-1,1}, optional
|
||||
P : integer ∈ {-1,1}, optional
|
||||
Convention used. Defaults to -1.
|
||||
|
||||
"""
|
||||
|
@ -527,9 +506,9 @@ class Rotation:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
h: numpy.ndarray of shape (...,3)
|
||||
h : numpy.ndarray of shape (...,3)
|
||||
Homochoric vector: (h_1, h_2, h_3), |h| < (3/4*π)^(1/3).
|
||||
P: integer ∈ {-1,1}, optional
|
||||
P : integer ∈ {-1,1}, optional
|
||||
Convention used. Defaults to -1.
|
||||
|
||||
"""
|
||||
|
@ -554,9 +533,9 @@ class Rotation:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
c: numpy.ndarray of shape (...,3)
|
||||
c : numpy.ndarray of shape (...,3)
|
||||
Cubochoric vector: (c_1, c_2, c_3), max(c_i) < 1/2*π^(2/3).
|
||||
P: integer ∈ {-1,1}, optional
|
||||
P : integer ∈ {-1,1}, optional
|
||||
Convention used. Defaults to -1.
|
||||
|
||||
"""
|
||||
|
|
|
@ -854,11 +854,6 @@ class TestRotation:
|
|||
rot = Rotation.from_basis(om,False,reciprocal=reciprocal)
|
||||
assert np.isclose(np.linalg.det(rot.as_matrix()),1.0)
|
||||
|
||||
def test_directions(self):
|
||||
hkl = np.array([0.,0.,1.])
|
||||
uvw = np.array([1.,0.,0.])
|
||||
assert np.allclose(Rotation.from_directions(hkl,uvw).as_matrix(),np.eye(3))
|
||||
|
||||
@pytest.mark.parametrize('shape',[None,1,(4,4)])
|
||||
def test_random(self,shape):
|
||||
Rotation.from_random(shape)
|
||||
|
|
Loading…
Reference in New Issue