inSST and inversePole now can consider the secondary SST related to improper rotations. Secondary SST is immediately neighboring (positively rotated around Z).

This commit is contained in:
Philip Eisenlohr 2015-10-22 21:15:15 +00:00
parent 1f356a6833
commit 15963391aa
1 changed files with 48 additions and 19 deletions

View File

@ -688,9 +688,11 @@ class Symmetry:
def inSST(self,
vector,
improper = False,
color = False):
'''
Check whether given vector falls into standard stereographic triangle of own symmetry.
Improper considers only vectors with z >= 0, hence uses two neighboring SSTs.
Return inverse pole figure color if requested.
'''
# basis = {'cubic' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
@ -706,33 +708,59 @@ class Symmetry:
# [1.,0.,0.], # direction of green
# [0.,1.,0.]]).transpose()), # direction of blue
# }
if self.lattice == 'cubic':
basis = np.array([ [-1. , 0. , 1. ],
[ np.sqrt(2.), -np.sqrt(2.), 0. ],
[ 0. , np.sqrt(3.), 0. ] ])
basis = {'proper':np.array([ [-1. , 0. , 1. ],
[ np.sqrt(2.) , -np.sqrt(2.) , 0. ],
[ 0. , np.sqrt(3.) , 0. ] ]),
'improper':np.array([ [ 0. , -1. , 1. ],
[-np.sqrt(2.) , np.sqrt(2.) , 0. ],
[ np.sqrt(3.) , 0. , 0. ] ]),
}
elif self.lattice == 'hexagonal':
basis = np.array([ [ 0. , 0. , 1. ],
[ 1. , -np.sqrt(3.), 0. ],
[ 0. , 2. , 0. ] ])
basis = {'proper':np.array([ [ 0. , 0. , 1. ],
[ 1. , -np.sqrt(3.), 0. ],
[ 0. , 2. , 0. ] ]),
'improper':np.array([ [ 0. , 0. , 1. ],
[-1. , np.sqrt(3.) , 0. ],
[ np.sqrt(3) , -1. , 0. ] ]),
}
elif self.lattice == 'tetragonal':
basis = np.array([ [ 0. , 0. , 1. ],
[ 1. , -1. , 0. ],
[ 0. , np.sqrt(2.), 0. ] ])
basis = {'proper':np.array([ [ 0. , 0. , 1. ],
[ 1. , -1. , 0. ],
[ 0. , np.sqrt(2.), 0. ] ]),
'improper':np.array([ [ 0. , 0. , 1. ],
[-1. , 1. , 0. ],
[ np.sqrt(2.) , 0. , 0. ] ]),
}
elif self.lattice == 'orthorhombic':
basis = np.array([ [ 0., 0., 1.],
[ 1., 0., 0.],
[ 0., 1., 0.] ])
basis = {'proper':np.array([ [ 0., 0., 1.],
[ 1., 0., 0.],
[ 0., 1., 0.] ]),
'improper':np.array([ [ 0., 0., 1.],
[-1., 0., 0.],
[ 0., 1., 0.] ]),
}
else:
basis = np.zeros((3,3),dtype=float)
basis = {'proper':np.zeros((3,3),dtype=float),
'improper':np.zeros((3,3),dtype=float),
}
if np.all(basis == 0.0):
theComponents = -np.ones(3,'d')
inSST = np.all(theComponents >= 0.0)
else:
v = np.array(vector,dtype = float)
v[2] = abs(v[2]) # z component projects identical for positive and negative values
theComponents = np.dot(basis,v)
inSST = np.all(theComponents >= 0.0)
if improper: # check both proper ...
theComponents = np.dot(basis['proper'],v)
inSST = np.all(theComponents >= 0.0)
if not inSST: # ... and improper SST
theComponents = np.dot(basis['improper'],v)
inSST = np.all(theComponents >= 0.0)
else:
v[2] = abs(v[2]) # z component projects identical for positive and negative values
theComponents = np.dot(basis['proper'],v)
inSST = np.all(theComponents >= 0.0)
if color: # have to return color array
if inSST:
@ -878,6 +906,7 @@ class Orientation:
def inversePole(self,
axis,
improper = False,
SST = True):
'''
axis rotated according to orientation (using crystal symmetry to ensure location falls into SST)
@ -886,11 +915,11 @@ class Orientation:
if SST: # pole requested to be within SST
for i,q in enumerate(self.symmetry.equivalentQuaternions(self.quaternion)): # test all symmetric equivalent quaternions
pole = q.conjugated()*axis # align crystal direction to axis
if self.symmetry.inSST(pole): break # found SST version
if self.symmetry.inSST(pole,improper): break # found SST version
else:
pole = self.quaternion.conjugated()*axis # align crystal direction to axis
return pole
return (pole,i if SST else 0)
def IPFcolor(self,axis):
'''