polishing
This commit is contained in:
parent
57177303b3
commit
13f4d77791
|
@ -1,4 +1,5 @@
|
|||
import multiprocessing as mp
|
||||
from multiprocessing.synchronize import Lock
|
||||
import re
|
||||
import fnmatch
|
||||
import os
|
||||
|
@ -11,7 +12,6 @@ from functools import partial
|
|||
from collections import defaultdict
|
||||
from collections.abc import Iterable
|
||||
from typing import Union, Optional, Callable, Any, Sequence, Literal, Dict, List, Tuple
|
||||
from multiprocessing.synchronize import Lock as LockBase
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
|
@ -24,21 +24,20 @@ from . import grid_filters
|
|||
from . import mechanics
|
||||
from . import tensor
|
||||
from . import util
|
||||
|
||||
from ._typehints import FloatSequence
|
||||
from ._typehints import FloatSequence, IntSequence
|
||||
|
||||
h5py3 = h5py.__version__[0] == '3'
|
||||
|
||||
chunk_size = 1024**2//8 # for compression in HDF5
|
||||
prefix_inc = 'increment_'
|
||||
|
||||
def _read(dataset: h5py._hl.dataset.Dataset):
|
||||
def _read(dataset: h5py._hl.dataset.Dataset) -> np.ndarray:
|
||||
"""Read a dataset and its metadata into a numpy.ndarray."""
|
||||
metadata = {k:(v.decode() if not h5py3 and type(v) is bytes else v) for k,v in dataset.attrs.items()}
|
||||
dtype = np.dtype(dataset.dtype,metadata=metadata) # type: ignore
|
||||
return np.array(dataset,dtype=dtype)
|
||||
|
||||
def _match(requested: Union[None, str, Sequence[Any], np.ndarray],
|
||||
def _match(requested,
|
||||
existing: h5py._hl.base.KeysViewHDF5) -> List[Any]:
|
||||
"""Find matches among two sets of labels."""
|
||||
def flatten_list(list_of_lists):
|
||||
|
@ -180,11 +179,11 @@ class Result:
|
|||
|
||||
def _manage_view(self,
|
||||
action: Literal['set', 'add', 'del'],
|
||||
increments=None,
|
||||
times=None,
|
||||
phases=None,
|
||||
homogenizations=None,
|
||||
fields=None) -> "Result":
|
||||
increments: Union[int, Sequence[int], str, Sequence[str], bool] = None,
|
||||
times: Union[float, Sequence[float], str, Sequence[str], bool] = None,
|
||||
phases: Union[str, Sequence[str], bool] = None,
|
||||
homogenizations: Union[str, Sequence[str], bool] = None,
|
||||
fields: Union[str, Sequence[str], bool] = None) -> "Result":
|
||||
"""
|
||||
Manages the visibility of the groups.
|
||||
|
||||
|
@ -212,8 +211,7 @@ class Result:
|
|||
datasets = '*'
|
||||
elif datasets is False:
|
||||
datasets = []
|
||||
choice = list(datasets).copy() if hasattr(datasets,'__iter__') and not isinstance(datasets,str) else \
|
||||
[datasets]
|
||||
choice = [datasets] if not hasattr(datasets,'__iter__') or isinstance(datasets,str) else list(datasets) # type: ignore
|
||||
|
||||
if what == 'increments':
|
||||
choice = [c if isinstance(c,str) and c.startswith(prefix_inc) else
|
||||
|
@ -224,15 +222,15 @@ class Result:
|
|||
if choice == ['*']:
|
||||
choice = self.increments
|
||||
else:
|
||||
iterator = map(float,choice)
|
||||
iterator = map(float,choice) # type: ignore
|
||||
choice = []
|
||||
for c in iterator:
|
||||
idx = np.searchsorted(self.times,c)
|
||||
if idx >= len(self.times): continue
|
||||
if np.isclose(c,self.times[idx]):
|
||||
choice.append(self.increments[idx])
|
||||
elif np.isclose(c,self.times[idx+1]): #type: ignore
|
||||
choice.append(self.increments[idx+1]) #type: ignore
|
||||
elif np.isclose(c,self.times[idx+1]): # type: ignore
|
||||
choice.append(self.increments[idx+1]) # type: ignore
|
||||
|
||||
valid = _match(choice,getattr(self,what))
|
||||
existing = set(self.visible[what])
|
||||
|
@ -686,8 +684,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_stress_Cauchy(P: Dict[str, np.ndarray],
|
||||
F: Dict[str, np.ndarray]) -> Dict[str, Any]:
|
||||
def _add_stress_Cauchy(P: Dict[str, Any], F: Dict[str, Any]) -> Dict[str, Any]:
|
||||
return {
|
||||
'data': mechanics.stress_Cauchy(P['data'],F['data']),
|
||||
'label': 'sigma',
|
||||
|
@ -717,7 +714,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_determinant(T: Dict[str, np.ndarray]) -> Dict[str, Any]:
|
||||
def _add_determinant(T: Dict[str, Any]) -> Dict[str, Any]:
|
||||
return {
|
||||
'data': np.linalg.det(T['data']),
|
||||
'label': f"det({T['label']})",
|
||||
|
@ -749,7 +746,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_deviator(T: Dict[str, np.ndarray]) -> Dict[str, Any]:
|
||||
def _add_deviator(T: Dict[str, Any]) -> Dict[str, Any]:
|
||||
return {
|
||||
'data': tensor.deviatoric(T['data']),
|
||||
'label': f"s_{T['label']}",
|
||||
|
@ -781,8 +778,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_eigenvalue(T_sym: Dict[str, np.ndarray],
|
||||
eigenvalue: Literal['max, mid, minimum']) -> Dict[str, Any]:
|
||||
def _add_eigenvalue(T_sym: Dict[str, Any], eigenvalue: Literal['max, mid, min']) -> Dict[str, Any]:
|
||||
if eigenvalue == 'max':
|
||||
label,p = 'maximum',2
|
||||
elif eigenvalue == 'mid':
|
||||
|
@ -790,7 +786,7 @@ class Result:
|
|||
elif eigenvalue == 'min':
|
||||
label,p = 'minimum',0
|
||||
else:
|
||||
raise TypeError(f'invalid eigenvalue passed to function: {eigenvalue}')
|
||||
raise ValueError(f'invalid value for "eigenvalue": {eigenvalue}')
|
||||
|
||||
return {
|
||||
'data': tensor.eigenvalues(T_sym['data'])[:,p],
|
||||
|
@ -803,7 +799,7 @@ class Result:
|
|||
}
|
||||
def add_eigenvalue(self,
|
||||
T_sym: str,
|
||||
eigenvalue: Literal['max', 'mid', 'minimum'] = 'max'):
|
||||
eigenvalue: Literal['max', 'mid', 'min'] = 'max'):
|
||||
"""
|
||||
Add eigenvalues of symmetric tensor.
|
||||
|
||||
|
@ -827,14 +823,16 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_eigenvector(T_sym: Dict[str, np.ndarray],
|
||||
eigenvalue: Literal['max', 'mid', 'minimum']) -> Dict[str, Any]:
|
||||
def _add_eigenvector(T_sym: Dict[str, Any], eigenvalue: Literal['max', 'mid', 'min']) -> Dict[str, Any]:
|
||||
if eigenvalue == 'max':
|
||||
label,p = 'maximum',2
|
||||
elif eigenvalue == 'mid':
|
||||
label,p = 'intermediate',1
|
||||
elif eigenvalue == 'min':
|
||||
label,p = 'minimum',0
|
||||
else:
|
||||
raise ValueError(f'invalid value for "eigenvalue": {eigenvalue}')
|
||||
|
||||
return {
|
||||
'data': tensor.eigenvectors(T_sym['data'])[:,p],
|
||||
'label': f"v_{eigenvalue}({T_sym['label']})",
|
||||
|
@ -847,7 +845,7 @@ class Result:
|
|||
}
|
||||
def add_eigenvector(self,
|
||||
T_sym: str,
|
||||
eigenvalue: Literal['max', 'mid', 'minimum'] = 'max'):
|
||||
eigenvalue: Literal['max', 'mid', 'min'] = 'max'):
|
||||
"""
|
||||
Add eigenvector of symmetric tensor.
|
||||
|
||||
|
@ -864,8 +862,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_IPF_color(l: FloatSequence,
|
||||
q: Dict[str, Any]) -> Dict[str, Any]:
|
||||
def _add_IPF_color(l: FloatSequence, q: Dict[str, Any]) -> Dict[str, Any]:
|
||||
m = util.scale_to_coprime(np.array(l))
|
||||
lattice = q['meta']['lattice']
|
||||
o = Orientation(rotation = q['data'],lattice=lattice)
|
||||
|
@ -881,7 +878,7 @@ class Result:
|
|||
}
|
||||
}
|
||||
def add_IPF_color(self,
|
||||
l: np.ndarray,
|
||||
l: FloatSequence,
|
||||
q: str = 'O'):
|
||||
"""
|
||||
Add RGB color tuple of inverse pole figure (IPF) color.
|
||||
|
@ -931,8 +928,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_equivalent_Mises(T_sym: Dict[str, np.ndarray],
|
||||
kind: str) -> Dict[str, Any]:
|
||||
def _add_equivalent_Mises(T_sym: Dict[str, Any], kind: str) -> Dict[str, Any]:
|
||||
k = kind
|
||||
if k is None:
|
||||
if T_sym['meta']['unit'] == '1':
|
||||
|
@ -985,8 +981,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_norm(x: Dict[str, np.ndarray],
|
||||
ord: int) -> Dict[str, Any]:
|
||||
def _add_norm(x: Dict[str, Any], ord: Union[int, Literal['fro', 'nuc']]) -> Dict[str, Any]:
|
||||
o = ord
|
||||
if len(x['data'].shape) == 2:
|
||||
axis: Union[int, Tuple[int, int]] = 1
|
||||
|
@ -1026,8 +1021,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_stress_second_Piola_Kirchhoff(P: Dict[str, np.ndarray],
|
||||
F: Dict[str, np.ndarray]) -> Dict[str, Any]:
|
||||
def _add_stress_second_Piola_Kirchhoff(P: Dict[str, Any], F: Dict[str, Any]) -> Dict[str, Any]:
|
||||
return {
|
||||
'data': mechanics.stress_second_Piola_Kirchhoff(P['data'],F['data']),
|
||||
'label': 'S',
|
||||
|
@ -1086,8 +1080,8 @@ class Result:
|
|||
def add_pole(self,
|
||||
q: str = 'O',
|
||||
*,
|
||||
uvw: np.ndarray = None,
|
||||
hkl: np.ndarray = None,
|
||||
uvw: FloatSequence = None,
|
||||
hkl: FloatSequence = None,
|
||||
with_symmetry: bool = False):
|
||||
"""
|
||||
Add lab frame vector along lattice direction [uvw] or plane normal (hkl).
|
||||
|
@ -1097,7 +1091,7 @@ class Result:
|
|||
q : str
|
||||
Name of the dataset containing the crystallographic orientation as quaternions.
|
||||
Defaults to 'O'.
|
||||
uvw|hkl : numpy.ndarray of shape (...,3)
|
||||
uvw|hkl : numpy.ndarray of shape (3)
|
||||
Miller indices of crystallographic direction or plane normal.
|
||||
with_symmetry : bool, optional
|
||||
Calculate all N symmetrically equivalent vectors.
|
||||
|
@ -1107,7 +1101,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_rotation(F: Dict[str, np.ndarray]) -> Dict[str, Any]:
|
||||
def _add_rotation(F: Dict[str, Any]) -> Dict[str, Any]:
|
||||
return {
|
||||
'data': mechanics.rotation(F['data']).as_matrix(),
|
||||
'label': f"R({F['label']})",
|
||||
|
@ -1139,7 +1133,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_spherical(T: Dict[str, np.ndarray]) -> Dict[str, Any]:
|
||||
def _add_spherical(T: Dict[str, Any]) -> Dict[str, Any]:
|
||||
return {
|
||||
'data': tensor.spherical(T['data'],False),
|
||||
'label': f"p_{T['label']}",
|
||||
|
@ -1171,8 +1165,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_strain(F: Dict[str, np.ndarray],
|
||||
t: str, m: float) -> Dict[str, Any]:
|
||||
def _add_strain(F: Dict[str, Any], t: Literal['V', 'U'], m: float) -> Dict[str, Any]:
|
||||
return {
|
||||
'data': mechanics.strain(F['data'],t,m),
|
||||
'label': f"epsilon_{t}^{m}({F['label']})",
|
||||
|
@ -1221,8 +1214,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_stretch_tensor(F: Dict[str, np.ndarray],
|
||||
t: str) -> Dict[str, Any]:
|
||||
def _add_stretch_tensor(F: Dict[str, Any], t: str) -> Dict[str, Any]:
|
||||
return {
|
||||
'data': (mechanics.stretch_left if t.upper() == 'V' else mechanics.stretch_right)(F['data']),
|
||||
'label': f"{t}({F['label']})",
|
||||
|
@ -1252,8 +1244,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_curl(f: Dict[str, np.ndarray],
|
||||
size: np.ndarray) -> Dict[str, Any]:
|
||||
def _add_curl(f: Dict[str, Any], size: np.ndarray) -> Dict[str, Any]:
|
||||
return {
|
||||
'data': grid_filters.curl(size,f['data']),
|
||||
'label': f"curl({f['label']})",
|
||||
|
@ -1282,8 +1273,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_divergence(f: Dict[str, np.ndarray],
|
||||
size: np.ndarray) -> Dict[str, Any]:
|
||||
def _add_divergence(f: Dict[str, Any], size: np.ndarray) -> Dict[str, Any]:
|
||||
return {
|
||||
'data': grid_filters.divergence(size,f['data']),
|
||||
'label': f"divergence({f['label']})",
|
||||
|
@ -1312,8 +1302,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_gradient(f: Dict[str, np.ndarray],
|
||||
size: np.ndarray) -> Dict[str, Any]:
|
||||
def _add_gradient(f: Dict[str, Any], size: np.ndarray) -> Dict[str, Any]:
|
||||
return {
|
||||
'data': grid_filters.gradient(size,f['data'] if len(f['data'].shape) == 4 else \
|
||||
f['data'].reshape(f['data'].shape+(1,))),
|
||||
|
@ -1406,7 +1395,7 @@ class Result:
|
|||
callback: Callable,
|
||||
datasets: Dict[str, str],
|
||||
args: Dict[str, str],
|
||||
lock: LockBase) -> List[Union[None, Any]]:
|
||||
lock: Lock) -> List[Union[None, Any]]:
|
||||
"""Execute job for _add_generic_pointwise."""
|
||||
try:
|
||||
datasets_in = {}
|
||||
|
@ -1619,7 +1608,7 @@ class Result:
|
|||
f.write(xml.dom.minidom.parseString(ET.tostring(xdmf).decode()).toprettyxml())
|
||||
|
||||
|
||||
def _mappings(self) -> Tuple[List[Dict[Any, np.ndarray]], List[Dict[Any, Any]], Dict[Any, np.ndarray], Dict[Any, Any]]:
|
||||
def _mappings(self):
|
||||
"""Mappings to place data spatially."""
|
||||
with h5py.File(self.fname,'r') as f:
|
||||
|
||||
|
@ -1642,7 +1631,7 @@ class Result:
|
|||
def export_VTK(self,
|
||||
output: Union[str,list] = '*',
|
||||
mode: str = 'cell',
|
||||
constituents: Optional[Union[int, list]] = None,
|
||||
constituents: IntSequence = None,
|
||||
fill_float: float = np.nan,
|
||||
fill_int: int = 0,
|
||||
parallel: bool = True):
|
||||
|
@ -1688,7 +1677,7 @@ class Result:
|
|||
N_digits = int(np.floor(np.log10(max(1,self.incs[-1]))))+1
|
||||
|
||||
constituents_ = constituents if isinstance(constituents,Iterable) else \
|
||||
(range(self.N_constituents) if constituents is None else [constituents])
|
||||
(range(self.N_constituents) if constituents is None else [constituents]) # type: ignore
|
||||
|
||||
suffixes = [''] if self.N_constituents == 1 or isinstance(constituents,int) else \
|
||||
[f'#{c}' for c in constituents_]
|
||||
|
@ -1739,7 +1728,7 @@ class Result:
|
|||
def get(self,
|
||||
output: Union[str, List[str]] = '*',
|
||||
flatten: bool = True,
|
||||
prune: bool = True) -> Optional[Dict[str, Dict[str, Any]]]:
|
||||
prune: bool = True):
|
||||
"""
|
||||
Collect data per phase/homogenization reflecting the group/folder structure in the DADF5 file.
|
||||
|
||||
|
@ -1788,7 +1777,7 @@ class Result:
|
|||
output: Union[str, list] = '*',
|
||||
flatten: bool = True,
|
||||
prune: bool = True,
|
||||
constituents: Union[None, int, List[int]] = None,
|
||||
constituents: IntSequence = None,
|
||||
fill_float: float = np.nan,
|
||||
fill_int: int = 0) -> Optional[Dict[str, Dict[str, Dict[str, Dict[str, Union[np.ma.MaskedArray]]]]]]:
|
||||
"""
|
||||
|
@ -1830,7 +1819,7 @@ class Result:
|
|||
"""
|
||||
r: Dict[str, Dict[str, Dict[str, Dict[str, Union[np.ma.MaskedArray]]]]] = {}
|
||||
|
||||
constituents_: Sequence[int] = constituents if isinstance(constituents,Iterable) else \
|
||||
constituents_ = list(map(int,constituents)) if isinstance(constituents,Iterable) else \
|
||||
(range(self.N_constituents) if constituents is None else [constituents])
|
||||
|
||||
suffixes = [''] if self.N_constituents == 1 or isinstance(constituents,int) else \
|
||||
|
@ -1893,7 +1882,7 @@ class Result:
|
|||
Defaults to False.
|
||||
|
||||
"""
|
||||
def export(name: str,obj: Union[h5py.Dataset,h5py.Group],output: Union[str,list],overwrite: bool):
|
||||
def export(name: str, obj: Union[h5py.Dataset,h5py.Group], output: Union[str,list], overwrite: bool):
|
||||
if type(obj) == h5py.Dataset and _match(output,[name]):
|
||||
d = obj.attrs['description'] if h5py3 else obj.attrs['description'].decode()
|
||||
if not Path(name).exists() or overwrite:
|
||||
|
|
Loading…
Reference in New Issue