small polishing

This commit is contained in:
Martin Diehl 2020-07-14 07:18:32 +02:00
parent 2b58b3df97
commit 133aa9111c
1 changed files with 79 additions and 80 deletions

View File

@ -21,24 +21,24 @@ module discretization_marc
implicit none
private
type tCellNodeDefinition
integer, dimension(:,:), allocatable :: parents
integer, dimension(:,:), allocatable :: weights
end type tCellNodeDefinition
type(tCellNodeDefinition), dimension(:), allocatable :: cellNodeDefinition
real(pReal), public, protected :: &
mesh_unitlength !< physical length of one unit in mesh
integer, dimension(:), allocatable, public :: &
mesh_FEM2DAMASK_elem, & !< DAMASK element ID for Marc element ID
mesh_FEM2DAMASK_node !< DAMASK node ID for Marc node ID
public :: &
discretization_marc_init
contains
!--------------------------------------------------------------------------------------------------
@ -68,16 +68,16 @@ subroutine discretization_marc_init
connectivity_elem
real(pReal), dimension(:,:,:,:),allocatable :: &
unscaledNormals
class(tNode), pointer :: &
num_commercialFEM
write(6,'(/,a)') ' <<<+- discretization_marc init -+>>>'; flush(6)
!---------------------------------------------------------------------------------
! read debug parameters
debug_e = debug_root%get_asInt('element',defaultVal=1)
debug_i = debug_root%get_asInt('integrationpoint',defaultVal=1)
debug_e = debug_root%get_asInt('element',defaultVal=1)
debug_i = debug_root%get_asInt('integrationpoint',defaultVal=1)
!--------------------------------------------------------------------------------
! read numerics parameter and do sanity check
@ -90,10 +90,10 @@ subroutine discretization_marc_init
if (debug_e < 1 .or. debug_e > nElems) call IO_error(602,ext_msg='element')
if (debug_i < 1 .or. debug_i > elem%nIPs) call IO_error(602,ext_msg='IP')
FEsolving_execElem = [1,nElems]
FEsolving_execIP = [1,elem%nIPs]
allocate(cellNodeDefinition(elem%nNodes-1))
allocate(connectivity_cell(elem%NcellNodesPerCell,elem%nIPs,nElems))
call buildCells(connectivity_cell,cellNodeDefinition,&
@ -108,7 +108,7 @@ subroutine discretization_marc_init
call discretization_init(microstructureAt,homogenizationAt,&
IP_reshaped,&
node0_cell)
call writeGeometry(elem,connectivity_elem,&
reshape(connectivity_cell,[elem%NcellNodesPerCell,elem%nIPs*nElems]),&
node0_cell,IP_reshaped)
@ -120,7 +120,7 @@ subroutine discretization_marc_init
call geometry_plastic_nonlocal_setIParea(norm2(unscaledNormals,1))
call geometry_plastic_nonlocal_setIPareaNormal(unscaledNormals/spread(norm2(unscaledNormals,1),1,3))
call geometry_plastic_nonlocal_results
end subroutine discretization_marc_init
@ -139,7 +139,7 @@ subroutine writeGeometry(elem, &
real(pReal), dimension(:,:), intent(in) :: &
coordinates_nodes, &
coordinates_points
integer, dimension(:,:), allocatable :: &
connectivity_temp
real(pReal), dimension(:,:), allocatable :: &
@ -147,24 +147,24 @@ subroutine writeGeometry(elem, &
call results_openJobFile
call results_closeGroup(results_addGroup('geometry'))
connectivity_temp = connectivity_elem
call results_writeDataset('geometry',connectivity_temp,'T_e',&
'connectivity of the elements','-')
connectivity_temp = connectivity_cell
call results_writeDataset('geometry',connectivity_temp,'T_c', &
'connectivity of the cells','-')
call results_addAttribute('VTK_TYPE',elem%vtkType,'geometry/T_c')
coordinates_temp = coordinates_nodes
call results_writeDataset('geometry',coordinates_temp,'x_n', &
'initial coordinates of the nodes','m')
coordinates_temp = coordinates_points
call results_writeDataset('geometry',coordinates_temp,'x_p', &
'initial coordinates of the materialpoints','m')
call results_closeJobFile
end subroutine writeGeometry
@ -183,7 +183,7 @@ subroutine inputRead(elem,node0_elem,connectivity_elem,microstructureAt,homogeni
integer, dimension(:), allocatable, intent(out) :: &
microstructureAt, &
homogenizationAt
integer :: &
fileFormatVersion, &
hypoelasticTableStyle, &
@ -193,7 +193,7 @@ subroutine inputRead(elem,node0_elem,connectivity_elem,microstructureAt,homogeni
integer, dimension(:), allocatable :: &
matNumber !< material numbers for hypoelastic material
character(len=pStringLen), dimension(:), allocatable :: inputFile !< file content, separated per lines
character(len=pStringLen), dimension(:), allocatable :: &
nameElemSet
integer, dimension(:,:), allocatable :: &
@ -209,8 +209,8 @@ subroutine inputRead(elem,node0_elem,connectivity_elem,microstructureAt,homogeni
hypoelasticTableStyle,inputFile)
call inputRead_NnodesAndElements(nNodes,nElems,&
inputFile)
call inputRead_mapElemSets(nameElemSet,mapElemSet,&
inputFile)
@ -239,13 +239,13 @@ end subroutine inputRead
!> @brief Figures out version of Marc input file format
!--------------------------------------------------------------------------------------------------
subroutine inputRead_fileFormat(fileFormat,fileContent)
integer, intent(out) :: fileFormat
character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines
integer, allocatable, dimension(:) :: chunkPos
integer :: l
do l = 1, size(fileContent)
chunkPos = IO_stringPos(fileContent(l))
if(chunkPos(1) < 2) cycle
@ -262,13 +262,13 @@ end subroutine inputRead_fileFormat
!> @brief Figures out table styles for initial cond and hypoelastic
!--------------------------------------------------------------------------------------------------
subroutine inputRead_tableStyles(initialcond,hypoelastic,fileContent)
integer, intent(out) :: initialcond, hypoelastic
character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines
integer, allocatable, dimension(:) :: chunkPos
integer :: l
initialcond = 0
hypoelastic = 0
@ -290,7 +290,7 @@ end subroutine inputRead_tableStyles
!--------------------------------------------------------------------------------------------------
subroutine inputRead_matNumber(matNumber, &
tableStyle,fileContent)
integer, allocatable, dimension(:), intent(out) :: matNumber
integer, intent(in) :: tableStyle
character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines
@ -326,7 +326,7 @@ end subroutine inputRead_matNumber
!--------------------------------------------------------------------------------------------------
subroutine inputRead_NnodesAndElements(nNodes,nElems,&
fileContent)
integer, intent(out) :: nNodes, nElems
character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines
@ -355,7 +355,7 @@ end subroutine inputRead_NnodesAndElements
!--------------------------------------------------------------------------------------------------
subroutine inputRead_NelemSets(nElemSets,maxNelemInSet,&
fileContent)
integer, intent(out) :: nElemSets, maxNelemInSet
character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines
@ -401,7 +401,7 @@ end subroutine inputRead_NelemSets
!--------------------------------------------------------------------------------------------------
subroutine inputRead_mapElemSets(nameElemSet,mapElemSet,&
fileContent)
character(len=pStringLen), dimension(:), allocatable, intent(out) :: nameElemSet
integer, dimension(:,:), allocatable, intent(out) :: mapElemSet
character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines
@ -434,7 +434,7 @@ end subroutine inputRead_mapElemSets
!--------------------------------------------------------------------------------------------------
subroutine inputRead_mapElems(FEM2DAMASK, &
nElems,nNodesPerElem,fileContent)
integer, allocatable, dimension(:), intent(out) :: FEM2DAMASK
integer, intent(in) :: nElems, & !< number of elements
@ -515,10 +515,10 @@ end subroutine inputRead_mapNodes
subroutine inputRead_elemNodes(nodes, &
nNode,fileContent)
real(pReal), allocatable, dimension(:,:), intent(out) :: nodes
real(pReal), allocatable, dimension(:,:), intent(out) :: nodes
integer, intent(in) :: nNode
character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines
integer, allocatable, dimension(:) :: chunkPos
integer :: i,j,m,l
@ -580,15 +580,15 @@ subroutine inputRead_elemType(elem, &
endif
enddo
contains
contains
!--------------------------------------------------------------------------------------------------
!> @brief mapping of Marc element types to internal representation
!--------------------------------------------------------------------------------------------------
integer function mapElemtype(what)
character(len=*), intent(in) :: what
select case (IO_lc(what))
case ( '6')
mapElemtype = 1 ! Two-dimensional Plane Strain Triangle
@ -630,20 +630,20 @@ end subroutine inputRead_elemType
!> @brief Stores node IDs
!--------------------------------------------------------------------------------------------------
function inputRead_connectivityElem(nElem,nNodes,fileContent)
integer, intent(in) :: &
nElem, &
nNodes !< number of nodes per element
character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines
integer, dimension(nNodes,nElem) :: &
inputRead_connectivityElem
integer, allocatable, dimension(:) :: chunkPos
integer, dimension(1+nElem) :: contInts
integer :: i,k,j,t,e,l,nNodesAlreadyRead
do l = 1, size(fileContent)
chunkPos = IO_stringPos(fileContent(l))
if(chunkPos(1) < 1) cycle
@ -694,7 +694,7 @@ subroutine inputRead_microstructureAndHomogenization(microstructureAt,homogeniza
character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines
integer, allocatable, dimension(:) :: chunkPos
integer, dimension(1+nElem) :: contInts
integer :: i,j,t,sv,myVal,e,nNodesAlreadyRead,l,k,m
@ -727,42 +727,41 @@ subroutine inputRead_microstructureAndHomogenization(microstructureAt,homogeniza
endif
endif
enddo
end subroutine inputRead_microstructureAndHomogenization
!--------------------------------------------------------------------------------------------------
!> @brief Calculates cell node coordinates from element node coordinates
!> @brief Determine cell connectivity and definition of cell nodes
!--------------------------------------------------------------------------------------------------
subroutine buildCells(connectivity_cell,cellNodeDefinition, &
elem,connectivity_elem)
type(tCellNodeDefinition), dimension(:), intent(out) :: cellNodeDefinition ! definition of cell nodes for increasing number of parents
integer, dimension(:,:,:),intent(out) :: connectivity_cell
type(tElement), intent(in) :: elem ! element definition
integer, dimension(:,:), intent(in) :: connectivity_elem ! connectivity of the elements
integer,dimension(:), allocatable :: candidates_local
integer,dimension(:,:), allocatable :: parentsAndWeights,candidates_global
integer :: e, n, c, p, s,i,m,j,nParentNodes,nCellNode,Nelem,candidateID
integer :: e,n,c,p,s,i,m,j,&
nParentNodes,nCellNode,Nelem,candidateID
Nelem = size(connectivity_elem,2)
!---------------------------------------------------------------------------------------------------
! initialize global connectivity to negative local connectivity
connectivity_cell = -spread(elem%cell,3,Nelem) ! local cell node ID
!---------------------------------------------------------------------------------------------------
! set connectivity of cell nodes that coincide with FE nodes (defined by 1 parent node)
! and renumber local (negative) to global (positive) node ID
do e = 1, Nelem
do c = 1, elem%NcellNodes
realNode: if (count(elem%cellNodeParentNodeWeights(:,c) /= 0) == 1) then
where(connectivity_cell(:,:,e) == -c)
connectivity_cell(:,:,e) = connectivity_elem(c,e)
end where
where(connectivity_cell(:,:,e) == -c) connectivity_cell(:,:,e) = connectivity_elem(c,e)
endif realNode
enddo
enddo
@ -772,7 +771,7 @@ subroutine buildCells(connectivity_cell,cellNodeDefinition, &
!---------------------------------------------------------------------------------------------------
! set connectivity of cell nodes that are defined by 2,...,nNodes real nodes
do nParentNodes = 2, elem%nNodes
! get IDs of local cell nodes that are defined by the current number of parent nodes
candidates_local = [integer::]
do c = 1, elem%NcellNodes
@ -780,11 +779,11 @@ subroutine buildCells(connectivity_cell,cellNodeDefinition, &
candidates_local = [candidates_local,c]
enddo
s = size(candidates_local)
if (allocated(candidates_global)) deallocate(candidates_global)
allocate(candidates_global(nParentNodes*2+2,s*Nelem)) ! stores parent node ID + weight together with element ID and cellnode id (local)
parentsAndWeights = reshape([(0, i = 1,2*nParentNodes)],[nParentNodes,2]) ! (re)allocate
do e = 1, Nelem
do i = 1, size(candidates_local)
candidateID = (e-1)*size(candidates_local)+i ! including duplicates, runs to (Nelem*size(candidates_local))
@ -792,18 +791,18 @@ subroutine buildCells(connectivity_cell,cellNodeDefinition, &
p = 0
do j = 1, size(elem%cellNodeParentNodeWeights(:,c))
if (elem%cellNodeParentNodeWeights(j,c) /= 0) then ! real node 'j' partly defines cell node 'c'
p = p + 1
p = p + 1
parentsAndWeights(p,1:2) = [connectivity_elem(j,e),elem%cellNodeParentNodeWeights(j,c)]
endif
enddo
! store (and order) real node IDs and their weights together with the element number and local ID
do p = 1, nParentNodes
m = maxloc(parentsAndWeights(:,1),1)
candidates_global(p, candidateID) = parentsAndWeights(m,1)
candidates_global(p+nParentNodes, candidateID) = parentsAndWeights(m,2)
candidates_global(nParentNodes*2+1:nParentNodes*2+2,candidateID) = [e,c]
parentsAndWeights(m,1) = -huge(parentsAndWeights(m,1)) ! out of the competition
enddo
enddo
@ -811,7 +810,7 @@ subroutine buildCells(connectivity_cell,cellNodeDefinition, &
! sort according to real node IDs + weight (from left to right)
call math_sort(candidates_global,sortDim=1) ! sort according to first column
do p = 2, nParentNodes*2
n = 1
do while(n <= size(candidates_local)*Nelem)
@ -826,11 +825,11 @@ subroutine buildCells(connectivity_cell,cellNodeDefinition, &
n = e+1
enddo
enddo
i = uniqueRows(candidates_global(1:2*nParentNodes,:))
allocate(cellNodeDefinition(nParentNodes-1)%parents(i,nParentNodes))
allocate(cellNodeDefinition(nParentNodes-1)%weights(i,nParentNodes))
i = 1
n = 1
do while(n <= size(candidates_local)*Nelem)
@ -846,7 +845,7 @@ subroutine buildCells(connectivity_cell,cellNodeDefinition, &
where (connectivity_cell(:,:,candidates_global(nParentNodes*2+1,n+j)) == -candidates_global(nParentNodes*2+2,n+j)) ! still locally defined
connectivity_cell(:,:,candidates_global(nParentNodes*2+1,n+j)) = nCellNode + 1 ! gets current new cell node id
end where
j = j+1
enddo
nCellNode = nCellNode + 1
@ -863,7 +862,7 @@ subroutine buildCells(connectivity_cell,cellNodeDefinition, &
!> @brief count unique rows (same rows need to be stored consecutively)
!------------------------------------------------------------------------------------------------
pure function uniqueRows(A) result(u)
integer, dimension(:,:), intent(in) :: A !< array, rows need to be sorted
integer :: &
@ -882,14 +881,14 @@ subroutine buildCells(connectivity_cell,cellNodeDefinition, &
u = u+1
r = r+d
enddo
end function uniqueRows
end subroutine buildCells
!--------------------------------------------------------------------------------------------------
!> @brief Calculates cell node coordinates from element node coordinates
!> @brief Calculate cell node coordinates from element node coordinates
!--------------------------------------------------------------------------------------------------
subroutine buildCellNodes(node_cell, &
definition,node_elem)
@ -897,9 +896,9 @@ subroutine buildCellNodes(node_cell, &
real(pReal), dimension(:,:), intent(out) :: node_cell !< cell node coordinates
type(tCellNodeDefinition), dimension(:), intent(in) :: definition !< cell node definition (weights and parents)
real(pReal), dimension(:,:), intent(in) :: node_elem !< element nodes
integer :: i, j, k, n
n = size(node_elem,2)
node_cell(:,1:n) = node_elem !< initial nodes coincide with element nodes
@ -914,12 +913,12 @@ subroutine buildCellNodes(node_cell, &
node_cell(:,n) = node_cell(:,n)/real(sum(definition(i)%weights(j,:)),pReal)
enddo
enddo
end subroutine buildCellNodes
!--------------------------------------------------------------------------------------------------
!> @brief Calculates IP coordinates as center of cell
!> @brief Calculate IP coordinates as center of cell
!--------------------------------------------------------------------------------------------------
subroutine buildIPcoordinates(IPcoordinates, &
connectivity_cell,node_cell)
@ -927,7 +926,7 @@ subroutine buildIPcoordinates(IPcoordinates, &
real(pReal), dimension(:,:), intent(out):: IPcoordinates !< cell-center/IP coordinates
integer, dimension(:,:), intent(in) :: connectivity_cell !< connectivity for each cell
real(pReal), dimension(:,:), intent(in) :: node_cell !< cell node coordinates
integer :: i, n
do i = 1, size(connectivity_cell,2)
@ -938,7 +937,7 @@ subroutine buildIPcoordinates(IPcoordinates, &
enddo
IPcoordinates(:,i) = IPcoordinates(:,i)/real(size(connectivity_cell,1),pReal)
enddo
end subroutine buildIPcoordinates
@ -948,11 +947,11 @@ end subroutine buildIPcoordinates
!> 2D cells assume an element depth of 1.0
!---------------------------------------------------------------------------------------------------
function IPvolume(elem,node,connectivity)
type(tElement), intent(in) :: elem
real(pReal), dimension(:,:), intent(in) :: node
integer, dimension(:,:,:), intent(in) :: connectivity
real(pReal), dimension(elem%nIPs,size(connectivity,3)) :: IPvolume
real(pReal), dimension(3) :: x0,x1,x2,x3,x4,x5,x6,x7
@ -1011,19 +1010,19 @@ function IPareaNormal(elem,nElem,connectivity,node)
integer, intent(in) :: nElem
integer, dimension(:,:,:), intent(in) :: connectivity
real(pReal), dimension(:,:), intent(in) :: node
real(pReal), dimension(3,elem%nIPneighbors,elem%nIPs,nElem) :: ipAreaNormal
real(pReal), dimension (3,size(elem%cellFace,1)) :: nodePos
integer :: e,i,f,n,m
m = size(elem%cellFace,1)
do e = 1,nElem
do i = 1,elem%nIPs
do f = 1,elem%nIPneighbors
nodePos = node(1:3,connectivity(elem%cellface(1:m,f),i,e))
select case (elem%cellType)
case (1,2) ! 2D 3 or 4 node
IPareaNormal(1,f,i,e) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector
@ -1038,7 +1037,7 @@ function IPareaNormal(elem,nElem,connectivity,node)
! the sum has to be divided by two; this whole prcedure tries to compensate for
! probable non-planar cell surfaces
IPareaNormal(1:3,f,i,e) = 0.0_pReal
do n = 1, m
do n = 1, m
IPareaNormal(1:3,f,i,e) = IPareaNormal(1:3,f,i,e) &
+ math_cross(nodePos(1:3,mod(n+0,m)+1) - nodePos(1:3,n), &
nodePos(1:3,mod(n+1,m)+1) - nodePos(1:3,n)) * 0.5_pReal