vectorized formula is enough

This commit is contained in:
Martin Diehl 2020-05-20 18:13:51 +02:00
parent bb419d49df
commit 128a96e7f6
1 changed files with 3 additions and 44 deletions

View File

@ -77,9 +77,9 @@ class Rotation:
])
def __mul__(self, other):
def __matmul__(self, other):
"""
Multiplication.
Rotation of vector, second or fourth order tensor, or rotation object.
Parameters
----------
@ -89,47 +89,6 @@ class Rotation:
Todo
----
Document details active/passive)
consider rotation of (3,3,3,3)-matrix
"""
if self.quaternion.shape != (4,):
raise NotImplementedError('Support for multiple rotations missing')
if isinstance(other, Rotation):
self_q = self.quaternion[0]
self_p = self.quaternion[1:]
other_q = other.quaternion[0]
other_p = other.quaternion[1:]
R = self.__class__(np.append(self_q*other_q - np.dot(self_p,other_p),
self_q*other_p + other_q*self_p + _P * np.cross(self_p,other_p)))
return R.standardize()
elif isinstance(other, np.ndarray):
if other.shape == (3,):
A = self.quaternion[0]**2.0 - np.dot(self.quaternion[1:],self.quaternion[1:])
B = 2.0 * np.dot(self.quaternion[1:],other)
C = 2.0 * _P*self.quaternion[0]
return A*other + B*self.quaternion[1:] + C * np.cross(self.quaternion[1:],other)
elif other.shape == (3,3,):
R = self.as_matrix()
return np.dot(R,np.dot(other,R.T))
elif other.shape == (3,3,3,3,):
R = self.as_matrix()
RR = np.outer(R, R)
RRRR = np.outer(RR, RR).reshape(4 * (3,3))
axes = ((0, 2, 4, 6), (0, 1, 2, 3))
return np.tensordot(RRRR, other, axes)
else:
raise ValueError('Can only rotate vectors, 2nd order ternsors, and 4th order tensors')
else:
raise TypeError('Cannot rotate {}'.format(type(other)))
def __matmul__(self, other):
"""
Rotation.
details to be discussed
"""
if isinstance(other, Rotation):
q_m = self.quaternion[...,0:1]
@ -505,7 +464,7 @@ class Rotation:
fromEulers = from_Eulers
asAxisAngle = as_axis_angle
asRodrigues = as_Rodrigues
__mul__ = __matmul__
####################################################################################################
# Code below available according to the following conditions on https://github.com/MarDiehl/3Drotations