Merge remote-tracking branch 'origin/development' into internal-restructure

This commit is contained in:
Sharan Roongta 2021-05-20 10:41:59 +02:00
commit 125e8fb9e2
17 changed files with 177 additions and 200 deletions

View File

@ -17,7 +17,7 @@ phase:
atol_xi: 1.0
dot_gamma_0_sl: 0.001
h_0_sl_sl: 75e6
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4, 1.4]
n_sl: 20
output: [xi_sl]
xi_0_sl: [31e6]

View File

@ -51,5 +51,5 @@ D0 4.0e-5 # Vacancy diffusion prefactor [m**2/
Qsd 4.5e-19 # Activation energy for climb [J]
Catomicvolume 1.0 # Adj. parameter controlling the atomic volume [in b]
Cedgedipmindistance 1.0 # Adj. parameter controlling the minimum dipole distance [in b]
interaction_slipslip 0.009 0.009 0.72 0.05 0.09 0.06
interaction_slipslip 0.009 0.72 0.009 0.05 0.05 0.06 0.09
nonschmid_coefficients 0.938 0.71 4.43 0.0 0.0 0.0

View File

@ -19,7 +19,7 @@ TWIP_Steel_FeMnC:
D_0: 4.0e-5 # Vacancy diffusion prefactor / m^2/s
D_a: 1.0 # minimum dipole distance / b
Q_cl: 4.5e-19 # Activation energy for climb / J
h_sl_sl: [0.122, 0.122, 0.625, 0.07, 0.137, 0.122] # Interaction coefficients (Kubin et al. 2008)
h_sl_sl: [0.122, 0.122, 0.625, 0.07, 0.137, 0.137, 0.122] # Interaction coefficients (Kubin et al. 2008)
# shear band parameters
xi_sb: 180.0e6
Q_sb: 3.7e-19

View File

@ -18,4 +18,4 @@ Tungsten:
D_0: 4.0e-5 # Vacancy diffusion prefactor / m^2/s
D_a: 1.0 # minimum dipole distance / b
Q_cl: 4.5e-19 # Activation energy for climb / J
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]
h_sl_sl: [1, 1.4, 1, 1.4, 1.4, 1.4, 1.4]

View File

@ -52,7 +52,7 @@ q 1 # exponent for thermal barrier
attackFrequency 50e9 # attack frequency in Hz
surfaceTransmissivity 1.0 # transmissivity of free surfaces for dislocation flux
grainboundaryTransmissivity 0.0 # transmissivity of grain boundaries for dislocation flux (grain bundaries are identified as interfaces with different textures on both sides); if not set or set to negative number, the subroutine automatically determines the transmissivity at the grain boundary
interaction_SlipSlip 0 0 0.625 0.07 0.137 0.122 # Dislocation interaction coefficient
interaction_SlipSlip 0 0 0.625 0.07 0.137 0.137 0.122 # Dislocation interaction coefficient
linetension 0.8 # constant indicating the effect of the line tension on the hardening coefficients (0 to 1)
edgejog 1.0 # fraction of annihilated screw dipoles that forms edge jogs (0 to 1)
shortRangeStressCorrection 0 # switch for use of short range correction stress

View File

@ -57,6 +57,6 @@ significantN 1
shortRangeStressCorrection 0
CFLfactor 1.1 # safety factor for CFL flux check (numerical parameter)
r 1
interaction_SlipSlip 0 0 0.625 0.07 0.137 0.122 # Dislocation interaction coefficient
interaction_SlipSlip 0 0 0.625 0.07 0.137 0.137 0.122 # Dislocation interaction coefficient
linetension 0.8
edgejog 0.01 # 0.2

View File

@ -8,7 +8,7 @@ Aluminum:
a_sl: 2.25
dot_gamma_0_sl: 0.001
h_0_sl_sl: 75e6
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4, 1.4]
n_sl: 20
output: [xi_sl, gamma_sl]
type: phenopowerlaw

View File

@ -10,7 +10,7 @@ Ferrite:
a_sl: 2.0
dot_gamma_0_sl: 0.001
h_0_sl_sl: 1000.0e6
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]
h_sl_sl: [1, 1.4, 1, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4]
n_sl: 20
type: phenopowerlaw
xi_0_sl: [95.e6, 96.e6]

View File

@ -10,7 +10,7 @@ Martensite:
a_sl: 2.0
dot_gamma_0_sl: 0.001
h_0_sl_sl: 563.0e9
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]
h_sl_sl: [1, 1.4, 1, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4]
n_sl: 20
type: phenopowerlaw
xi_0_sl: [405.8e6, 456.7e6]

View File

@ -18,7 +18,7 @@ q_sl: [1.55, 1.55]
i_sl: [23.3, 23.3]
D_a: 7.4 # C_anni
B: [0.001, 0.001]
h_sl_sl: [0.1, 0.1, 0.72, 0.053, 0.137, 0.073]
h_sl_sl: [0.1, 0.72, 0.1, 0.053, 0.053, 0.073, 0.137, 0.72, 0.72, 0.053, 0.053, 0.053, 0.053, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.137, 0.073, 0.073, 0.137, 0.073]
D_0: 4.000E-05
Q_cl: 5.400E-19 # no recovery!
D: 40e-6 # estimated

View File

@ -8,7 +8,7 @@ N_sl: [12]
n_sl: 83
dot_gamma_0_sl: 0.001
h_0_sl_sl: 75e6
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4, 1.4]
a_sl: 1.0
xi_0_sl: [26e6]
xi_inf_sl: [53e6]

View File

@ -17,7 +17,7 @@ phase:
atol_xi: 1.0
dot_gamma_0_sl: 0.001
h_0_sl_sl: 75e6
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4, 1.4]
n_sl: 20
output: [xi_sl]
xi_0_sl: [31e6]

View File

@ -16,7 +16,7 @@ phase:
atol_xi: 1.0
dot_gamma_0_sl: 0.001
h_0_sl_sl: 75e6
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4, 1.4]
n_sl: 20
output: [xi_sl]
xi_0_sl: [31e6]

View File

@ -16,7 +16,7 @@ phase:
atol_xi: 1.0
dot_gamma_0_sl: 0.001
h_0_sl_sl: 75e6
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4, 1.4]
n_sl: 20
output: [xi_sl]
type: phenopowerlaw
@ -33,7 +33,7 @@ phase:
atol_xi: 1.0
dot_gamma_0_sl: 0.001
h_0_sl_sl: 75e6
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]
h_sl_sl: [1, 1.4, 1, 1.4, 1.4, 1.4, 1.4]
n_sl: 20
output: [xi_sl]
type: phenopowerlaw

View File

@ -665,7 +665,7 @@ phase:
atol_xi: 1.0
dot_gamma_0_sl: 0.001
h_0_sl_sl: 75e6
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]
h_sl_sl: [1, 1.4, 1, 1.4, 1.4, 1.4, 1.4]
n_sl: 20
output: [xi_sl]
type: phenopowerlaw

View File

@ -16,7 +16,7 @@ phase:
atol_xi: 1.0
dot_gamma_0_sl: 0.001
h_0_sl_sl: 75e6
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4, 1.4]
n_sl: 20
output: [xi_sl]
type: phenopowerlaw

View File

@ -31,21 +31,14 @@ module lattice
FCC_NCLEAVAGESYSTEM = [3] !< # of cleavage systems per family for fcc
integer, parameter :: &
#ifndef __PGI
FCC_NSLIP = sum(FCC_NSLIPSYSTEM), & !< total # of slip systems for fcc
FCC_NTWIN = sum(FCC_NTWINSYSTEM), & !< total # of twin systems for fcc
FCC_NTRANS = sum(FCC_NTRANSSYSTEM), & !< total # of transformation systems for fcc
FCC_NCLEAVAGE = sum(FCC_NCLEAVAGESYSTEM) !< total # of cleavage systems for fcc
#else
FCC_NSLIP = 18, &
FCC_NTWIN = 12, &
FCC_NTRANS = 12, &
FCC_NCLEAVAGE = 3
#endif
real(pReal), dimension(3+3,FCC_NSLIP), parameter :: &
FCC_SYSTEMSLIP = reshape(real([&
! Slip direction Plane normal ! SCHMID-BOAS notation
! <110>{111} systems
0, 1,-1, 1, 1, 1, & ! B2
-1, 0, 1, 1, 1, 1, & ! B4
1,-1, 0, 1, 1, 1, & ! B5
@ -58,17 +51,18 @@ module lattice
0, 1, 1, -1, 1,-1, & ! D1
1, 0,-1, -1, 1,-1, & ! D4
-1,-1, 0, -1, 1,-1, & ! D6
! Slip system <110>{110}
! <110>{110}/non-octahedral systems
1, 1, 0, 1,-1, 0, &
1,-1, 0, 1, 1, 0, &
1, 0, 1, 1, 0,-1, &
1, 0,-1, 1, 0, 1, &
0, 1, 1, 0, 1,-1, &
0, 1,-1, 0, 1, 1 &
],pReal),shape(FCC_SYSTEMSLIP)) !< Slip system <110>{111} directions. Sorted according to Eisenlohr & Hantcherli
],pReal),shape(FCC_SYSTEMSLIP)) !< fcc slip systems
real(pReal), dimension(3+3,FCC_NTWIN), parameter :: &
FCC_SYSTEMTWIN = reshape(real( [&
! <112>{111} systems
-2, 1, 1, 1, 1, 1, &
1,-2, 1, 1, 1, 1, &
1, 1,-2, 1, 1, 1, &
@ -81,7 +75,7 @@ module lattice
2, 1,-1, -1, 1,-1, &
-1,-2,-1, -1, 1,-1, &
-1, 1, 2, -1, 1,-1 &
],pReal),shape(FCC_SYSTEMTWIN)) !< Twin system <112>{111} directions. Sorted according to Eisenlohr & Hantcherli
],pReal),shape(FCC_SYSTEMTWIN)) !< fcc twin systems
integer, dimension(2,FCC_NTWIN), parameter, public :: &
lattice_FCC_TWINNUCLEATIONSLIPPAIR = reshape( [&
@ -101,11 +95,11 @@ module lattice
real(pReal), dimension(3+3,FCC_NCLEAVAGE), parameter :: &
FCC_SYSTEMCLEAVAGE = reshape(real([&
! Cleavage direction Plane normal
! <001>{001} systems
0, 1, 0, 1, 0, 0, &
0, 0, 1, 0, 1, 0, &
1, 0, 0, 0, 0, 1 &
],pReal),shape(FCC_SYSTEMCLEAVAGE))
],pReal),shape(FCC_SYSTEMCLEAVAGE)) !< fcc cleavage systems
!--------------------------------------------------------------------------------------------------
! body centered cubic (cI)
@ -119,50 +113,43 @@ module lattice
BCC_NCLEAVAGESYSTEM = [3] !< # of cleavage systems per family for bcc
integer, parameter :: &
#ifndef __PGI
BCC_NSLIP = sum(BCC_NSLIPSYSTEM), & !< total # of slip systems for bcc
BCC_NTWIN = sum(BCC_NTWINSYSTEM), & !< total # of twin systems for bcc
BCC_NCLEAVAGE = sum(BCC_NCLEAVAGESYSTEM) !< total # of cleavage systems for bcc
#else
BCC_NSLIP = 24, &
BCC_NTWIN = 12, &
BCC_NCLEAVAGE = 3
#endif
real(pReal), dimension(3+3,BCC_NSLIP), parameter :: &
BCC_SYSTEMSLIP = reshape(real([&
! Slip direction Plane normal
! Slip system <111>{110}
1,-1, 1, 0, 1, 1, &
-1,-1, 1, 0, 1, 1, &
1, 1, 1, 0,-1, 1, &
-1, 1, 1, 0,-1, 1, &
-1, 1, 1, 1, 0, 1, &
-1,-1, 1, 1, 0, 1, &
1, 1, 1, -1, 0, 1, &
1,-1, 1, -1, 0, 1, &
-1, 1, 1, 1, 1, 0, &
-1, 1,-1, 1, 1, 0, &
1, 1, 1, -1, 1, 0, &
1, 1,-1, -1, 1, 0, &
! Slip system <111>{112}
-1, 1, 1, 2, 1, 1, &
1, 1, 1, -2, 1, 1, &
1, 1,-1, 2,-1, 1, &
1,-1, 1, 2, 1,-1, &
1,-1, 1, 1, 2, 1, &
1, 1,-1, -1, 2, 1, &
1, 1, 1, 1,-2, 1, &
-1, 1, 1, 1, 2,-1, &
1, 1,-1, 1, 1, 2, &
1,-1, 1, -1, 1, 2, &
-1, 1, 1, 1,-1, 2, &
1, 1, 1, 1, 1,-2 &
],pReal),shape(BCC_SYSTEMSLIP))
! <111>{110} systems
1,-1, 1, 0, 1, 1, & ! D1
-1,-1, 1, 0, 1, 1, & ! C1
1, 1, 1, 0,-1, 1, & ! B2
-1, 1, 1, 0,-1, 1, & ! A2
-1, 1, 1, 1, 0, 1, & ! A3
-1,-1, 1, 1, 0, 1, & ! C3
1, 1, 1, -1, 0, 1, & ! B4
1,-1, 1, -1, 0, 1, & ! D4
-1, 1, 1, 1, 1, 0, & ! A6
-1, 1,-1, 1, 1, 0, & ! D6
1, 1, 1, -1, 1, 0, & ! B5
1, 1,-1, -1, 1, 0, & ! C5
! <111>{112} systems
-1, 1, 1, 2, 1, 1, & ! A-4
1, 1, 1, -2, 1, 1, & ! B-3
1, 1,-1, 2,-1, 1, & ! C-10
1,-1, 1, 2, 1,-1, & ! D-9
1,-1, 1, 1, 2, 1, & ! D-6
1, 1,-1, -1, 2, 1, & ! C-5
1, 1, 1, 1,-2, 1, & ! B-12
-1, 1, 1, 1, 2,-1, & ! A-11
1, 1,-1, 1, 1, 2, & ! C-2
1,-1, 1, -1, 1, 2, & ! D-1
-1, 1, 1, 1,-1, 2, & ! A-8
1, 1, 1, 1, 1,-2 & ! B-7
],pReal),shape(BCC_SYSTEMSLIP)) !< bcc slip systems
real(pReal), dimension(3+3,BCC_NTWIN), parameter :: &
BCC_SYSTEMTWIN = reshape(real([&
! Twin system <111>{112}
! <111>{112} systems
-1, 1, 1, 2, 1, 1, &
1, 1, 1, -2, 1, 1, &
1, 1,-1, 2,-1, 1, &
@ -175,15 +162,15 @@ module lattice
1,-1, 1, -1, 1, 2, &
-1, 1, 1, 1,-1, 2, &
1, 1, 1, 1, 1,-2 &
],pReal),shape(BCC_SYSTEMTWIN))
],pReal),shape(BCC_SYSTEMTWIN)) !< bcc twin systems
real(pReal), dimension(3+3,BCC_NCLEAVAGE), parameter :: &
BCC_SYSTEMCLEAVAGE = reshape(real([&
! Cleavage direction Plane normal
! <001>{001} systems
0, 1, 0, 1, 0, 0, &
0, 0, 1, 0, 1, 0, &
1, 0, 0, 0, 0, 1 &
],pReal),shape(BCC_SYSTEMCLEAVAGE))
],pReal),shape(BCC_SYSTEMCLEAVAGE)) !< bcc cleavage systems
!--------------------------------------------------------------------------------------------------
! hexagonal (hP)
@ -194,37 +181,31 @@ module lattice
HEX_NTWINSYSTEM = [6, 6, 6, 6] !< # of slip systems per family for hex
integer, parameter :: &
#ifndef __PGI
HEX_NSLIP = sum(HEX_NSLIPSYSTEM), & !< total # of slip systems for hex
HEX_NTWIN = sum(HEX_NTWINSYSTEM) !< total # of twin systems for hex
#else
HEX_NSLIP = 33, &
HEX_NTWIN = 24
#endif
real(pReal), dimension(4+4,HEX_NSLIP), parameter :: &
HEX_SYSTEMSLIP = reshape(real([&
! Slip direction Plane normal
! Basal systems <-1-1.0>{00.1} (independent of c/a-ratio, Bravais notation (4 coordinate base))
! <-1-1.0>{00.1}/basal systems (independent of c/a-ratio)
2, -1, -1, 0, 0, 0, 0, 1, &
-1, 2, -1, 0, 0, 0, 0, 1, &
-1, -1, 2, 0, 0, 0, 0, 1, &
! 1st type prismatic systems <-1-1.0>{1-1.0} (independent of c/a-ratio)
! <-1-1.0>{1-1.0}/prismatic systems (independent of c/a-ratio)
2, -1, -1, 0, 0, 1, -1, 0, &
-1, 2, -1, 0, -1, 0, 1, 0, &
-1, -1, 2, 0, 1, -1, 0, 0, &
! 2nd type prismatic systems <-11.0>{11.0} -- a slip; plane normals independent of c/a-ratio
! <-11.0>{11.0}/2nd order prismatic compound systems (plane normal independent of c/a-ratio)
-1, 1, 0, 0, 1, 1, -2, 0, &
0, -1, 1, 0, -2, 1, 1, 0, &
1, 0, -1, 0, 1, -2, 1, 0, &
! 1st type 1st order pyramidal systems <-1-1.0>{-11.1} -- plane normals depend on the c/a-ratio
! <-1-1.0>{-11.1}/1st order pyramidal <a> systems (direction independent of c/a-ratio)
-1, 2, -1, 0, 1, 0, -1, 1, &
-2, 1, 1, 0, 0, 1, -1, 1, &
-1, -1, 2, 0, -1, 1, 0, 1, &
1, -2, 1, 0, -1, 0, 1, 1, &
2, -1, -1, 0, 0, -1, 1, 1, &
1, 1, -2, 0, 1, -1, 0, 1, &
! pyramidal system: c+a slip <11.3>{-10.1} -- plane normals depend on the c/a-ratio
! <11.3>{-10.1}/1st order pyramidal <c+a> systems (direction independent of c/a-ratio)
-2, 1, 1, 3, 1, 0, -1, 1, &
-1, -1, 2, 3, 1, 0, -1, 1, &
-1, -1, 2, 3, 0, 1, -1, 1, &
@ -237,96 +218,96 @@ module lattice
-1, 2, -1, 3, 0, -1, 1, 1, &
-1, 2, -1, 3, 1, -1, 0, 1, &
-2, 1, 1, 3, 1, -1, 0, 1, &
! pyramidal system: c+a slip <11.3>{-1-1.2} -- as for hexagonal ice (Castelnau et al. 1996, similar to twin system found below)
-1, -1, 2, 3, 1, 1, -2, 2, & ! <11.3>{-1-1.2} shear = 2((c/a)^2-2)/(3 c/a)
! <11.3>{-1-1.2}/2nd order pyramidal <c+a> systems
-1, -1, 2, 3, 1, 1, -2, 2, &
1, -2, 1, 3, -1, 2, -1, 2, &
2, -1, -1, 3, -2, 1, 1, 2, &
1, 1, -2, 3, -1, -1, 2, 2, &
-1, 2, -1, 3, 1, -2, 1, 2, &
-2, 1, 1, 3, 2, -1, -1, 2 &
],pReal),shape(HEX_SYSTEMSLIP)) !< slip systems for hex, sorted by P. Eisenlohr CCW around <c> starting next to a_1 axis
],pReal),shape(HEX_SYSTEMSLIP)) !< hex slip systems, sorted by P. Eisenlohr CCW around <c> starting next to a_1 axis
real(pReal), dimension(4+4,HEX_NTWIN), parameter :: &
HEX_SYSTEMTWIN = reshape(real([&
! Compression or Tension = f(twinning shear=f(c/a)) for each metal ! (according to Yoo 1981)
-1, 0, 1, 1, 1, 0, -1, 2, & ! <-10.1>{10.2} shear = (3-(c/a)^2)/(sqrt(3) c/a)
! <-10.1>{10.2} systems, shear = (3-(c/a)^2)/(sqrt(3) c/a)
! tension in Co, Mg, Zr, Ti, and Be; compression in Cd and Zn
-1, 0, 1, 1, 1, 0, -1, 2, & !
0, -1, 1, 1, 0, 1, -1, 2, &
1, -1, 0, 1, -1, 1, 0, 2, &
1, 0, -1, 1, -1, 0, 1, 2, &
0, 1, -1, 1, 0, -1, 1, 2, &
-1, 1, 0, 1, 1, -1, 0, 2, &
!
-1, -1, 2, 6, 1, 1, -2, 1, & ! <11.6>{-1-1.1} shear = 1/(c/a)
! <11.6>{-1-1.1} systems, shear = 1/(c/a)
! tension in Co, Re, and Zr
-1, -1, 2, 6, 1, 1, -2, 1, &
1, -2, 1, 6, -1, 2, -1, 1, &
2, -1, -1, 6, -2, 1, 1, 1, &
1, 1, -2, 6, -1, -1, 2, 1, &
-1, 2, -1, 6, 1, -2, 1, 1, &
-2, 1, 1, 6, 2, -1, -1, 1, &
!
1, 0, -1, -2, 1, 0, -1, 1, & ! <10.-2>{10.1} shear = (4(c/a)^2-9)/(4 sqrt(3) c/a)
! <10.-2>{10.1} systems, shear = (4(c/a)^2-9)/(4 sqrt(3) c/a)
! compression in Mg
1, 0, -1, -2, 1, 0, -1, 1, &
0, 1, -1, -2, 0, 1, -1, 1, &
-1, 1, 0, -2, -1, 1, 0, 1, &
-1, 0, 1, -2, -1, 0, 1, 1, &
0, -1, 1, -2, 0, -1, 1, 1, &
1, -1, 0, -2, 1, -1, 0, 1, &
!
1, 1, -2, -3, 1, 1, -2, 2, & ! <11.-3>{11.2} shear = 2((c/a)^2-2)/(3 c/a)
! <11.-3>{11.2} systems, shear = 2((c/a)^2-2)/(3 c/a)
! compression in Ti and Zr
1, 1, -2, -3, 1, 1, -2, 2, &
-1, 2, -1, -3, -1, 2, -1, 2, &
-2, 1, 1, -3, -2, 1, 1, 2, &
-1, -1, 2, -3, -1, -1, 2, 2, &
1, -2, 1, -3, 1, -2, 1, 2, &
2, -1, -1, -3, 2, -1, -1, 2 &
],pReal),shape(HEX_SYSTEMTWIN)) !< twin systems for hex, sorted by P. Eisenlohr CCW around <c> starting next to a_1 axis
],pReal),shape(HEX_SYSTEMTWIN)) !< hex twin systems, sorted by P. Eisenlohr CCW around <c> starting next to a_1 axis
!--------------------------------------------------------------------------------------------------
! body centered tetragonal (tI)
integer, dimension(*), parameter :: &
BCT_NSLIPSYSTEM = [2, 2, 2, 4, 2, 4, 2, 2, 4, 8, 4, 8, 8 ] !< # of slip systems per family for bct (Sn) Bieler J. Electr Mater 2009
BCT_NSLIPSYSTEM = [2, 2, 2, 4, 2, 4, 2, 2, 4, 8, 4, 8, 8 ] !< # of slip systems per family for bct
integer, parameter :: &
#ifndef __PGI
BCT_NSLIP = sum(BCT_NSLIPSYSTEM) !< total # of slip systems for bct
#else
BCT_NSLIP = 52
#endif
real(pReal), dimension(3+3,BCT_NSLIP), parameter :: &
BCT_SYSTEMSLIP = reshape(real([&
! Slip direction Plane normal
! Slip family 1 {100)<001] (Bravais notation {hkl)<uvw] for bct c/a = 0.5456)
! {100)<001] systems
0, 0, 1, 1, 0, 0, &
0, 0, 1, 0, 1, 0, &
! Slip family 2 {110)<001]
! {110)<001] systems
0, 0, 1, 1, 1, 0, &
0, 0, 1, -1, 1, 0, &
! slip family 3 {100)<010]
! {100)<010] systems
0, 1, 0, 1, 0, 0, &
1, 0, 0, 0, 1, 0, &
! Slip family 4 {110)<1-11]/2
! {110)<1-11]/2 systems
1,-1, 1, 1, 1, 0, &
1,-1,-1, 1, 1, 0, &
-1,-1,-1, -1, 1, 0, &
-1,-1, 1, -1, 1, 0, &
! Slip family 5 {110)<1-10]
! {110)<1-10] systems
1, -1, 0, 1, 1, 0, &
1, 1, 0, 1,-1, 0, &
! Slip family 6 {100)<011]
! {100)<011] systems
0, 1, 1, 1, 0, 0, &
0,-1, 1, 1, 0, 0, &
-1, 0, 1, 0, 1, 0, &
1, 0, 1, 0, 1, 0, &
! Slip family 7 {001)<010]
! {001)<010] systems
0, 1, 0, 0, 0, 1, &
1, 0, 0, 0, 0, 1, &
! Slip family 8 {001)<110]
! {001)<110] systems
1, 1, 0, 0, 0, 1, &
-1, 1, 0, 0, 0, 1, &
! Slip family 9 {011)<01-1]
! {011)<01-1] systems
0, 1,-1, 0, 1, 1, &
0,-1,-1, 0,-1, 1, &
-1, 0,-1, -1, 0, 1, &
1, 0,-1, 1, 0, 1, &
! Slip family 10 {011)<1-11]/2
! {011)<1-11]/2 systems
1,-1, 1, 0, 1, 1, &
1, 1,-1, 0, 1, 1, &
1, 1, 1, 0, 1,-1, &
@ -335,12 +316,12 @@ module lattice
-1,-1, 1, 1, 0, 1, &
1, 1, 1, 1, 0,-1, &
1,-1, 1, 1, 0,-1, &
! Slip family 11 {011)<100]
! {011)<100] systems
1, 0, 0, 0, 1, 1, &
1, 0, 0, 0, 1,-1, &
0, 1, 0, 1, 0, 1, &
0, 1, 0, 1, 0,-1, &
! Slip family 12 {211)<01-1]
! {211)<01-1] systems
0, 1,-1, 2, 1, 1, &
0,-1,-1, 2,-1, 1, &
1, 0,-1, 1, 2, 1, &
@ -349,7 +330,7 @@ module lattice
0,-1,-1, -2,-1, 1, &
-1, 0,-1, -1,-2, 1, &
1, 0,-1, 1,-2, 1, &
! Slip family 13 {211)<-111]/2
! {211)<-111]/2 systems
-1, 1, 1, 2, 1, 1, &
-1,-1, 1, 2,-1, 1, &
1,-1, 1, 1, 2, 1, &
@ -358,27 +339,22 @@ module lattice
1,-1, 1, -2,-1, 1, &
-1, 1, 1, -1,-2, 1, &
1, 1, 1, 1,-2, 1 &
],pReal),shape(BCT_SYSTEMSLIP)) !< slip systems for bct sorted by Bieler
],pReal),shape(BCT_SYSTEMSLIP)) !< bct slip systems for c/a = 0.5456 (Sn), sorted by Bieler 2009 (https://doi.org/10.1007/s11664-009-0909-x)
!--------------------------------------------------------------------------------------------------
! orthorhombic primitive (oP)
integer, dimension(*), parameter :: &
ORT_NCLEAVAGESYSTEM = [1, 1, 1] !< # of cleavage systems per family for ortho
ORT_NCLEAVAGESYSTEM = [1, 1, 1] !< # of cleavage systems per family for orthorhombic primitive
integer, parameter :: &
#ifndef __PGI
ORT_NCLEAVAGE = sum(ORT_NCLEAVAGESYSTEM) !< total # of cleavage systems for ortho
#else
ORT_NCLEAVAGE = 3
#endif
ORT_NCLEAVAGE = sum(ORT_NCLEAVAGESYSTEM) !< total # of cleavage systems for orthorhombic primitive
real(pReal), dimension(3+3,ORT_NCLEAVAGE), parameter :: &
ORT_SYSTEMCLEAVAGE = reshape(real([&
! Cleavage direction Plane normal
0, 1, 0, 1, 0, 0, &
0, 0, 1, 0, 1, 0, &
1, 0, 0, 0, 0, 1 &
],pReal),shape(ORT_SYSTEMCLEAVAGE))
],pReal),shape(ORT_SYSTEMCLEAVAGE)) !< orthorhombic primitive cleavage systems
enum, bind(c); enumerator :: &
@ -714,8 +690,7 @@ function lattice_nonSchmidMatrix(Nslip,nonSchmidCoefficients,sense) result(nonSc
if (abs(sense) /= 1) error stop 'Sense in lattice_nonSchmidMatrix'
coordinateSystem = buildCoordinateSystem(Nslip,BCC_NSLIPSYSTEM,BCC_SYSTEMSLIP,&
'cI',0.0_pReal)
coordinateSystem = buildCoordinateSystem(Nslip,BCC_NSLIPSYSTEM,BCC_SYSTEMSLIP,'cI',0.0_pReal)
coordinateSystem(1:3,1,1:sum(Nslip)) = coordinateSystem(1:3,1,1:sum(Nslip))*real(sense,pReal) ! convert unidirectional coordinate system
nonSchmidMatrix = lattice_SchmidMatrix_slip(Nslip,'cI',0.0_pReal) ! Schmid contribution
@ -759,81 +734,83 @@ function lattice_interaction_SlipBySlip(Nslip,interactionValues,structure) resul
integer, dimension(FCC_NSLIP,FCC_NSLIP), parameter :: &
FCC_INTERACTIONSLIPSLIP = reshape( [&
1, 2, 2, 4, 6, 5, 3, 5, 5, 4, 5, 6, 9,10, 9,10,11,12, & ! -----> acting
2, 1, 2, 6, 4, 5, 5, 4, 6, 5, 3, 5, 9,10,11,12, 9,10, & ! |
2, 2, 1, 5, 5, 3, 5, 6, 4, 6, 5, 4, 11,12, 9,10, 9,10, & ! |
4, 6, 5, 1, 2, 2, 4, 5, 6, 3, 5, 5, 9,10,10, 9,12,11, & ! v
6, 4, 5, 2, 1, 2, 5, 3, 5, 5, 4, 6, 9,10,12,11,10, 9, & ! reacting
5, 5, 3, 2, 2, 1, 6, 5, 4, 5, 6, 4, 11,12,10, 9,10, 9, &
3, 5, 5, 4, 5, 6, 1, 2, 2, 4, 6, 5, 10, 9,10, 9,11,12, &
5, 4, 6, 5, 3, 5, 2, 1, 2, 6, 4, 5, 10, 9,12,11, 9,10, &
5, 6, 4, 6, 5, 4, 2, 2, 1, 5, 5, 3, 12,11,10, 9, 9,10, &
4, 5, 6, 3, 5, 5, 4, 6, 5, 1, 2, 2, 10, 9, 9,10,12,11, &
5, 3, 5, 5, 4, 6, 6, 4, 5, 2, 1, 2, 10, 9,11,12,10, 9, &
6, 5, 4, 5, 6, 4, 5, 5, 3, 2, 2, 1, 12,11, 9,10,10, 9, &
1, 2, 2, 4, 7, 5, 3, 5, 5, 4, 6, 7, 10,11,10,11,12,13, & ! -----> acting (forest)
2, 1, 2, 7, 4, 5, 6, 4, 7, 5, 3, 5, 10,11,12,13,10,11, & ! |
2, 2, 1, 5, 5, 3, 6, 7, 4, 7, 6, 4, 12,13,10,11,10,11, & ! |
4, 7, 6, 1, 2, 2, 4, 6, 7, 3, 5, 5, 10,11,11,10,13,12, & ! v
7, 4, 6, 2, 1, 2, 5, 3, 5, 6, 4, 7, 10,11,13,12,11,10, & ! reacting (primary)
5, 5, 3, 2, 2, 1, 7, 6, 4, 6, 7, 4, 12,13,11,10,11,10, &
3, 5, 5, 4, 6, 7, 1, 2, 2, 4, 7, 6, 11,10,11,10,12,13, &
6, 4, 7, 5, 3, 5, 2, 1, 2, 7, 4, 6, 11,10,13,12,10,11, &
6, 7, 4, 7, 6, 4, 2, 2, 1, 5, 5, 3, 13,12,11,10,10,11, &
4, 6, 7, 3, 5, 5, 4, 7, 6, 1, 2, 2, 11,10,10,11,13,12, &
5, 3, 5, 6, 4, 7, 7, 4, 6, 2, 1, 2, 11,10,12,13,11,10, &
7, 6, 4, 6, 7, 4, 5, 5, 3, 2, 2, 1, 13,12,10,11,11,10, &
9, 9,11, 9, 9,11,10,10,12,10,10,12, 1, 7, 8, 8, 8, 8, &
10,10,12,10,10,12, 9, 9,11, 9, 9,11, 7, 1, 8, 8, 8, 8, &
9,11, 9,10,12,10,10,12,10, 9,11, 9, 8, 8, 1, 7, 8, 8, &
10,12,10, 9,11, 9, 9,11, 9,10,12,10, 8, 8, 7, 1, 8, 8, &
11, 9, 9,12,10,10,11, 9, 9,12,10,10, 8, 8, 8, 8, 1, 7, &
12,10,10,11, 9, 9,12,10,10,11, 9, 9, 8, 8, 8, 8, 7, 1 &
],shape(FCC_INTERACTIONSLIPSLIP)) !< Slip--slip interaction types for fcc
!< 1: self interaction
!< 2: coplanar interaction
!< 3: collinear interaction
!< 4: Hirth locks
!< 5: glissile junctions
!< 6: Lomer locks
!< 7: crossing (similar to Hirth locks in <110>{111} for two {110} planes)
!< 8: similar to Lomer locks in <110>{111} for two {110} planes
!< 9: similar to Lomer locks in <110>{111} btw one {110} and one {111} plane
!<10: similar to glissile junctions in <110>{111} btw one {110} and one {111} plane
!<11: crossing btw one {110} and one {111} plane
!<12: collinear btw one {110} and one {111} plane
10,10,12,10,10,12,11,11,13,11,11,13, 1, 8, 9, 9, 9, 9, &
11,11,13,11,11,13,10,10,12,10,10,12, 8, 1, 9, 9, 9, 9, &
10,12,10,11,13,11,11,13,11,10,12,10, 9, 9, 1, 8, 9, 9, &
11,13,11,10,12,10,10,12,10,11,13,11, 9, 9, 8, 1, 9, 9, &
12,10,10,13,11,11,12,10,10,13,11,11, 9, 9, 9, 9, 1, 8, &
13,11,11,12,10,10,13,11,11,12,10,10, 9, 9, 9, 9, 8, 1 &
],shape(FCC_INTERACTIONSLIPSLIP)) !< Slip-slip interaction types for fcc / Madec 2017 (https://doi.org/10.1016/j.actamat.2016.12.040)
!< 1: self interaction --> alpha 0
!< 2: coplanar interaction --> alpha copla
!< 3: collinear interaction --> alpha coli
!< 4: Hirth locks --> alpha 1
!< 5: glissile junctions I --> alpha 2
!< 6: glissile junctions II --> alpha 2*
!< 7: Lomer locks --> alpha 3
!< 8: crossing (similar to Hirth locks in <110>{111} for two {110} planes)
!< 9: similar to Lomer locks in <110>{111} for two {110} planes
!<10: similar to Lomer locks in <110>{111} btw one {110} and one {111} plane
!<11: similar to glissile junctions in <110>{111} btw one {110} and one {111} plane
!<12: crossing btw one {110} and one {111} plane
!<13: collinear btw one {110} and one {111} plane
integer, dimension(BCC_NSLIP,BCC_NSLIP), parameter :: &
BCC_INTERACTIONSLIPSLIP = reshape( [&
1,2,6,6,5,4,4,3,4,3,5,4, 6,6,4,3,3,4,6,6,4,3,6,6, & ! -----> acting
2,1,6,6,4,3,5,4,5,4,4,3, 6,6,3,4,4,3,6,6,3,4,6,6, & ! |
6,6,1,2,4,5,3,4,4,5,3,4, 4,3,6,6,6,6,3,4,6,6,4,3, & ! |
6,6,2,1,3,4,4,5,3,4,4,5, 3,4,6,6,6,6,4,3,6,6,3,4, & ! v
5,4,4,3,1,2,6,6,3,4,5,4, 3,6,4,6,6,4,6,3,4,6,3,6, & ! reacting
4,3,5,4,2,1,6,6,4,5,4,3, 4,6,3,6,6,3,6,4,3,6,4,6, &
4,5,3,4,6,6,1,2,5,4,3,4, 6,3,6,4,4,6,3,6,6,4,6,3, &
3,4,4,5,6,6,2,1,4,3,4,5, 6,4,6,3,3,6,4,6,6,3,6,4, &
4,5,4,3,3,4,5,4,1,2,6,6, 3,6,6,4,4,6,6,3,6,4,3,6, &
3,4,5,4,4,5,4,3,2,1,6,6, 4,6,6,3,3,6,6,4,6,3,4,6, &
5,4,3,4,5,4,3,4,6,6,1,2, 6,3,4,6,6,4,3,6,4,6,6,3, &
4,3,4,5,4,3,4,5,6,6,2,1, 6,4,3,6,6,3,4,6,3,6,6,4, &
1, 3, 6, 6, 7, 5, 4, 2, 4, 2, 7, 5, 18,18,11, 8, 9,13,17,14,13, 9,17,14, & ! -----> acting (forest)
3, 1, 6, 6, 4, 2, 7, 5, 7, 5, 4, 2, 18,18, 8,11,13, 9,14,17, 9,13,14,17, & ! |
6, 6, 1, 3, 5, 7, 2, 4, 5, 7, 2, 4, 11, 8,18,18,17,14, 9,13,17,14,13, 9, & ! |
6, 6, 3, 1, 2, 4, 5, 7, 2, 4, 5, 7, 8,11,18,18,14,17,13, 9,14,17, 9,13, & ! v
7, 5, 4, 2, 1, 3, 6, 6, 2, 4, 7, 5, 9,17,13,14,18,11,18, 8,13,17, 9,14, & ! reacting (primary)
4, 2, 7, 5, 3, 1, 6, 6, 5, 7, 4, 2, 13,14, 9,17,18, 8,18,11, 9,14,13,17, &
5, 7, 2, 4, 6, 6, 1, 3, 7, 5, 2, 4, 17, 9,14,13,11,18, 8,18,17,13,14, 9, &
2, 4, 5, 7, 6, 6, 3, 1, 4, 2, 5, 7, 14,13,17, 9, 8,18,11,18,14, 9,17,13, &
5, 7, 4, 2, 2, 4, 7, 5, 1, 3, 6, 6, 9,17,14,13,13,17,14, 9,18,11, 8,18, &
2, 4, 7, 5, 5, 7, 4, 2, 3, 1, 6, 6, 13,14,17, 9, 9,14,17,13,18, 8,11,18, &
7, 5, 2, 4, 7, 5, 2, 4, 6, 6, 1, 3, 17, 9,13,14,17,13, 9,14,11,18,18, 8, &
4, 2, 5, 7, 4, 2, 5, 7, 6, 6, 3, 1, 14,13, 9,17,14, 9,13,17, 8,18,18,11, &
!
6,6,4,3,3,4,6,6,3,4,6,6, 1,5,6,6,5,6,6,3,5,6,3,6, &
6,6,3,4,6,6,3,4,6,6,3,4, 5,1,6,6,6,5,3,6,6,5,6,3, &
4,3,6,6,4,3,6,6,6,6,4,3, 6,6,1,5,6,3,5,6,3,6,5,6, &
3,4,6,6,6,6,4,3,4,3,6,6, 6,6,5,1,3,6,6,5,6,3,6,5, &
3,4,6,6,6,6,4,3,4,3,6,6, 5,6,6,3,1,6,5,6,5,3,6,6, &
4,3,6,6,4,3,6,6,6,6,4,3, 6,5,3,6,6,1,6,5,3,5,6,6, &
6,6,3,4,6,6,3,4,6,6,3,4, 6,3,5,6,5,6,1,6,6,6,5,3, &
6,6,4,3,3,4,6,6,3,4,6,6, 3,6,6,5,6,5,6,1,6,6,3,5, &
4,3,6,6,4,3,6,6,6,6,4,3, 5,6,3,6,5,3,6,6,1,6,6,5, &
3,4,6,6,6,6,4,3,4,3,6,6, 6,5,6,3,3,5,6,6,6,1,5,6, &
6,6,4,3,3,4,6,6,3,4,6,6, 3,6,5,6,6,6,5,3,6,5,1,6, &
6,6,3,4,6,6,3,4,6,6,3,4, 6,3,6,5,6,6,3,5,5,6,6,1 &
],shape(BCC_INTERACTIONSLIPSLIP)) !< Slip--slip interaction types for bcc from Queyreau et al. Int J Plast 25 (2009) 361377
!< 1: self interaction
!< 2: coplanar interaction
!< 3: collinear interaction
!< 4: mixed-asymmetrical junction
!< 5: mixed-symmetrical junction
!< 6: edge junction
19,19,10, 8, 9,12,16,15, 9,12,16,15, 1,20,24,24,23,22,21, 2,23,22, 2,21, &
19,19, 8,10,16,15, 9,12,16,15, 9,12, 20, 1,24,24,22,23, 2,21,22,23,21, 2, &
10, 8,19,19,12, 9,15,16,15,16,12, 9, 24,24, 1,20,21, 2,23,22, 2,21,23,22, &
8,10,19,19,15,16,12, 9,12, 9,15,16, 24,24,20, 1, 2,21,22,23,21, 2,22,23, &
9,12,16,15,19,19,10, 8,12, 9,16,15, 23,21,22, 2, 1,24,20,24,23, 2,22,21, &
12, 9,15,16,10, 8,19,19,16,15,12, 9, 21,23, 2,21,24, 1,24,20, 2,23,21,22, &
16,15, 9,12,19,19, 8,10,15,16, 9,12, 22, 2,23,22,20,24, 1,24,22,21,23, 2, &
15,16,12, 9, 8,10,19,19, 9,12,15,16, 2,22,21,23,24,20,24, 1,21,22, 2,23, &
12, 9,16,15,12, 9,16,15,19,19,10, 8, 23,21, 2,22,23, 2,21,22, 1,24,24,20, &
9,12,15,16,16,15,12, 9,10, 8,19,19, 21,23,22, 2, 2,23,22,21,24, 1,20,24, &
16,15,12, 9, 9,12,15,16, 8,10,19,19, 2,22,23,21,21,22,23, 2,24,20, 1,24, &
15,16, 9,12,15,16, 9,12,19,19, 8,10, 22, 2,21,23,22,21, 2,23,20,24,24, 1 &
],shape(BCC_INTERACTIONSLIPSLIP)) !< Slip-slip interaction types for bcc / Madec 2017 (https://doi.org/10.1016/j.actamat.2016.12.040)
!< 1: self interaction --> alpha 0
!< 2: collinear interaction --> alpha 1
!< 3: coplanar interaction --> alpha 2
!< 4-7: other coefficients
!< 8: {110}-{112}, collinear and perpendicular planes --> alpha 6
!< 9: {110}-{112}, just collinear --> alpha 7
!< 10-24: other coefficients
integer, dimension(HEX_NSLIP,HEX_NSLIP), parameter :: &
HEX_INTERACTIONSLIPSLIP = reshape( [&
1, 2, 2, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! -----> acting
1, 2, 2, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! -----> acting (forest)
2, 1, 2, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! |
2, 2, 1, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! |
! ! v
6, 6, 6, 4, 5, 5, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, & ! reacting
6, 6, 6, 4, 5, 5, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, & ! reacting (primary)
6, 6, 6, 5, 4, 5, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, &
6, 6, 6, 5, 5, 4, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, &
!
@ -867,7 +844,7 @@ function lattice_interaction_SlipBySlip(Nslip,interactionValues,structure) resul
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,36,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,37,36,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,37,37,36 &
],shape(HEX_INTERACTIONSLIPSLIP)) !< Slip--slip interaction types for hex (onion peel naming scheme)
],shape(HEX_INTERACTIONSLIPSLIP)) !< Slip-slip interaction types for hex (onion peel naming scheme)
integer, dimension(BCT_NSLIP,BCT_NSLIP), parameter :: &
BCT_INTERACTIONSLIPSLIP = reshape( [&