modify document for ConstitutivePhenoPowerLaw

This commit is contained in:
Yun Jo Ro 2009-06-09 13:48:46 +00:00
parent c17249c953
commit 118e68e881
3 changed files with 494 additions and 3 deletions

View File

@ -74,7 +74,15 @@ logical.f90.
We introduce slip and twin family as additional index (or input) for each We introduce slip and twin family as additional index (or input) for each
crystal structure in lattice.f90 subroutine (e.g., for HCP crystal: slip and crystal structure in lattice.f90 subroutine (e.g., for HCP crystal: slip and
twin system has four faimilies, respectively). twin system has four faimilies, respectively).
The current State variables in constitutive_phenoPowerlaw are
\end_layout
\begin_layout Section
State Variables in constitutive_phenoPowelaw.f90
\end_layout
\begin_layout Standard
The current State variables in constitutive_phenoPowerlaw are
\begin_inset Quotes eld \begin_inset Quotes eld
\end_inset \end_inset
@ -132,7 +140,15 @@ twin volume fraction
\end_inset \end_inset
denote to slip and twin systems, respectively, in this entire document. denote to slip and twin systems, respectively, in this entire document.
Table
\end_layout
\begin_layout Section
Considered Deformation Mechanisms
\end_layout
\begin_layout Standard
Table
\begin_inset CommandInset ref \begin_inset CommandInset ref
LatexCommand ref LatexCommand ref
reference "Flo:DeformationSystemTable" reference "Flo:DeformationSystemTable"
@ -823,7 +839,7 @@ reference "eq:InteractionMatrix"
M_{\mathrm{slip-slip}} & M_{\mathrm{slip-twin}}\\ M_{\mathrm{slip-slip}} & M_{\mathrm{slip-twin}}\\
M_{\mathrm{twin-slip}} & M_{\mathrm{twin-twin}}\end{array}\right]\left[\begin{array}{c} M_{\mathrm{twin-slip}} & M_{\mathrm{twin-twin}}\end{array}\right]\left[\begin{array}{c}
\dot{\gamma}^{\alpha}\\ \dot{\gamma}^{\alpha}\\
\dot{f}^{\beta}\end{array}\right]\label{eq:InteractionMatrix}\end{equation} \gamma^{\beta}\cdot\dot{f}^{\beta}\end{array}\right]\label{eq:InteractionMatrix}\end{equation}
\end_inset \end_inset

View File

@ -0,0 +1,475 @@
%% LyX 1.6.2 created this file. For more info, see http://www.lyx.org/.
%% Do not edit unless you really know what you are doing.
\documentclass[english]{scrartcl}
\usepackage[T1]{fontenc}
\usepackage[latin9]{inputenc}
\usepackage[letterpaper]{geometry}
\geometry{verbose,tmargin=2cm,bmargin=2cm,lmargin=2cm,rmargin=2cm,headheight=2cm,headsep=1cm,footskip=1cm}
\usepackage{array}
\usepackage{float}
\usepackage{endnotes}
\usepackage{graphicx}
\usepackage{setspace}
\usepackage{amssymb}
\usepackage[authoryear]{natbib}
\onehalfspacing
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
%% Because html converters don't know tabularnewline
\providecommand{\tabularnewline}{\\}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Textclass specific LaTeX commands.
\let\footnote=\endnote
\usepackage{braille}
\newcommand{\braillenormal}[1]
{\setlength{\brailleunit}{2.4mm}\braille{#1}}
% With \brailleunit == 0.75ex, the braille letters will
% approximately match the other letters in size.
\newcommand{\brailletext}[1]
{\setlength{\brailleunit}{0.75ex}\braille{#1}}
\usepackage{babel}
\begin{document}
\title{Summary of constitutive\_phenoPowerlaw}
\author{YUN JO RO}
\maketitle
This document contains information for constitutive\_phenoPowerlaw.f90.
This constitutive subroutine is modified from the current contitutive\_phenomenological.f90.
We introduce slip and twin family as additional index (or input) for
each crystal structure in lattice.f90 subroutine (e.g., for HCP crystal:
slip and twin system has four faimilies, respectively).
\section{State Variables in constitutive\_phenoPowelaw.f90}
The current State variables in constitutive\_phenoPowerlaw are {}``slip
resistance $\left(s^{\alpha}\right)$'', ''twin resistance $\left(s^{\beta}\right)$'',
{}``cumulative shear strain $\left(\gamma^{\alpha}\right)$'', and
{}``twin volume fraction $\left(f^{\beta}\right)$''. Superscript
$\alpha$ and $\beta$ denote to slip and twin systems, respectively,
in this entire document.
\section{Considered Deformation Mechanisms}
Table \ref{Flo:DeformationSystemTable} lists slip/twin systems for
the {}``hex (hcp)'' case.\medskip{}
%
\begin{table}[tbph]
\centering{}\begin{tabular}{|c|c|c|c|}
\hline
& & & No. of slip system\tabularnewline
\hline
slip system & basal & $\left\{ 0001\right\} \left\langle 1\bar{2}10\right\rangle $ & 3\tabularnewline
\cline{2-4}
& prism & $\left\{ 10\bar{1}0\right\} \left\langle 1\bar{2}10\right\rangle $ & 3\tabularnewline
\cline{2-4}
& pyr <a> & $\left\{ 10\bar{1}1\right\} \left\langle 1\bar{2}10\right\rangle $ & 6\tabularnewline
\cline{2-4}
& pyr <c+a> & $\left\{ 10\bar{1}1\right\} \left\langle 2\bar{1}\bar{1}3\right\rangle $ & 12\tabularnewline
\hline
twin system & tensile (T1) & $\left\{ 10\bar{1}2\right\} \left\langle \bar{1}011\right\rangle $ & 6\tabularnewline
\cline{2-4}
& compressive (C1) & $\left\{ 11\bar{2}2\right\} \left\langle 11\bar{2}\bar{3}\right\rangle $ & 6\tabularnewline
\cline{2-4}
& tensile (T2) & $\left\{ 11\bar{2}1\right\} \left\langle \bar{1}\bar{1}26\right\rangle $ & 6\tabularnewline
\cline{2-4}
& compressive (C1) & $\left\{ 10\bar{1}1\right\} \left\langle 10\bar{1}\bar{2}\right\rangle $ & 6\tabularnewline
\hline
\end{tabular}\caption{Implemented deformation mechanims in $\alpha$-Ti }
\label{Flo:DeformationSystemTable}
\end{table}
\begin{itemize}
\item Slip/twin system for HCP are illustrated in Figures \ref{Fig:slipSystemHCP}
and \ref{Fig:twinSystemHCP}.
\end{itemize}
%
\begin{figure}
\begin{centering}
\includegraphics[clip,scale=0.25]{figures/slipSystemForHCP}
\par\end{centering}
\caption{Drawing for slip system for HCP. Burgers vectors were scaled.}
\label{Fig:slipSystemHCP}
\end{figure}
%
\begin{figure}
\begin{centering}
\includegraphics[clip,scale=0.25]{figures/twinSystemForHCP}
\par\end{centering}
\caption{Drawing for twin system for HCP ($\alpha$- Ti). Twin directions are
not scaled yet. }
\label{Fig:twinSystemHCP}
\end{figure}
\clearpage{}
\section{Kinetics}
Shear strain rate due to slip is described by following eqation \citet{Salem2005,Wu2007}:\begin{equation}
\dot{\gamma}^{\alpha}=\dot{\gamma_{o}}\left|\frac{\tau^{\alpha}}{s^{\alpha}}\right|^{n}sign\left(\tau^{\alpha}\right)\label{eq:slipStrainRate}\end{equation}
, where $\dot{\gamma}^{\alpha}$; shear strain rate, $\dot{\gamma}_{o}$;
reference shear strain rate, $\tau^{\alpha}$; resolved shear stress
on the slip system, $n$; stress exponent, and $s^{\alpha}$; slip
resistance.
Twin volume fraction rate is described by following eqation \citet{Salem2005,Wu2007}:
\begin{equation}
\dot{f}^{\beta}=\frac{\dot{\gamma_{o}}}{\gamma^{\beta}}\left|\frac{\tau^{\beta}}{s^{\beta}}\right|^{n}\mathbb{\mathcal{H}}\left(\tau^{\beta}\right)\label{eq:twinVolrate}\end{equation}
, where $\dot{f}^{\beta}$; twin volume fraction rate, $\dot{\gamma}_{o}$;
reference shear strain rate, $\gamma^{\beta}$;shear strain due to
mechanical twinning, $\tau^{\beta}$; resolved shear stress on the
twin system, and $s^{\beta}$; twin resistance. $\mathcal{H}$ is
Heaviside function.
\section{Structure Evolution}
In this present section, we attempt to show how we establish the relationship
between the evolutoin of slip/twin resistance and the evolution of
shear strain/twin volume fraction.
\subsection{Interaction matrix. }
Conceptual relationship between the evolution of state and kinetic
variables is shown in Equation \ref{eq:InteractionMatrix}.
\begin{equation}
\left[\begin{array}{c}
\dot{s}^{\alpha}\\
\dot{s}^{\beta}\end{array}\right]=\left[\begin{array}{cc}
M_{\mathrm{slip-slip}} & M_{\mathrm{slip-twin}}\\
M_{\mathrm{twin-slip}} & M_{\mathrm{twin-twin}}\end{array}\right]\left[\begin{array}{c}
\dot{\gamma}^{\alpha}\\
\gamma^{\beta}\cdot\dot{f}^{\beta}\end{array}\right]\label{eq:InteractionMatrix}\end{equation}
Four interaction martices are followings; i) slip-slip interaction
matrix $\left(M_{\mathrm{{\scriptstyle slip-slip}}}\right)$, ii)
slip-twin interaction matrix $\left(M_{\mathrm{slip-twin}}\right)$,
iii) twin-slip interaction matrix $\left(M_{\mathrm{twin-slip}}\right)$,
and iv) twin-twin interaction matrix $\left(M_{\mathrm{twin-twin}}\right)$.
Detailed interaction type matrices in Equation \ref{eq:InteractionMatrix}
will be further discussed in the following Section.
\subsection{Interaction type matrix}
Following sections are sparated into four based on each interaction
type matrix alluded. Numbers in Tables \ref{Flo:SlipSlipIntTypeTable},
\ref{Flo:SlipTwinIntTypeTable}, \ref{Flo:TwinSlipIntTypeTable},
and \ref{Flo:TwinTwinIntTypeTable} denote the type of interaction
between deformation systems (The first column vs. The first row).
\subsubsection{Slip-Slip interaction type matrix}
\begin{itemize}
\item There are 20 types of slip-slip interaction as shown in Table \ref{Flo:SlipSlipIntTypeTable}.
\item In Table \ref{Flo:SlipSlipIntTypeTable}, types of latent hardening
among slip systems are listed.
\item Actual slip-slip interaction type matrix, $M_{\mathrm{slip-slip}}^{'}$,
is listed in Equation \ref{eq:SlipSlipIntMatrix}.
\end{itemize}
%
\begin{table}[H]
\begin{centering}
\begin{tabular}{|>{\centering}m{0.8in}|>{\centering}m{0.7in}|>{\centering}m{0.6in}|>{\centering}m{0.6in}|>{\centering}m{0.7in}|}
\hline
& basal & prism & pyr <a> & pyr<c+a>\tabularnewline
\hline
basal & 1, 5 & 9 & 12 & 14\tabularnewline
\hline
prism & 15 & 2, 6 & 10 & 13\tabularnewline
\hline
pyr <a> & 18 & 16 & 3, 7 & 11\tabularnewline
\hline
pyr <c+a> & 20 & 19 & 17 & 4, 8\tabularnewline
\hline
\end{tabular}
\par\end{centering}
\caption{Slip-slip interaction type}
\label{Flo:SlipSlipIntTypeTable}
\end{table}
\begin{equation}
M_{\mathrm{slip-slip}}^{'}=\left[\begin{array}{ccc|ccc|cccccc|cccccccccccc}
1 & 5 & 5 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
& 1 & 5 & \cdot & 9 & \cdot & \cdot & \cdot & 12 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 14 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
& & 1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\hline \cdot & \cdot & \cdot & 2 & 6 & 6 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & 15 & \cdot & & 2 & 6 & \cdot & \cdot & 10 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 13 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & & & 2 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\hline \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 3 & 7 & 7 & 7 & 7 & 7 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & 3 & 7 & 7 & 7 & 7 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & 3 & 7 & 7 & 7 & \cdot & \cdot & \cdot & \cdot & \cdot & 11 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & 18 & \cdot & \cdot & 16 & \cdot & & & & 3 & 7 & 7 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & 3 & 7 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & & 3 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\hline \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 4 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & 4 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & 4 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & 4 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8\\
\cdot & 20 & \cdot & \cdot & 19 & \cdot & \cdot & \cdot & 17 & \cdot & \cdot & \cdot & & & & & 4 & 8 & 8 & 8 & 8 & 8 & 8 & 8\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & & 4 & 8 & 8 & 8 & 8 & 8 & 8\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & & & 4 & 8 & 8 & 8 & 8 & 8\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & & & & 4 & 8 & 8 & 8 & 8\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & & & & & 4 & 8 & 8 & 8\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & & & & & & 4 & 8 & 8\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & & & & & & & 4 & 8\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & & & & & & & & 4\end{array}\right]\label{eq:SlipSlipIntMatrix}\end{equation}
\vfill{}
\vfill{}
\subsubsection{Slip-Twin interaction type matrix}
\begin{itemize}
\item There are 16 types of slip-twin interaction in Table \ref{Flo:SlipTwinIntTypeTable}.
\item Meaning of T1, C1, T2, C2 is listed in Table \ref{Flo:DeformationSystemTable}.
\item Actual slip-twin interaction type matrix, $M_{\mathrm{slip-twin}}^{'}$,
is listed in Equation \ref{eq:SlipTwinIntMatrix}.
\end{itemize}
%
\begin{table}[H]
\begin{centering}
\begin{tabular}{|>{\centering}m{0.8in}|>{\centering}m{0.7in}|>{\centering}m{0.6in}|>{\centering}m{0.6in}|>{\centering}m{0.7in}|}
\hline
& T1 & C1 & T2 & C1\tabularnewline
\hline
basal & 1 & 2 & 3 & 4\tabularnewline
\hline
prism & 5 & 6 & 7 & 8\tabularnewline
\hline
pyr <a> & 9 & 10 & 11 & 12\tabularnewline
\hline
pyr <c+a> & 13 & 14 & 15 & 16\tabularnewline
\hline
\end{tabular}
\par\end{centering}
\caption{Slip-twin interaction type}
\label{Flo:SlipTwinIntTypeTable}
\end{table}
\begin{equation}
M_{\mathrm{slip-twin}}^{'}=\left[\begin{array}{c|c|c|c}
1 & 2 & 3 & 4\\
\hline 5 & 6 & 7 & 8\\
\hline 9 & 10 & 11 & 12\\
\hline 13 & 14 & 15 & 16\end{array}\right]\label{eq:SlipTwinIntMatrix}\end{equation}
\subsubsection{Twin-Slip interaction type matrix}
\begin{itemize}
\item There 16 types of twin-slip interaction in Table \ref{Flo:TwinSlipIntTypeTable}.
\item Meaning of T1, C1, T2, C2 is listed in Table \ref{Flo:DeformationSystemTable}.
\item Actual twin-slip interaction type matrix, $M_{\mathrm{twin-slip}}^{'}$,
is listed in Equation \ref{eq:TwinSlipIntMatrix}.
\end{itemize}
%
\begin{table}[H]
\begin{centering}
\begin{tabular}{|>{\centering}m{0.8in}|>{\centering}m{0.7in}|>{\centering}m{0.6in}|>{\centering}m{0.6in}|>{\centering}m{0.7in}|}
\hline
& basal & prism & pyr <a> & pyr <c+a>\tabularnewline
\hline
T1 & 1 & 5 & 9 & 13\tabularnewline
\hline
C1 & 2 & 6 & 10 & 14\tabularnewline
\hline
T2 & 3 & 7 & 11 & 15\tabularnewline
\hline
C2 & 4 & 8 & 12 & 16\tabularnewline
\hline
\end{tabular}
\par\end{centering}
\caption{Twin-slip interaction type}
\label{Flo:TwinSlipIntTypeTable}
\end{table}
\begin{equation}
M_{\mathrm{twin-slip}}^{'}=\left[\begin{array}{c|c|c|c}
1 & 5 & 9 & 13\\
\hline 2 & 6 & 10 & 14\\
\hline 3 & 7 & 11 & 15\\
\hline 4 & 8 & 12 & 16\end{array}\right]\label{eq:TwinSlipIntMatrix}\end{equation}
\subsubsection{Twin-twin interaction type matrix}
\begin{itemize}
\item There are 20 types of twin-twin interaction as shown in Table \ref{Flo:TwinTwinIntTypeTable}.
\item In Table \ref{Flo:TwinTwinIntTypeTable}, types of latent hardening
among twin systems are listed.
\item Actual twin-twin interaction type marix, $M_{\mathrm{twin-twin}}^{'}$,
is listed in Equation \ref{eq:TwinTwinIntMatrix}.
\end{itemize}
%
\begin{table}[H]
\begin{centering}
\begin{tabular}{|>{\centering}m{0.8in}|>{\centering}m{0.7in}|>{\centering}m{0.6in}|>{\centering}m{0.6in}|>{\centering}m{0.7in}|}
\hline
& T1 & C1 & T2 & C2\tabularnewline
\hline
T1 & 1, 5 & 9 & 12 & 14\tabularnewline
\hline
C1 & 15 & 2, 6 & 10 & 13\tabularnewline
\hline
T2 & 18 & 16 & 3, 7 & 11\tabularnewline
\hline
C2 & 20 & 19 & 17 & 4, 8\tabularnewline
\hline
\end{tabular}
\par\end{centering}
\caption{Twin-twin interaction type}
\label{Flo:TwinTwinIntTypeTable}
\end{table}
\begin{equation}
M_{\mathrm{twin-twin}}^{'}=\left[\begin{array}{cccccc|cccccc|cccccc|cccccc}
1 & 5 & 5 & 5 & 5 & 5 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
& 1 & 5 & 5 & 5 & 5 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
& & 1 & 5 & 5 & 5 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
& & & 1 & 5 & 5 & \cdot & \cdot & \cdot & 9 & \cdot & \cdot & \cdot & \cdot & \cdot & 12 & \cdot & \cdot & \cdot & \cdot & \cdot & 14 & \cdot & \cdot\\
& & & & 1 & 5 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
& & & & & 1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\hline \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 2 & 6 & 6 & 6 & 6 & 6 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & 2 & 6 & 6 & 6 & 6 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & 2 & 6 & 6 & 6 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & 15 & \cdot & \cdot & & & & 2 & 6 & 6 & \cdot & \cdot & \cdot & 10 & \cdot & \cdot & \cdot & \cdot & \cdot & 13 & \cdot & \cdot\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & 2 & 6 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & & 2 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\hline \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 3 & 7 & 7 & 7 & 7 & 7 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & 3 & 7 & 7 & 7 & 7 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & 3 & 7 & 7 & 7 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & 18 & \cdot & \cdot & \cdot & \cdot & \cdot & 16 & \cdot & \cdot & & & & 3 & 7 & 7 & \cdot & \cdot & \cdot & 11 & \cdot & \cdot\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & 3 & 7 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & & 3 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\
\hline \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 4 & 8 & 8 & 8 & 8 & 8\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & 4 & 8 & 8 & 8 & 8\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & 4 & 8 & 8 & 8\\
\cdot & \cdot & \cdot & 20 & \cdot & \cdot & \cdot & \cdot & \cdot & 19 & \cdot & \cdot & \cdot & \cdot & \cdot & 17 & \cdot & \cdot & & & & 4 & 8 & 8\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & 4 & 8\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & & 4\end{array}\right]\label{eq:TwinTwinIntMatrix}\end{equation}
\subsection{Prefactor (nonlinear factor)}
\subsubsection{Prefactors for slip resistance $\left(s^{\alpha}\right)$; $M_{\mathrm{slip-slip}}$
and $M_{\mathrm{slip-twin}}$\citet{Wu2007}}
$M_{\mathrm{slip-slip}}$ and $M_{\mathrm{slip-twin}}$ use for slip
resistance evolution $\left(\dot{s}^{\alpha}\right)$. Equation \ref{eq:SlipResisEvolutionEq}
is for a slip resistance rate evolution. This currently shows the
prefactor for {}``slip-slip interaction matrix, $M_{\mathrm{slip-slip}}$''.
\medskip{}
\begin{equation}
M_{\mathrm{slip-slip}}=h_{\mathrm{slip}}\left(1+C\cdot F^{b}\right)\left(1-\frac{s^{\alpha}}{s_{so}^{\alpha}+s_{\mathrm{pr}}\cdot\sqrt{F}}\right)\cdot M_{\mathrm{slip-slip}}^{'}\label{eq:SlipResisEvolutionEq}\end{equation}
\medskip{}
, where $h_{\mathrm{slip}}$represent a hardening rate, and $S_{\mathrm{so}}^{\alpha}$
saturation slip resistance for slip system without mechanical twinning
$\left(\sum_{\beta}f^{\beta}=0\right)$, respectively. And, $F$ is
$\sum_{\beta}f^{\beta}$, and $N^{S}$is the total number of slip
system.$C$, $s_{\mathrm{pr}}$, and $b$ are coefficients to introduce
the effect of interaction between slip and mechanical twin in Equation
\ref{eq:SlipResisEvolutionEq}.
\begin{itemize}
\item Slip-twin interaction matrix, $M_{\mathrm{slip-twin}}$, has not been
implemented with any prefactor in the present version.
\end{itemize}
\subsubsection{Prefactors for twin resistance $\left(s^{\beta}\right)$; $M_{\mathrm{twin-slip}}$
and $M_{\mathrm{twin-twin}}$\citet{Salem2005}}
$M_{\mathrm{twin-sli}p}$ and $M_{\mathrm{twin-twin}}$ use for twin
resistance evolution $\left(\dot{s}^{\beta}\right)$. Twin-twin and
twin-slip interaction matrices are described in Equations \ref{eq:TwinTwinContributionToTwinResis}
and \ref{eq:TwinSlipContributionToTwinResis}. \medskip{}
\begin{equation}
M_{\mathrm{twin-twin}}=h_{\mathrm{tw}}\cdot F^{d}\cdot M_{\mathrm{twin-twin}}^{'}\label{eq:TwinTwinContributionToTwinResis}\end{equation}
,where $h_{\mathrm{tw}}$ and $d$ are coefficients for twin-twin
contribution. $F$ is $\sum_{\beta}f^{\beta}$.
\medskip{}
\begin{equation}
M_{\mathrm{twin-slip}}=h_{\mathrm{tw-sl}}\cdot\Gamma^{e}\cdot M_{\mathrm{twin-slip}}^{'}\label{eq:TwinSlipContributionToTwinResis}\end{equation}
,where $h_{\mathrm{tw-sl}}$ and $e$ are coefficients for twin-slip
contribution, and $\Gamma=\sum_{\alpha}\gamma^{\alpha}$.
\clearpage{}
\section{Material Parameters (Material Configuration file)}
%
\begin{figure}[tbph]
\begin{centering}
\includegraphics[clip,scale=0.8]{figures/ExpectedMaterialConfigFile}\caption{Expected of phenomenological modelling parameters.}
\label{Fig:ModelParameters}
\par\end{centering}
\end{figure}
\begin{itemize}
\item The sequence for hardening coefficients in Figure \ref{Fig:ModelParameters}
is the sequence of numbering in Tables \ref{Flo:SlipSlipIntTypeTable},
\ref{Flo:SlipTwinIntTypeTable}, \ref{Flo:TwinSlipIntTypeTable},
and \ref{Flo:TwinTwinIntTypeTable} above.
\end{itemize}
\clearpage{}
\bibliographystyle{plain}
\addcontentsline{toc}{section}{\refname}\bibliography{MPIEyjr}
\end{document}