tests for new functionality
This commit is contained in:
parent
ad062ada6b
commit
118c03c485
|
@ -752,6 +752,47 @@ class DADF5():
|
||||||
self.__add_generic_pointwise(__add_Mises,requested)
|
self.__add_generic_pointwise(__add_Mises,requested)
|
||||||
|
|
||||||
|
|
||||||
|
def add_norm(self,x,ord=None):
|
||||||
|
"""
|
||||||
|
Add the norm of vector or tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : str
|
||||||
|
Label of the dataset containing a vector or tensor.
|
||||||
|
ord : {non-zero int, inf, -inf, ‘fro’, ‘nuc’}, optional
|
||||||
|
Order of the norm. inf means numpy’s inf object. For details refer to numpy.linalg.norm.
|
||||||
|
|
||||||
|
"""
|
||||||
|
def __add_norm(x,ord):
|
||||||
|
|
||||||
|
o = ord
|
||||||
|
if len(x['data'].shape) == 2:
|
||||||
|
axis = 1
|
||||||
|
t = 'vector'
|
||||||
|
if o is None: o = 2
|
||||||
|
elif len(x['data'].shape) == 3:
|
||||||
|
axis = (1,2)
|
||||||
|
t = 'tensor'
|
||||||
|
if o is None: o = 'fro'
|
||||||
|
else:
|
||||||
|
raise ValueError
|
||||||
|
|
||||||
|
return {
|
||||||
|
'data': np.linalg.norm(x['data'],ord=o,axis=axis,keepdims=True),
|
||||||
|
'label': '|{}|_{}'.format(x['label'],o),
|
||||||
|
'meta': {
|
||||||
|
'Unit': x['meta']['Unit'],
|
||||||
|
'Description': '{}-Norm of {} {} ({})'.format(ord,t,x['label'],x['meta']['Description']),
|
||||||
|
'Creator': 'dadf5.py:add_norm v{}'.format(version)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
requested = [{'label':x,'arg':'x'}]
|
||||||
|
|
||||||
|
self.__add_generic_pointwise(__add_norm,requested,{'ord':ord})
|
||||||
|
|
||||||
|
|
||||||
def add_PK2(self,F='F',P='P'):
|
def add_PK2(self,F='F',P='P'):
|
||||||
"""
|
"""
|
||||||
Add 2. Piola-Kirchhoff calculated from 1. Piola-Kirchhoff stress and deformation gradient.
|
Add 2. Piola-Kirchhoff calculated from 1. Piola-Kirchhoff stress and deformation gradient.
|
||||||
|
@ -830,47 +871,6 @@ class DADF5():
|
||||||
self.__add_generic_pointwise(__addPole,requested,{'pole':pole})
|
self.__add_generic_pointwise(__addPole,requested,{'pole':pole})
|
||||||
|
|
||||||
|
|
||||||
def add_norm(self,x,ord=None):
|
|
||||||
"""
|
|
||||||
Add the norm of vector or tensor.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
x : str
|
|
||||||
Label of the dataset containing a vector or tensor.
|
|
||||||
ord : {non-zero int, inf, -inf, ‘fro’, ‘nuc’}, optional
|
|
||||||
Order of the norm. inf means numpy’s inf object. For details refer to numpy.linalg.norm.
|
|
||||||
|
|
||||||
"""
|
|
||||||
def __add_norm(x,ord):
|
|
||||||
|
|
||||||
o = ord
|
|
||||||
if len(x['data'].shape) == 2:
|
|
||||||
axis = 1
|
|
||||||
t = 'vector'
|
|
||||||
if o is None: o = 2
|
|
||||||
elif len(x['data'].shape) == 3:
|
|
||||||
axis = (1,2)
|
|
||||||
t = 'tensor'
|
|
||||||
if o is None: o = 'fro'
|
|
||||||
else:
|
|
||||||
raise ValueError
|
|
||||||
|
|
||||||
return {
|
|
||||||
'data': np.linalg.norm(x['data'],ord=o,axis=axis,keepdims=True),
|
|
||||||
'label': '|{}|_{}'.format(x['label'],o),
|
|
||||||
'meta': {
|
|
||||||
'Unit': x['meta']['Unit'],
|
|
||||||
'Description': '{}-Norm of {} {} ({})'.format(ord,t,x['label'],x['meta']['Description']),
|
|
||||||
'Creator': 'dadf5.py:add_norm v{}'.format(version)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
requested = [{'label':x,'arg':'x'}]
|
|
||||||
|
|
||||||
self.__add_generic_pointwise(__add_norm,requested,{'ord':ord})
|
|
||||||
|
|
||||||
|
|
||||||
def add_principal_components(self,x):
|
def add_principal_components(self,x):
|
||||||
"""
|
"""
|
||||||
Add principal components of symmetric tensor.
|
Add principal components of symmetric tensor.
|
||||||
|
|
|
@ -73,6 +73,33 @@ class TestDADF5:
|
||||||
in_file = default.read_dataset(loc['s_P'],0)
|
in_file = default.read_dataset(loc['s_P'],0)
|
||||||
assert np.allclose(in_memory,in_file)
|
assert np.allclose(in_memory,in_file)
|
||||||
|
|
||||||
|
def test_add_eigenvalues(self,default):
|
||||||
|
default.add_Cauchy('P','F')
|
||||||
|
default.add_eigenvalues('sigma')
|
||||||
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
||||||
|
'lambda(sigma)':default.get_dataset_location('lambda(sigma)')}
|
||||||
|
in_memory = mechanics.eigenvalues(default.read_dataset(loc['sigma'],0))
|
||||||
|
in_file = default.read_dataset(loc['lambda(sigma)'],0)
|
||||||
|
assert np.allclose(in_memory,in_file)
|
||||||
|
|
||||||
|
def test_add_eigenvectors(self,default):
|
||||||
|
default.add_Cauchy('P','F')
|
||||||
|
default.add_eigenvectors('sigma')
|
||||||
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
||||||
|
'v(sigma)':default.get_dataset_location('v(sigma)')}
|
||||||
|
in_memory = mechanics.eigenvectors(default.read_dataset(loc['sigma'],0))
|
||||||
|
in_file = default.read_dataset(loc['v(sigma)'],0)
|
||||||
|
assert np.allclose(in_memory,in_file)
|
||||||
|
|
||||||
|
def test_add_maximum_shear(self,default):
|
||||||
|
default.add_Cauchy('P','F')
|
||||||
|
default.add_maximum_shear('sigma')
|
||||||
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
||||||
|
'max_shear(sigma)':default.get_dataset_location('max_shear(sigma)')}
|
||||||
|
in_memory = mechanics.maximum_shear(default.read_dataset(loc['sigma'],0)).reshape(-1,1)
|
||||||
|
in_file = default.read_dataset(loc['max_shear(sigma)'],0)
|
||||||
|
assert np.allclose(in_memory,in_file)
|
||||||
|
|
||||||
def test_add_norm(self,default):
|
def test_add_norm(self,default):
|
||||||
default.add_norm('F',1)
|
default.add_norm('F',1)
|
||||||
loc = {'F': default.get_dataset_location('F'),
|
loc = {'F': default.get_dataset_location('F'),
|
||||||
|
|
|
@ -211,3 +211,16 @@ class TestMechanics:
|
||||||
s = np.random.randint(self.n)
|
s = np.random.randint(self.n)
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
assert np.allclose(np.dot(A[s]-lambd[s,i]*np.eye(3),x[s,:,i]),.0)
|
assert np.allclose(np.dot(A[s]-lambd[s,i]*np.eye(3),x[s,:,i]),.0)
|
||||||
|
|
||||||
|
def test_eigenvectors_RHS(self):
|
||||||
|
"""Ensure that RHS coordinate system does only change sign of determinant."""
|
||||||
|
A = mechanics.symmetric(np.random.random((self.n,3,3)))
|
||||||
|
LRHS = np.linalg.det(mechanics.eigenvectors(A,RHS=False))
|
||||||
|
RHS = np.linalg.det(mechanics.eigenvectors(A,RHS=True))
|
||||||
|
s = np.random.randint(self.n)
|
||||||
|
assert np.allclose(np.abs(LRHS),RHS)
|
||||||
|
|
||||||
|
def test_spherical_no_shear(self):
|
||||||
|
"""Ensure that sherical stress has max shear of 0.0."""
|
||||||
|
A = mechanics.spherical_part(mechanics.symmetric(np.random.random((self.n,3,3))),True)
|
||||||
|
assert np.allclose(mechanics.maximum_shear(A),0.0)
|
||||||
|
|
Loading…
Reference in New Issue