Merge branch 'merge-crystallite-constitutive' into 'development'

Merge crystallite constitutive

See merge request damask/DAMASK!307
This commit is contained in:
Sharan Roongta 2020-12-24 17:55:49 +01:00
commit 10bbeb5617
17 changed files with 1975 additions and 2353 deletions

1
.gitmodules vendored
View File

@ -2,3 +2,4 @@
path = PRIVATE
url = ../PRIVATE.git
branch = master
shallow = true

@ -1 +1 @@
Subproject commit 313dd5de618c996cdf9ace95a096f25e757386d9
Subproject commit 45ef93dbfa3e0e6fa830914b3632e188c308a099

View File

@ -13,7 +13,6 @@ module CPFEM
use discretization_marc
use material
use config
use crystallite
use homogenization
use IO
use discretization
@ -262,6 +261,7 @@ end subroutine CPFEM_general
subroutine CPFEM_forward
call crystallite_forward
call constitutive_forward
end subroutine CPFEM_forward

View File

@ -21,7 +21,6 @@ module CPFEM2
use HDF5_utilities
use homogenization
use constitutive
use crystallite
#if defined(Mesh)
use FEM_quadrature
use discretization_mesh
@ -99,6 +98,7 @@ end subroutine CPFEM_restartWrite
subroutine CPFEM_forward
call crystallite_forward
call constitutive_forward
end subroutine CPFEM_forward

View File

@ -44,12 +44,9 @@
#include "source_damage_anisoDuctile.f90"
#include "kinematics_cleavage_opening.f90"
#include "kinematics_slipplane_opening.f90"
#include "crystallite.f90"
#include "thermal_isothermal.f90"
#include "thermal_adiabatic.f90"
#include "thermal_conduction.f90"
#include "damage_none.f90"
#include "damage_local.f90"
#include "damage_nonlocal.f90"
#include "homogenization.f90"
#include "homogenization_mech.f90"

File diff suppressed because it is too large Load Diff

View File

@ -133,6 +133,67 @@ submodule(constitutive) constitutive_mech
el !< current element number
end subroutine plastic_nonlocal_LpAndItsTangent
module subroutine plastic_isotropic_dotState(Mp,instance,of)
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
integer, intent(in) :: &
instance, &
of
end subroutine plastic_isotropic_dotState
module subroutine plastic_phenopowerlaw_dotState(Mp,instance,of)
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
integer, intent(in) :: &
instance, &
of
end subroutine plastic_phenopowerlaw_dotState
module subroutine plastic_kinehardening_dotState(Mp,instance,of)
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
integer, intent(in) :: &
instance, &
of
end subroutine plastic_kinehardening_dotState
module subroutine plastic_dislotwin_dotState(Mp,T,instance,of)
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
real(pReal), intent(in) :: &
T
integer, intent(in) :: &
instance, &
of
end subroutine plastic_dislotwin_dotState
module subroutine plastic_disloTungsten_dotState(Mp,T,instance,of)
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
real(pReal), intent(in) :: &
T
integer, intent(in) :: &
instance, &
of
end subroutine plastic_disloTungsten_dotState
module subroutine plastic_nonlocal_dotState(Mp, F, Fp, Temperature,timestep, &
instance,of,ip,el)
real(pReal), dimension(3,3), intent(in) :: &
Mp !< MandelStress
real(pReal), dimension(3,3,homogenization_maxNconstituents,discretization_nIPs,discretization_Nelems), intent(in) :: &
F, & !< deformation gradient
Fp !< plastic deformation gradient
real(pReal), intent(in) :: &
Temperature, & !< temperature
timestep !< substepped crystallite time increment
integer, intent(in) :: &
instance, &
of, &
ip, & !< current integration point
el !< current element number
end subroutine plastic_nonlocal_dotState
module subroutine plastic_dislotwin_dependentState(T,instance,of)
integer, intent(in) :: &
@ -159,6 +220,24 @@ submodule(constitutive) constitutive_mech
el !< current element number
end subroutine plastic_nonlocal_dependentState
module subroutine plastic_kinehardening_deltaState(Mp,instance,of)
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
integer, intent(in) :: &
instance, &
of
end subroutine plastic_kinehardening_deltaState
module subroutine plastic_nonlocal_deltaState(Mp,instance,of,ip,el)
real(pReal), dimension(3,3), intent(in) :: &
Mp
integer, intent(in) :: &
instance, &
of, &
ip, &
el
end subroutine plastic_nonlocal_deltaState
module subroutine plastic_isotropic_results(instance,group)
integer, intent(in) :: instance
character(len=*), intent(in) :: group
@ -454,6 +533,124 @@ module subroutine constitutive_plastic_LpAndItsTangents(Lp, dLp_dS, dLp_dFi, &
end subroutine constitutive_plastic_LpAndItsTangents
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
module function constitutive_collectDotState(S, FArray, Fi, FpArray, subdt, ipc, ip, el,phase,of) result(broken)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el, & !< element
phase, &
of
real(pReal), intent(in) :: &
subdt !< timestep
real(pReal), intent(in), dimension(3,3,homogenization_maxNconstituents,discretization_nIPs,discretization_Nelems) :: &
FArray, & !< elastic deformation gradient
FpArray !< plastic deformation gradient
real(pReal), intent(in), dimension(3,3) :: &
Fi !< intermediate deformation gradient
real(pReal), intent(in), dimension(3,3) :: &
S !< 2nd Piola Kirchhoff stress (vector notation)
real(pReal), dimension(3,3) :: &
Mp
integer :: &
ho, & !< homogenization
tme, & !< thermal member position
i, & !< counter in source loop
instance
logical :: broken
ho = material_homogenizationAt(el)
tme = material_homogenizationMemberAt(ip,el)
instance = phase_plasticityInstance(phase)
Mp = matmul(matmul(transpose(Fi),Fi),S)
plasticityType: select case (phase_plasticity(phase))
case (PLASTICITY_ISOTROPIC_ID) plasticityType
call plastic_isotropic_dotState(Mp,instance,of)
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
call plastic_phenopowerlaw_dotState(Mp,instance,of)
case (PLASTICITY_KINEHARDENING_ID) plasticityType
call plastic_kinehardening_dotState(Mp,instance,of)
case (PLASTICITY_DISLOTWIN_ID) plasticityType
call plastic_dislotwin_dotState(Mp,temperature(ho)%p(tme),instance,of)
case (PLASTICITY_DISLOTUNGSTEN_ID) plasticityType
call plastic_disloTungsten_dotState(Mp,temperature(ho)%p(tme),instance,of)
case (PLASTICITY_NONLOCAL_ID) plasticityType
call plastic_nonlocal_dotState(Mp,FArray,FpArray,temperature(ho)%p(tme),subdt, &
instance,of,ip,el)
end select plasticityType
broken = any(IEEE_is_NaN(plasticState(phase)%dotState(:,of)))
end function constitutive_collectDotState
!--------------------------------------------------------------------------------------------------
!> @brief for constitutive models having an instantaneous change of state
!> will return false if delta state is not needed/supported by the constitutive model
!--------------------------------------------------------------------------------------------------
module function constitutive_deltaState(S, Fi, ipc, ip, el, phase, of) result(broken)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el, & !< element
phase, &
of
real(pReal), intent(in), dimension(3,3) :: &
S, & !< 2nd Piola Kirchhoff stress
Fi !< intermediate deformation gradient
real(pReal), dimension(3,3) :: &
Mp
integer :: &
instance, &
myOffset, &
mySize
logical :: &
broken
Mp = matmul(matmul(transpose(Fi),Fi),S)
instance = phase_plasticityInstance(phase)
plasticityType: select case (phase_plasticity(phase))
case (PLASTICITY_KINEHARDENING_ID) plasticityType
call plastic_kinehardening_deltaState(Mp,instance,of)
broken = any(IEEE_is_NaN(plasticState(phase)%deltaState(:,of)))
case (PLASTICITY_NONLOCAL_ID) plasticityType
call plastic_nonlocal_deltaState(Mp,instance,of,ip,el)
broken = any(IEEE_is_NaN(plasticState(phase)%deltaState(:,of)))
case default
broken = .false.
end select plasticityType
if(.not. broken) then
select case(phase_plasticity(phase))
case (PLASTICITY_NONLOCAL_ID,PLASTICITY_KINEHARDENING_ID)
myOffset = plasticState(phase)%offsetDeltaState
mySize = plasticState(phase)%sizeDeltaState
plasticState(phase)%state(myOffset + 1:myOffset + mySize,of) = &
plasticState(phase)%state(myOffset + 1:myOffset + mySize,of) + plasticState(phase)%deltaState(1:mySize,of)
end select
endif
end function constitutive_deltaState
!--------------------------------------------------------------------------------------------
!> @brief writes plasticity constitutive results to HDF5 output file
!--------------------------------------------------------------------------------------------
@ -494,5 +691,581 @@ module subroutine plastic_results
end subroutine plastic_results
!--------------------------------------------------------------------------------------------------
!> @brief calculation of stress (P) with time integration based on a residuum in Lp and
!> intermediate acceleration of the Newton-Raphson correction
!--------------------------------------------------------------------------------------------------
function integrateStress(ipc,ip,el,timeFraction) result(broken)
integer, intent(in):: el, & ! element index
ip, & ! integration point index
ipc ! grain index
real(pReal), optional, intent(in) :: timeFraction ! fraction of timestep
real(pReal), dimension(3,3):: F, & ! deformation gradient at end of timestep
Fp_new, & ! plastic deformation gradient at end of timestep
invFp_new, & ! inverse of Fp_new
invFp_current, & ! inverse of Fp_current
Lpguess, & ! current guess for plastic velocity gradient
Lpguess_old, & ! known last good guess for plastic velocity gradient
Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law
residuumLp, & ! current residuum of plastic velocity gradient
residuumLp_old, & ! last residuum of plastic velocity gradient
deltaLp, & ! direction of next guess
Fi_new, & ! gradient of intermediate deformation stages
invFi_new, &
invFi_current, & ! inverse of Fi_current
Liguess, & ! current guess for intermediate velocity gradient
Liguess_old, & ! known last good guess for intermediate velocity gradient
Li_constitutive, & ! intermediate velocity gradient resulting from constitutive law
residuumLi, & ! current residuum of intermediate velocity gradient
residuumLi_old, & ! last residuum of intermediate velocity gradient
deltaLi, & ! direction of next guess
Fe, & ! elastic deformation gradient
S, & ! 2nd Piola-Kirchhoff Stress in plastic (lattice) configuration
A, &
B, &
temp_33
real(pReal), dimension(9) :: temp_9 ! needed for matrix inversion by LAPACK
integer, dimension(9) :: devNull_9 ! needed for matrix inversion by LAPACK
real(pReal), dimension(9,9) :: dRLp_dLp, & ! partial derivative of residuum (Jacobian for Newton-Raphson scheme)
dRLi_dLi ! partial derivative of residuumI (Jacobian for Newton-Raphson scheme)
real(pReal), dimension(3,3,3,3):: dS_dFe, & ! partial derivative of 2nd Piola-Kirchhoff stress
dS_dFi, &
dFe_dLp, & ! partial derivative of elastic deformation gradient
dFe_dLi, &
dFi_dLi, &
dLp_dFi, &
dLi_dFi, &
dLp_dS, &
dLi_dS
real(pReal) steplengthLp, &
steplengthLi, &
dt, & ! time increment
atol_Lp, &
atol_Li, &
devNull
integer NiterationStressLp, & ! number of stress integrations
NiterationStressLi, & ! number of inner stress integrations
ierr, & ! error indicator for LAPACK
o, &
p, &
m, &
jacoCounterLp, &
jacoCounterLi ! counters to check for Jacobian update
logical :: error,broken
broken = .true.
if (present(timeFraction)) then
dt = crystallite_subdt(ipc,ip,el) * timeFraction
F = crystallite_subF0(1:3,1:3,ipc,ip,el) &
+ (crystallite_subF(1:3,1:3,ipc,ip,el) - crystallite_subF0(1:3,1:3,ipc,ip,el)) * timeFraction
else
dt = crystallite_subdt(ipc,ip,el)
F = crystallite_subF(1:3,1:3,ipc,ip,el)
endif
call constitutive_plastic_dependentState(crystallite_partitionedF(1:3,1:3,ipc,ip,el), &
crystallite_Fp(1:3,1:3,ipc,ip,el),ipc,ip,el)
p = material_phaseAt(ipc,el)
m = material_phaseMemberAt(ipc,ip,el)
Lpguess = crystallite_Lp(1:3,1:3,ipc,ip,el) ! take as first guess
Liguess = constitutive_mech_Li(p)%data(1:3,1:3,m) ! take as first guess
call math_invert33(invFp_current,devNull,error,crystallite_subFp0(1:3,1:3,ipc,ip,el))
if (error) return ! error
call math_invert33(invFi_current,devNull,error,crystallite_subFi0(1:3,1:3,ipc,ip,el))
if (error) return ! error
A = matmul(F,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp
jacoCounterLi = 0
steplengthLi = 1.0_pReal
residuumLi_old = 0.0_pReal
Liguess_old = Liguess
NiterationStressLi = 0
LiLoop: do
NiterationStressLi = NiterationStressLi + 1
if (NiterationStressLi>num%nStress) return ! error
invFi_new = matmul(invFi_current,math_I3 - dt*Liguess)
Fi_new = math_inv33(invFi_new)
jacoCounterLp = 0
steplengthLp = 1.0_pReal
residuumLp_old = 0.0_pReal
Lpguess_old = Lpguess
NiterationStressLp = 0
LpLoop: do
NiterationStressLp = NiterationStressLp + 1
if (NiterationStressLp>num%nStress) return ! error
B = math_I3 - dt*Lpguess
Fe = matmul(matmul(A,B), invFi_new)
call constitutive_hooke_SandItsTangents(S, dS_dFe, dS_dFi, &
Fe, Fi_new, ipc, ip, el)
call constitutive_plastic_LpAndItsTangents(Lp_constitutive, dLp_dS, dLp_dFi, &
S, Fi_new, ipc, ip, el)
!* update current residuum and check for convergence of loop
atol_Lp = max(num%rtol_crystalliteStress * max(norm2(Lpguess),norm2(Lp_constitutive)), & ! absolute tolerance from largest acceptable relative error
num%atol_crystalliteStress) ! minimum lower cutoff
residuumLp = Lpguess - Lp_constitutive
if (any(IEEE_is_NaN(residuumLp))) then
return ! error
elseif (norm2(residuumLp) < atol_Lp) then ! converged if below absolute tolerance
exit LpLoop
elseif (NiterationStressLp == 1 .or. norm2(residuumLp) < norm2(residuumLp_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
residuumLp_old = residuumLp ! ...remember old values and...
Lpguess_old = Lpguess
steplengthLp = 1.0_pReal ! ...proceed with normal step length (calculate new search direction)
else ! not converged and residuum not improved...
steplengthLp = num%subStepSizeLp * steplengthLp ! ...try with smaller step length in same direction
Lpguess = Lpguess_old &
+ deltaLp * stepLengthLp
cycle LpLoop
endif
calculateJacobiLi: if (mod(jacoCounterLp, num%iJacoLpresiduum) == 0) then
jacoCounterLp = jacoCounterLp + 1
do o=1,3; do p=1,3
dFe_dLp(o,1:3,p,1:3) = - dt * A(o,p)*transpose(invFi_new) ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
enddo; enddo
dRLp_dLp = math_eye(9) &
- math_3333to99(math_mul3333xx3333(math_mul3333xx3333(dLp_dS,dS_dFe),dFe_dLp))
temp_9 = math_33to9(residuumLp)
call dgesv(9,1,dRLp_dLp,9,devNull_9,temp_9,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp
if (ierr /= 0) return ! error
deltaLp = - math_9to33(temp_9)
endif calculateJacobiLi
Lpguess = Lpguess &
+ deltaLp * steplengthLp
enddo LpLoop
call constitutive_LiAndItsTangents(Li_constitutive, dLi_dS, dLi_dFi, &
S, Fi_new, ipc, ip, el)
!* update current residuum and check for convergence of loop
atol_Li = max(num%rtol_crystalliteStress * max(norm2(Liguess),norm2(Li_constitutive)), & ! absolute tolerance from largest acceptable relative error
num%atol_crystalliteStress) ! minimum lower cutoff
residuumLi = Liguess - Li_constitutive
if (any(IEEE_is_NaN(residuumLi))) then
return ! error
elseif (norm2(residuumLi) < atol_Li) then ! converged if below absolute tolerance
exit LiLoop
elseif (NiterationStressLi == 1 .or. norm2(residuumLi) < norm2(residuumLi_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
residuumLi_old = residuumLi ! ...remember old values and...
Liguess_old = Liguess
steplengthLi = 1.0_pReal ! ...proceed with normal step length (calculate new search direction)
else ! not converged and residuum not improved...
steplengthLi = num%subStepSizeLi * steplengthLi ! ...try with smaller step length in same direction
Liguess = Liguess_old &
+ deltaLi * steplengthLi
cycle LiLoop
endif
calculateJacobiLp: if (mod(jacoCounterLi, num%iJacoLpresiduum) == 0) then
jacoCounterLi = jacoCounterLi + 1
temp_33 = matmul(matmul(A,B),invFi_current)
do o=1,3; do p=1,3
dFe_dLi(1:3,o,1:3,p) = -dt*math_I3(o,p)*temp_33 ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
dFi_dLi(1:3,o,1:3,p) = -dt*math_I3(o,p)*invFi_current
enddo; enddo
do o=1,3; do p=1,3
dFi_dLi(1:3,1:3,o,p) = matmul(matmul(Fi_new,dFi_dLi(1:3,1:3,o,p)),Fi_new)
enddo; enddo
dRLi_dLi = math_eye(9) &
- math_3333to99(math_mul3333xx3333(dLi_dS, math_mul3333xx3333(dS_dFe, dFe_dLi) &
+ math_mul3333xx3333(dS_dFi, dFi_dLi))) &
- math_3333to99(math_mul3333xx3333(dLi_dFi, dFi_dLi))
temp_9 = math_33to9(residuumLi)
call dgesv(9,1,dRLi_dLi,9,devNull_9,temp_9,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
if (ierr /= 0) return ! error
deltaLi = - math_9to33(temp_9)
endif calculateJacobiLp
Liguess = Liguess &
+ deltaLi * steplengthLi
enddo LiLoop
invFp_new = matmul(invFp_current,B)
call math_invert33(Fp_new,devNull,error,invFp_new)
if (error) return ! error
p = material_phaseAt(ipc,el)
m = material_phaseMemberAt(ipc,ip,el)
crystallite_P (1:3,1:3,ipc,ip,el) = matmul(matmul(F,invFp_new),matmul(S,transpose(invFp_new)))
crystallite_S (1:3,1:3,ipc,ip,el) = S
crystallite_Lp (1:3,1:3,ipc,ip,el) = Lpguess
constitutive_mech_Li(p)%data(1:3,1:3,m) = Liguess
crystallite_Fp (1:3,1:3,ipc,ip,el) = Fp_new / math_det33(Fp_new)**(1.0_pReal/3.0_pReal) ! regularize
constitutive_mech_Fi(p)%data(1:3,1:3,m) = Fi_new
crystallite_Fe (1:3,1:3,ipc,ip,el) = matmul(matmul(F,invFp_new),invFi_new)
broken = .false.
end function integrateStress
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with adaptive 1st order explicit Euler method
!> using Fixed Point Iteration to adapt the stepsize
!--------------------------------------------------------------------------------------------------
module subroutine integrateStateFPI(g,i,e)
integer, intent(in) :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g !< grain index in grain loop
integer :: &
NiterationState, & !< number of iterations in state loop
p, &
c, &
s, &
size_pl
integer, dimension(maxval(phase_Nsources)) :: &
size_so
real(pReal) :: &
zeta
real(pReal), dimension(max(constitutive_plasticity_maxSizeDotState,constitutive_source_maxSizeDotState)) :: &
r ! state residuum
real(pReal), dimension(constitutive_plasticity_maxSizeDotState,2) :: &
plastic_dotState
real(pReal), dimension(constitutive_source_maxSizeDotState,2,maxval(phase_Nsources)) :: source_dotState
logical :: &
broken
p = material_phaseAt(g,e)
c = material_phaseMemberAt(g,i,e)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
constitutive_mech_Fi(p)%data(1:3,1:3,c), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
size_pl = plasticState(p)%sizeDotState
plasticState(p)%state(1:size_pl,c) = plasticState(p)%subState0(1:size_pl,c) &
+ plasticState(p)%dotState (1:size_pl,c) &
* crystallite_subdt(g,i,e)
plastic_dotState(1:size_pl,2) = 0.0_pReal
iteration: do NiterationState = 1, num%nState
if(nIterationState > 1) plastic_dotState(1:size_pl,2) = plastic_dotState(1:size_pl,1)
plastic_dotState(1:size_pl,1) = plasticState(p)%dotState(:,c)
broken = integrateStress(g,i,e)
if(broken) exit iteration
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
constitutive_mech_Fi(p)%data(1:3,1:3,c), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) exit iteration
zeta = damper(plasticState(p)%dotState(:,c),plastic_dotState(1:size_pl,1),&
plastic_dotState(1:size_pl,2))
plasticState(p)%dotState(:,c) = plasticState(p)%dotState(:,c) * zeta &
+ plastic_dotState(1:size_pl,1) * (1.0_pReal - zeta)
r(1:size_pl) = plasticState(p)%state (1:size_pl,c) &
- plasticState(p)%subState0(1:size_pl,c) &
- plasticState(p)%dotState (1:size_pl,c) * crystallite_subdt(g,i,e)
plasticState(p)%state(1:size_pl,c) = plasticState(p)%state(1:size_pl,c) &
- r(1:size_pl)
crystallite_converged(g,i,e) = converged(r(1:size_pl), &
plasticState(p)%state(1:size_pl,c), &
plasticState(p)%atol(1:size_pl))
if(crystallite_converged(g,i,e)) then
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
constitutive_mech_Fi(p)%data(1:3,1:3,c),g,i,e,p,c)
exit iteration
endif
enddo iteration
contains
!--------------------------------------------------------------------------------------------------
!> @brief calculate the damping for correction of state and dot state
!--------------------------------------------------------------------------------------------------
real(pReal) pure function damper(current,previous,previous2)
real(pReal), dimension(:), intent(in) ::&
current, previous, previous2
real(pReal) :: dot_prod12, dot_prod22
dot_prod12 = dot_product(current - previous, previous - previous2)
dot_prod22 = dot_product(previous - previous2, previous - previous2)
if ((dot_product(current,previous) < 0.0_pReal .or. dot_prod12 < 0.0_pReal) .and. dot_prod22 > 0.0_pReal) then
damper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
else
damper = 1.0_pReal
endif
end function damper
end subroutine integrateStateFPI
!--------------------------------------------------------------------------------------------------
!> @brief integrate state with 1st order explicit Euler method
!--------------------------------------------------------------------------------------------------
module subroutine integrateStateEuler(g,i,e)
integer, intent(in) :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g !< grain index in grain loop
integer :: &
p, &
c, &
sizeDotState
logical :: &
broken
p = material_phaseAt(g,e)
c = material_phaseMemberAt(g,i,e)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
constitutive_mech_Fi(p)%data(1:3,1:3,c), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
sizeDotState = plasticState(p)%sizeDotState
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) &
+ plasticState(p)%dotState (1:sizeDotState,c) &
* crystallite_subdt(g,i,e)
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
constitutive_mech_Fi(p)%data(1:3,1:3,c),g,i,e,p,c)
if(broken) return
broken = integrateStress(g,i,e)
crystallite_converged(g,i,e) = .not. broken
end subroutine integrateStateEuler
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 1st order Euler method with adaptive step size
!--------------------------------------------------------------------------------------------------
module subroutine integrateStateAdaptiveEuler(g,i,e)
integer, intent(in) :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g !< grain index in grain loop
integer :: &
p, &
c, &
sizeDotState
logical :: &
broken
real(pReal), dimension(constitutive_plasticity_maxSizeDotState) :: residuum_plastic
p = material_phaseAt(g,e)
c = material_phaseMemberAt(g,i,e)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
constitutive_mech_Fi(p)%data(1:3,1:3,c), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
sizeDotState = plasticState(p)%sizeDotState
residuum_plastic(1:sizeDotState) = - plasticState(p)%dotstate(1:sizeDotState,c) * 0.5_pReal * crystallite_subdt(g,i,e)
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) &
+ plasticState(p)%dotstate(1:sizeDotState,c) * crystallite_subdt(g,i,e)
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
constitutive_mech_Fi(p)%data(1:3,1:3,c),g,i,e,p,c)
if(broken) return
broken = integrateStress(g,i,e)
if(broken) return
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
constitutive_mech_Fi(p)%data(1:3,1:3,c), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
sizeDotState = plasticState(p)%sizeDotState
crystallite_converged(g,i,e) = converged(residuum_plastic(1:sizeDotState) &
+ 0.5_pReal * plasticState(p)%dotState(:,c) * crystallite_subdt(g,i,e), &
plasticState(p)%state(1:sizeDotState,c), &
plasticState(p)%atol(1:sizeDotState))
end subroutine integrateStateAdaptiveEuler
!---------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with the classic Runge Kutta method
!---------------------------------------------------------------------------------------------------
module subroutine integrateStateRK4(g,i,e)
integer, intent(in) :: g,i,e
real(pReal), dimension(3,3), parameter :: &
A = reshape([&
0.5_pReal, 0.0_pReal, 0.0_pReal, &
0.0_pReal, 0.5_pReal, 0.0_pReal, &
0.0_pReal, 0.0_pReal, 1.0_pReal],&
shape(A))
real(pReal), dimension(3), parameter :: &
C = [0.5_pReal, 0.5_pReal, 1.0_pReal]
real(pReal), dimension(4), parameter :: &
B = [1.0_pReal/6.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/6.0_pReal]
call integrateStateRK(g,i,e,A,B,C)
end subroutine integrateStateRK4
!---------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with the Cash-Carp method
!---------------------------------------------------------------------------------------------------
module subroutine integrateStateRKCK45(g,i,e)
integer, intent(in) :: g,i,e
real(pReal), dimension(5,5), parameter :: &
A = reshape([&
1._pReal/5._pReal, .0_pReal, .0_pReal, .0_pReal, .0_pReal, &
3._pReal/40._pReal, 9._pReal/40._pReal, .0_pReal, .0_pReal, .0_pReal, &
3_pReal/10._pReal, -9._pReal/10._pReal, 6._pReal/5._pReal, .0_pReal, .0_pReal, &
-11._pReal/54._pReal, 5._pReal/2._pReal, -70.0_pReal/27.0_pReal, 35.0_pReal/27.0_pReal, .0_pReal, &
1631._pReal/55296._pReal,175._pReal/512._pReal,575._pReal/13824._pReal,44275._pReal/110592._pReal,253._pReal/4096._pReal],&
shape(A))
real(pReal), dimension(5), parameter :: &
C = [0.2_pReal, 0.3_pReal, 0.6_pReal, 1.0_pReal, 0.875_pReal]
real(pReal), dimension(6), parameter :: &
B = &
[37.0_pReal/378.0_pReal, .0_pReal, 250.0_pReal/621.0_pReal, &
125.0_pReal/594.0_pReal, .0_pReal, 512.0_pReal/1771.0_pReal], &
DB = B - &
[2825.0_pReal/27648.0_pReal, .0_pReal, 18575.0_pReal/48384.0_pReal,&
13525.0_pReal/55296.0_pReal, 277.0_pReal/14336.0_pReal, 1._pReal/4._pReal]
call integrateStateRK(g,i,e,A,B,C,DB)
end subroutine integrateStateRKCK45
!--------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with an explicit Runge-Kutta method or an
!! embedded explicit Runge-Kutta method
!--------------------------------------------------------------------------------------------------
subroutine integrateStateRK(g,i,e,A,B,CC,DB)
real(pReal), dimension(:,:), intent(in) :: A
real(pReal), dimension(:), intent(in) :: B, CC
real(pReal), dimension(:), intent(in), optional :: DB
integer, intent(in) :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g !< grain index in grain loop
integer :: &
stage, & ! stage index in integration stage loop
n, &
p, &
c, &
sizeDotState
logical :: &
broken
real(pReal), dimension(constitutive_plasticity_maxSizeDotState,size(B)) :: plastic_RKdotState
p = material_phaseAt(g,e)
c = material_phaseMemberAt(g,i,e)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
constitutive_mech_Fi(p)%data(1:3,1:3,c), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
do stage = 1,size(A,1)
sizeDotState = plasticState(p)%sizeDotState
plastic_RKdotState(1:sizeDotState,stage) = plasticState(p)%dotState(:,c)
plasticState(p)%dotState(:,c) = A(1,stage) * plastic_RKdotState(1:sizeDotState,1)
do n = 2, stage
sizeDotState = plasticState(p)%sizeDotState
plasticState(p)%dotState(:,c) = plasticState(p)%dotState(:,c) &
+ A(n,stage) * plastic_RKdotState(1:sizeDotState,n)
enddo
sizeDotState = plasticState(p)%sizeDotState
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) &
+ plasticState(p)%dotState (1:sizeDotState,c) &
* crystallite_subdt(g,i,e)
broken = integrateStress(g,i,e,CC(stage))
if(broken) exit
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
constitutive_mech_Fi(p)%data(1:3,1:3,c), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e)*CC(stage), g,i,e,p,c)
if(broken) exit
enddo
if(broken) return
sizeDotState = plasticState(p)%sizeDotState
plastic_RKdotState(1:sizeDotState,size(B)) = plasticState (p)%dotState(:,c)
plasticState(p)%dotState(:,c) = matmul(plastic_RKdotState(1:sizeDotState,1:size(B)),B)
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) &
+ plasticState(p)%dotState (1:sizeDotState,c) &
* crystallite_subdt(g,i,e)
if(present(DB)) &
broken = .not. converged( matmul(plastic_RKdotState(1:sizeDotState,1:size(DB)),DB) &
* crystallite_subdt(g,i,e), &
plasticState(p)%state(1:sizeDotState,c), &
plasticState(p)%atol(1:sizeDotState))
if(broken) return
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
constitutive_mech_Fi(p)%data(1:3,1:3,c),g,i,e,p,c)
if(broken) return
broken = integrateStress(g,i,e)
crystallite_converged(g,i,e) = .not. broken
end subroutine integrateStateRK
end submodule constitutive_mech

View File

@ -10,7 +10,8 @@ submodule(constitutive:constitutive_mech) plastic_nonlocal
IPneighborhood => geometry_plastic_nonlocal_IPneighborhood, &
IPvolume => geometry_plastic_nonlocal_IPvolume0, &
IParea => geometry_plastic_nonlocal_IParea0, &
IPareaNormal => geometry_plastic_nonlocal_IPareaNormal0
IPareaNormal => geometry_plastic_nonlocal_IPareaNormal0, &
geometry_plastic_nonlocal_disable
real(pReal), parameter :: &
kB = 1.38e-23_pReal !< Boltzmann constant in J/Kelvin
@ -195,7 +196,7 @@ module function plastic_nonlocal_init() result(myPlasticity)
call geometry_plastic_nonlocal_disable
return
endif
print*, 'Reuber et al., Acta Materialia 71:333348, 2014'
print*, 'https://doi.org/10.1016/j.actamat.2014.03.012'//IO_EOL

File diff suppressed because it is too large Load Diff

View File

@ -1,172 +0,0 @@
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for locally evolving damage field
!--------------------------------------------------------------------------------------------------
module damage_local
use prec
use IO
use material
use config
use YAML_types
use constitutive
use results
implicit none
private
type :: tParameters
character(len=pStringLen), allocatable, dimension(:) :: &
output
end type tParameters
type, private :: tNumerics
real(pReal) :: &
residualStiffness !< non-zero residual damage
end type tNumerics
type(tparameters), dimension(:), allocatable :: &
param
type(tNumerics), private :: num
public :: &
damage_local_init, &
damage_local_updateState, &
damage_local_results
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine damage_local_init
integer :: Ninstances,Nmaterialpoints,h
class(tNode), pointer :: &
num_generic, &
material_homogenization, &
homog, &
homogDamage
print'(/,a)', ' <<<+- damage_local init -+>>>'; flush(IO_STDOUT)
!----------------------------------------------------------------------------------------------
! read numerics parameter and do sanity check
num_generic => config_numerics%get('generic',defaultVal=emptyDict)
num%residualStiffness = num_generic%get_asFloat('residualStiffness', defaultVal=1.0e-6_pReal)
if (num%residualStiffness < 0.0_pReal) call IO_error(301,ext_msg='residualStiffness')
Ninstances = count(damage_type == DAMAGE_local_ID)
allocate(param(Ninstances))
material_homogenization => config_material%get('homogenization')
do h = 1, material_homogenization%length
if (damage_type(h) /= DAMAGE_LOCAL_ID) cycle
homog => material_homogenization%get(h)
homogDamage => homog%get('damage')
associate(prm => param(damage_typeInstance(h)))
#if defined (__GFORTRAN__)
prm%output = output_asStrings(homogDamage)
#else
prm%output = homogDamage%get_asStrings('output',defaultVal=emptyStringArray)
#endif
Nmaterialpoints = count(material_homogenizationAt == h)
damageState(h)%sizeState = 1
allocate(damageState(h)%state0 (1,Nmaterialpoints), source=1.0_pReal)
allocate(damageState(h)%subState0(1,Nmaterialpoints), source=1.0_pReal)
allocate(damageState(h)%state (1,Nmaterialpoints), source=1.0_pReal)
damage(h)%p => damageState(h)%state(1,:)
end associate
enddo
end subroutine damage_local_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates local change in damage field
!--------------------------------------------------------------------------------------------------
function damage_local_updateState(subdt, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
subdt
logical, dimension(2) :: &
damage_local_updateState
integer :: &
homog, &
offset
real(pReal) :: &
phi, phiDot, dPhiDot_dPhi
homog = material_homogenizationAt(el)
offset = material_homogenizationMemberAt(ip,el)
phi = damageState(homog)%subState0(1,offset)
call damage_local_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ip, el)
phi = max(num%residualStiffness,min(1.0_pReal,phi + subdt*phiDot))
damage_local_updateState = [ abs(phi - damageState(homog)%state(1,offset)) &
<= 1.0e-2_pReal &
.or. abs(phi - damageState(homog)%state(1,offset)) &
<= 1.0e-6_pReal*abs(damageState(homog)%state(1,offset)), &
.true.]
damageState(homog)%state(1,offset) = phi
end function damage_local_updateState
!--------------------------------------------------------------------------------------------------
!> @brief calculates homogenized local damage driving forces
!--------------------------------------------------------------------------------------------------
subroutine damage_local_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
phi
real(pReal) :: &
phiDot, dPhiDot_dPhi
phiDot = 0.0_pReal
dPhiDot_dPhi = 0.0_pReal
call constitutive_damage_getRateAndItsTangents(phiDot, dPhiDot_dPhi, phi, ip, el)
phiDot = phiDot/real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal)
dPhiDot_dPhi = dPhiDot_dPhi/real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal)
end subroutine damage_local_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief writes results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine damage_local_results(homog,group)
integer, intent(in) :: homog
character(len=*), intent(in) :: group
integer :: o
associate(prm => param(damage_typeInstance(homog)))
outputsLoop: do o = 1,size(prm%output)
select case(prm%output(o))
case ('phi')
call results_writeDataset(group,damage(homog)%p,prm%output(o),&
'damage indicator','-')
end select
enddo outputsLoop
end associate
end subroutine damage_local_results
end module damage_local

View File

@ -7,7 +7,6 @@ module damage_nonlocal
use material
use config
use YAML_types
use crystallite
use lattice
use constitutive
use results

View File

@ -11,14 +11,11 @@ module homogenization
use math
use material
use constitutive
use crystallite
use FEsolving
use discretization
use thermal_isothermal
use thermal_adiabatic
use thermal_conduction
use damage_none
use damage_local
use damage_nonlocal
use results
@ -162,11 +159,9 @@ subroutine homogenization_init
call mech_init(num_homog)
if (any(thermal_type == THERMAL_isothermal_ID)) call thermal_isothermal_init
if (any(thermal_type == THERMAL_adiabatic_ID)) call thermal_adiabatic_init
if (any(thermal_type == THERMAL_conduction_ID)) call thermal_conduction_init
if (any(damage_type == DAMAGE_none_ID)) call damage_none_init
if (any(damage_type == DAMAGE_local_ID)) call damage_local_init
if (any(damage_type == DAMAGE_nonlocal_ID)) call damage_nonlocal_init
@ -212,10 +207,6 @@ subroutine materialpoint_stressAndItsTangent(dt)
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
homogState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e))
if (thermalState(material_homogenizationAt(e))%sizeState > 0) &
thermalState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
thermalState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e))
if (damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
damageState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e))
@ -245,9 +236,6 @@ subroutine materialpoint_stressAndItsTangent(dt)
if(homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
homogState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e))
if(thermalState(material_homogenizationAt(e))%sizeState > 0) &
thermalState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
thermalState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e))
if(damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
damageState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e))
@ -266,13 +254,11 @@ subroutine materialpoint_stressAndItsTangent(dt)
subStep(i,e) = num%subStepSizeHomog * subStep(i,e) ! crystallite had severe trouble, so do a significant cutback
call crystallite_restore(i,e,subStep(i,e) < 1.0_pReal)
call constitutive_restore(i,e)
if(homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = &
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e))
if(thermalState(material_homogenizationAt(e))%sizeState > 0) &
thermalState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = &
thermalState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e))
if(damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = &
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e))
@ -400,24 +386,6 @@ function updateState(subdt,subF,ip,el)
el)
end select chosenHomogenization
chosenThermal: select case (thermal_type(material_homogenizationAt(el)))
case (THERMAL_adiabatic_ID) chosenThermal
updateState = &
updateState .and. &
thermal_adiabatic_updateState(subdt, &
ip, &
el)
end select chosenThermal
chosenDamage: select case (damage_type(material_homogenizationAt(el)))
case (DAMAGE_local_ID) chosenDamage
updateState = &
updateState .and. &
damage_local_updateState(subdt, &
ip, &
el)
end select chosenDamage
end function updateState
@ -441,8 +409,6 @@ subroutine homogenization_results
group = trim(group_base)//'/damage'
call results_closeGroup(results_addGroup(group))
select case(damage_type(p))
case(DAMAGE_LOCAL_ID)
call damage_local_results(p,group)
case(DAMAGE_NONLOCAL_ID)
call damage_nonlocal_results(p,group)
end select
@ -450,8 +416,6 @@ subroutine homogenization_results
group = trim(group_base)//'/thermal'
call results_closeGroup(results_addGroup(group))
select case(thermal_type(p))
case(THERMAL_ADIABATIC_ID)
call thermal_adiabatic_results(p,group)
case(THERMAL_CONDUCTION_ID)
call thermal_conduction_results(p,group)
end select

View File

@ -26,7 +26,7 @@ contains
!--------------------------------------------------------------------------------------------------
module function kinematics_thermal_expansion_init(kinematics_length) result(myKinematics)
integer, intent(in) :: kinematics_length
integer, intent(in) :: kinematics_length
logical, dimension(:,:), allocatable :: myKinematics
integer :: Ninstances,p,i,k
@ -35,8 +35,8 @@ module function kinematics_thermal_expansion_init(kinematics_length) result(myKi
phases, &
phase, &
kinematics, &
kinematic_type
kinematic_type
print'(/,a)', ' <<<+- kinematics_thermal_expansion init -+>>>'
myKinematics = kinematics_active('thermal_expansion',kinematics_length)
@ -50,13 +50,13 @@ module function kinematics_thermal_expansion_init(kinematics_length) result(myKi
do p = 1, phases%length
if(any(myKinematics(:,p))) kinematics_thermal_expansion_instance(p) = count(myKinematics(:,1:p))
phase => phases%get(p)
phase => phases%get(p)
if(count(myKinematics(:,p)) == 0) cycle
kinematics => phase%get('kinematics')
do k = 1, kinematics%length
if(myKinematics(k,p)) then
associate(prm => param(kinematics_thermal_expansion_instance(p)))
kinematic_type => kinematics%get(k)
kinematic_type => kinematics%get(k)
prm%T_ref = kinematic_type%get_asFloat('T_ref', defaultVal=0.0_pReal)
@ -81,29 +81,6 @@ module function kinematics_thermal_expansion_init(kinematics_length) result(myKi
end function kinematics_thermal_expansion_init
!--------------------------------------------------------------------------------------------------
!> @brief report initial thermal strain based on current temperature deviation from reference
!--------------------------------------------------------------------------------------------------
pure module function kinematics_thermal_expansion_initialStrain(homog,phase,offset) result(initialStrain)
integer, intent(in) :: &
phase, &
homog, &
offset
real(pReal), dimension(3,3) :: &
initialStrain !< initial thermal strain (should be small strain, though)
associate(prm => param(kinematics_thermal_expansion_instance(phase)))
initialStrain = &
(temperature(homog)%p(offset) - prm%T_ref)**1 / 1. * prm%A(1:3,1:3,1) + & ! constant coefficient
(temperature(homog)%p(offset) - prm%T_ref)**2 / 2. * prm%A(1:3,1:3,2) + & ! linear coefficient
(temperature(homog)%p(offset) - prm%T_ref)**3 / 3. * prm%A(1:3,1:3,3) ! quadratic coefficient
end associate
end function kinematics_thermal_expansion_initialStrain
!--------------------------------------------------------------------------------------------------
!> @brief constitutive equation for calculating the velocity gradient
!--------------------------------------------------------------------------------------------------

View File

@ -41,10 +41,8 @@ module material
STIFFNESS_DEGRADATION_UNDEFINED_ID, &
STIFFNESS_DEGRADATION_DAMAGE_ID, &
THERMAL_ISOTHERMAL_ID, &
THERMAL_ADIABATIC_ID, &
THERMAL_CONDUCTION_ID, &
DAMAGE_NONE_ID, &
DAMAGE_LOCAL_ID, &
DAMAGE_NONLOCAL_ID, &
HOMOGENIZATION_UNDEFINED_ID, &
HOMOGENIZATION_NONE_ID, &
@ -86,7 +84,6 @@ module material
type(tState), allocatable, dimension(:), public :: &
homogState, &
thermalState, &
damageState
type(Rotation), dimension(:,:,:), allocatable, public, protected :: &
@ -123,10 +120,8 @@ module material
STIFFNESS_DEGRADATION_UNDEFINED_ID, &
STIFFNESS_DEGRADATION_DAMAGE_ID, &
THERMAL_ISOTHERMAL_ID, &
THERMAL_ADIABATIC_ID, &
THERMAL_CONDUCTION_ID, &
DAMAGE_NONE_ID, &
DAMAGE_LOCAL_ID, &
DAMAGE_NONLOCAL_ID, &
HOMOGENIZATION_NONE_ID, &
HOMOGENIZATION_ISOSTRAIN_ID, &
@ -152,7 +147,6 @@ subroutine material_init(restart)
allocate(homogState (size(material_name_homogenization)))
allocate(thermalState (size(material_name_homogenization)))
allocate(damageState (size(material_name_homogenization)))
allocate(temperature (size(material_name_homogenization)))
@ -218,8 +212,6 @@ subroutine material_parseHomogenization
select case (homogThermal%get_asString('type'))
case('isothermal')
thermal_type(h) = THERMAL_isothermal_ID
case('adiabatic')
thermal_type(h) = THERMAL_adiabatic_ID
case('conduction')
thermal_type(h) = THERMAL_conduction_ID
case default
@ -232,8 +224,6 @@ subroutine material_parseHomogenization
select case (homogDamage%get_asString('type'))
case('none')
damage_type(h) = DAMAGE_none_ID
case('local')
damage_type(h) = DAMAGE_local_ID
case('nonlocal')
damage_type(h) = DAMAGE_nonlocal_ID
case default

View File

@ -1,226 +0,0 @@
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for adiabatic temperature evolution
!--------------------------------------------------------------------------------------------------
module thermal_adiabatic
use prec
use config
use material
use results
use constitutive
use YAML_types
use crystallite
use lattice
implicit none
private
type :: tParameters
character(len=pStringLen), allocatable, dimension(:) :: &
output
end type tParameters
type(tparameters), dimension(:), allocatable :: &
param
public :: &
thermal_adiabatic_init, &
thermal_adiabatic_updateState, &
thermal_adiabatic_getSourceAndItsTangent, &
thermal_adiabatic_getSpecificHeat, &
thermal_adiabatic_getMassDensity, &
thermal_adiabatic_results
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_init
integer :: maxNinstances,h,Nmaterialpoints
class(tNode), pointer :: &
material_homogenization, &
homog, &
homogThermal
print'(/,a)', ' <<<+- thermal_adiabatic init -+>>>'; flush(6)
maxNinstances = count(thermal_type == THERMAL_adiabatic_ID)
if (maxNinstances == 0) return
allocate(param(maxNinstances))
material_homogenization => config_material%get('homogenization')
do h = 1, size(material_name_homogenization)
if (thermal_type(h) /= THERMAL_adiabatic_ID) cycle
homog => material_homogenization%get(h)
homogThermal => homog%get('thermal')
associate(prm => param(thermal_typeInstance(h)))
#if defined (__GFORTRAN__)
prm%output = output_asStrings(homogThermal)
#else
prm%output = homogThermal%get_asStrings('output',defaultVal=emptyStringArray)
#endif
Nmaterialpoints=count(material_homogenizationAt==h)
thermalState(h)%sizeState = 1
allocate(thermalState(h)%state0 (1,Nmaterialpoints), source=thermal_initialT(h))
allocate(thermalState(h)%subState0(1,Nmaterialpoints), source=thermal_initialT(h))
allocate(thermalState(h)%state (1,Nmaterialpoints), source=thermal_initialT(h))
temperature(h)%p => thermalState(h)%state(1,:)
allocate(temperatureRate(h)%p(Nmaterialpoints),source = 0.0_pReal)
end associate
enddo
end subroutine thermal_adiabatic_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates adiabatic change in temperature based on local heat generation model
!--------------------------------------------------------------------------------------------------
function thermal_adiabatic_updateState(subdt, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
subdt
logical, dimension(2) :: &
thermal_adiabatic_updateState
integer :: &
homog, &
offset
real(pReal) :: &
T, Tdot, dTdot_dT
homog = material_homogenizationAt(el)
offset = material_homogenizationMemberAt(ip,el)
T = thermalState(homog)%subState0(1,offset)
call thermal_adiabatic_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
T = T + subdt*Tdot/(thermal_adiabatic_getSpecificHeat(ip,el)*thermal_adiabatic_getMassDensity(ip,el))
thermal_adiabatic_updateState = [ abs(T - thermalState(homog)%state(1,offset)) &
<= 1.0e-2_pReal &
.or. abs(T - thermalState(homog)%state(1,offset)) &
<= 1.0e-6_pReal*abs(thermalState(homog)%state(1,offset)), &
.true.]
temperature (homog)%p(material_homogenizationMemberAt(ip,el)) = T
temperatureRate(homog)%p(material_homogenizationMemberAt(ip,el)) = &
(thermalState(homog)%state(1,offset) - thermalState(homog)%subState0(1,offset))/(subdt+tiny(0.0_pReal))
end function thermal_adiabatic_updateState
!--------------------------------------------------------------------------------------------------
!> @brief returns heat generation rate
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
T
real(pReal), intent(out) :: &
Tdot, dTdot_dT
integer :: &
homog
Tdot = 0.0_pReal
dTdot_dT = 0.0_pReal
homog = material_homogenizationAt(el)
call constitutive_thermal_getRateAndItsTangents(TDot, dTDot_dT, T, crystallite_S, crystallite_Lp, ip, el)
Tdot = Tdot/real(homogenization_Nconstituents(homog),pReal)
dTdot_dT = dTdot_dT/real(homogenization_Nconstituents(homog),pReal)
end subroutine thermal_adiabatic_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized specific heat capacity
!--------------------------------------------------------------------------------------------------
function thermal_adiabatic_getSpecificHeat(ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_adiabatic_getSpecificHeat
integer :: &
grain
thermal_adiabatic_getSpecificHeat = 0.0_pReal
do grain = 1, homogenization_Nconstituents(material_homogenizationAt(el))
thermal_adiabatic_getSpecificHeat = thermal_adiabatic_getSpecificHeat &
+ lattice_c_p(material_phaseAt(grain,el))
enddo
thermal_adiabatic_getSpecificHeat = thermal_adiabatic_getSpecificHeat &
/ real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal)
end function thermal_adiabatic_getSpecificHeat
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized mass density
!--------------------------------------------------------------------------------------------------
function thermal_adiabatic_getMassDensity(ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_adiabatic_getMassDensity
integer :: &
grain
thermal_adiabatic_getMassDensity = 0.0_pReal
do grain = 1, homogenization_Nconstituents(material_homogenizationAt(el))
thermal_adiabatic_getMassDensity = thermal_adiabatic_getMassDensity &
+ lattice_rho(material_phaseAt(grain,el))
enddo
thermal_adiabatic_getMassDensity = thermal_adiabatic_getMassDensity &
/ real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal)
end function thermal_adiabatic_getMassDensity
!--------------------------------------------------------------------------------------------------
!> @brief writes results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_results(homog,group)
integer, intent(in) :: homog
character(len=*), intent(in) :: group
integer :: o
associate(prm => param(damage_typeInstance(homog)))
outputsLoop: do o = 1,size(prm%output)
select case(trim(prm%output(o)))
case('T')
call results_writeDataset(group,temperature(homog)%p,'T',&
'temperature','K')
end select
enddo outputsLoop
end associate
end subroutine thermal_adiabatic_results
end module thermal_adiabatic

View File

@ -8,7 +8,6 @@ module thermal_conduction
use config
use lattice
use results
use crystallite
use constitutive
use YAML_types
@ -66,10 +65,6 @@ subroutine thermal_conduction_init
#endif
Nmaterialpoints=count(material_homogenizationAt==h)
thermalState(h)%sizeState = 0
allocate(thermalState(h)%state0 (0,Nmaterialpoints))
allocate(thermalState(h)%subState0(0,Nmaterialpoints))
allocate(thermalState(h)%state (0,Nmaterialpoints))
allocate (temperature (h)%p(Nmaterialpoints), source=thermal_initialT(h))
allocate (temperatureRate(h)%p(Nmaterialpoints), source=0.0_pReal)

View File

@ -25,10 +25,6 @@ subroutine thermal_isothermal_init
if (thermal_type(h) /= THERMAL_isothermal_ID) cycle
Nmaterialpoints = count(material_homogenizationAt == h)
thermalState(h)%sizeState = 0
allocate(thermalState(h)%state0 (0,Nmaterialpoints))
allocate(thermalState(h)%subState0(0,Nmaterialpoints))
allocate(thermalState(h)%state (0,Nmaterialpoints))
allocate(temperature (h)%p(Nmaterialpoints),source=thermal_initialT(h))
allocate(temperatureRate(h)%p(Nmaterialpoints),source = 0.0_pReal)