Fp matters, not Fp^-1

mathematically absolutely equivalent, but numerically not. Sometikes makes a
huge difference in convergence behavior, even though abs(det(Fp)-1) is
in the order of 1e-15
This commit is contained in:
Martin Diehl 2020-02-13 11:17:31 +01:00
parent fc82ec9b1b
commit 0f70a19266
1 changed files with 1 additions and 4 deletions

View File

@ -239,9 +239,6 @@ subroutine crystallite_init
myNcomponents = homogenization_Ngrains(material_homogenizationAt(e))
do i = FEsolving_execIP(1), FEsolving_execIP(2); do c = 1, myNcomponents
crystallite_Fp0(1:3,1:3,c,i,e) = material_orientation0(c,i,e)%asMatrix() ! plastic def gradient reflects init orientation
crystallite_Fp0(1:3,1:3,c,i,e) = crystallite_Fp0(1:3,1:3,c,i,e) &
/ math_det33(crystallite_Fp0(1:3,1:3,c,i,e))**(1.0_pReal/3.0_pReal)
crystallite_Fi0(1:3,1:3,c,i,e) = constitutive_initialFi(c,i,e)
crystallite_F0(1:3,1:3,c,i,e) = math_I3
crystallite_localPlasticity(c,i,e) = phase_localPlasticity(material_phaseAt(c,e))
@ -995,9 +992,9 @@ logical function integrateStress(ipc,ip,el,timeFraction)
enddo LiLoop
invFp_new = matmul(invFp_current,B)
invFp_new = invFp_new / math_det33(invFp_new)**(1.0_pReal/3.0_pReal) ! regularize
call math_invert33(Fp_new,devNull,error,invFp_new)
if (error) return ! error
Fp_new = Fp_new / math_det33(Fp_new)**(1.0_pReal/3.0_pReal) ! regularize
Fe_new = matmul(matmul(F,invFp_new),invFi_new)
integrateStress = .true.