From 0f28d8048b1bc7316f3f381fef96b9a9c9bd0196 Mon Sep 17 00:00:00 2001 From: Martin Diehl Date: Sat, 2 Jan 2021 17:57:11 +0100 Subject: [PATCH] KISS --- src/commercialFEM_fileList.f90 | 1 - src/quaternions.f90 | 534 --------------------------------- src/rotations.f90 | 83 +++-- 3 files changed, 57 insertions(+), 561 deletions(-) delete mode 100644 src/quaternions.f90 diff --git a/src/commercialFEM_fileList.f90 b/src/commercialFEM_fileList.f90 index 08e7b9c1c..3e3e017eb 100644 --- a/src/commercialFEM_fileList.f90 +++ b/src/commercialFEM_fileList.f90 @@ -11,7 +11,6 @@ #include "config.f90" #include "LAPACK_interface.f90" #include "math.f90" -#include "quaternions.f90" #include "rotations.f90" #include "FEsolving.f90" #include "element.f90" diff --git a/src/quaternions.f90 b/src/quaternions.f90 deleted file mode 100644 index c5c43e3c1..000000000 --- a/src/quaternions.f90 +++ /dev/null @@ -1,534 +0,0 @@ -!--------------------------------------------------------------------------------------------------- -!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH -!> @author Philip Eisenlohr, Michigan State University -!> @brief general quaternion math, not limited to unit quaternions -!> @details w is the real part, (x, y, z) are the imaginary parts. -!> @details https://en.wikipedia.org/wiki/Quaternion -!--------------------------------------------------------------------------------------------------- -module quaternions - use prec - - implicit none - private - - real(pReal), parameter, public :: P = -1.0_pReal !< parameter for orientation conversion. - - type, public :: quaternion - real(pReal), private :: w = 0.0_pReal - real(pReal), private :: x = 0.0_pReal - real(pReal), private :: y = 0.0_pReal - real(pReal), private :: z = 0.0_pReal - - - contains - procedure, private :: add__ - procedure, private :: pos__ - generic, public :: operator(+) => add__,pos__ - - procedure, private :: sub__ - procedure, private :: neg__ - generic, public :: operator(-) => sub__,neg__ - - procedure, private :: mul_quat__ - procedure, private :: mul_scal__ - generic, public :: operator(*) => mul_quat__, mul_scal__ - - procedure, private :: div_quat__ - procedure, private :: div_scal__ - generic, public :: operator(/) => div_quat__, div_scal__ - - procedure, private :: eq__ - generic, public :: operator(==) => eq__ - - procedure, private :: neq__ - generic, public :: operator(/=) => neq__ - - procedure, private :: pow_quat__ - procedure, private :: pow_scal__ - generic, public :: operator(**) => pow_quat__, pow_scal__ - - procedure, public :: abs => abs__ - procedure, public :: conjg => conjg__ - procedure, public :: real => real__ - procedure, public :: aimag => aimag__ - - procedure, public :: homomorphed - procedure, public :: asArray - procedure, public :: inverse - - end type - - interface assignment (=) - module procedure assign_quat__ - module procedure assign_vec__ - end interface assignment (=) - - interface quaternion - module procedure init__ - end interface quaternion - - interface abs - procedure abs__ - end interface abs - - interface dot_product - procedure dot_product__ - end interface dot_product - - interface conjg - module procedure conjg__ - end interface conjg - - interface exp - module procedure exp__ - end interface exp - - interface log - module procedure log__ - end interface log - - interface real - module procedure real__ - end interface real - - interface aimag - module procedure aimag__ - end interface aimag - - public :: & - quaternions_init, & - assignment(=), & - conjg, aimag, & - log, exp, & - abs, dot_product, & - inverse, & - real - -contains - - -!-------------------------------------------------------------------------------------------------- -!> @brief Do self test. -!-------------------------------------------------------------------------------------------------- -subroutine quaternions_init - - print'(/,a)', ' <<<+- quaternions init -+>>>'; flush(6) - - call selfTest - -end subroutine quaternions_init - - -!--------------------------------------------------------------------------------------------------- -!> @brief construct a quaternion from a 4-vector -!--------------------------------------------------------------------------------------------------- -type(quaternion) pure function init__(array) - - real(pReal), intent(in), dimension(4) :: array - - init__%w = array(1) - init__%x = array(2) - init__%y = array(3) - init__%z = array(4) - -end function init__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief assign a quaternion -!--------------------------------------------------------------------------------------------------- -elemental pure subroutine assign_quat__(self,other) - - type(quaternion), intent(out) :: self - type(quaternion), intent(in) :: other - - self = [other%w,other%x,other%y,other%z] - -end subroutine assign_quat__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief assign a 4-vector -!--------------------------------------------------------------------------------------------------- -pure subroutine assign_vec__(self,other) - - type(quaternion), intent(out) :: self - real(pReal), intent(in), dimension(4) :: other - - self%w = other(1) - self%x = other(2) - self%y = other(3) - self%z = other(4) - -end subroutine assign_vec__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief add a quaternion -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function add__(self,other) - - class(quaternion), intent(in) :: self,other - - add__ = [ self%w, self%x, self%y ,self%z] & - + [other%w, other%x, other%y,other%z] - -end function add__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief return (unary positive operator) -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function pos__(self) - - class(quaternion), intent(in) :: self - - pos__ = self * (+1.0_pReal) - -end function pos__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief subtract a quaternion -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function sub__(self,other) - - class(quaternion), intent(in) :: self,other - - sub__ = [ self%w, self%x, self%y ,self%z] & - - [other%w, other%x, other%y,other%z] - -end function sub__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief negate (unary negative operator) -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function neg__(self) - - class(quaternion), intent(in) :: self - - neg__ = self * (-1.0_pReal) - -end function neg__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief multiply with a quaternion -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function mul_quat__(self,other) - - class(quaternion), intent(in) :: self, other - - mul_quat__%w = self%w*other%w - self%x*other%x - self%y*other%y - self%z*other%z - mul_quat__%x = self%w*other%x + self%x*other%w + P * (self%y*other%z - self%z*other%y) - mul_quat__%y = self%w*other%y + self%y*other%w + P * (self%z*other%x - self%x*other%z) - mul_quat__%z = self%w*other%z + self%z*other%w + P * (self%x*other%y - self%y*other%x) - -end function mul_quat__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief multiply with a scalar -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function mul_scal__(self,scal) - - class(quaternion), intent(in) :: self - real(pReal), intent(in) :: scal - - mul_scal__ = [self%w,self%x,self%y,self%z]*scal - -end function mul_scal__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief divide by a quaternion -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function div_quat__(self,other) - - class(quaternion), intent(in) :: self, other - - div_quat__ = self * (conjg(other)/(abs(other)**2.0_pReal)) - -end function div_quat__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief divide by a scalar -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function div_scal__(self,scal) - - class(quaternion), intent(in) :: self - real(pReal), intent(in) :: scal - - div_scal__ = [self%w,self%x,self%y,self%z]/scal - -end function div_scal__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief test equality -!--------------------------------------------------------------------------------------------------- -logical elemental pure function eq__(self,other) - - class(quaternion), intent(in) :: self,other - - eq__ = all(dEq([ self%w, self%x, self%y, self%z], & - [other%w,other%x,other%y,other%z])) - -end function eq__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief test inequality -!--------------------------------------------------------------------------------------------------- -logical elemental pure function neq__(self,other) - - class(quaternion), intent(in) :: self,other - - neq__ = .not. self%eq__(other) - -end function neq__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief raise to the power of a quaternion -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function pow_quat__(self,expon) - - class(quaternion), intent(in) :: self - type(quaternion), intent(in) :: expon - - pow_quat__ = exp(log(self)*expon) - -end function pow_quat__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief raise to the power of a scalar -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function pow_scal__(self,expon) - - class(quaternion), intent(in) :: self - real(pReal), intent(in) :: expon - - pow_scal__ = exp(log(self)*expon) - -end function pow_scal__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief take exponential -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function exp__(a) - - class(quaternion), intent(in) :: a - real(pReal) :: absImag - - absImag = norm2(aimag(a)) - - exp__ = merge(exp(a%w) * [ cos(absImag), & - a%x/absImag * sin(absImag), & - a%y/absImag * sin(absImag), & - a%z/absImag * sin(absImag)], & - IEEE_value(1.0_pReal,IEEE_SIGNALING_NAN), & - dNeq0(absImag)) - -end function exp__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief take logarithm -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function log__(a) - - class(quaternion), intent(in) :: a - real(pReal) :: absImag - - absImag = norm2(aimag(a)) - - log__ = merge([log(abs(a)), & - a%x/absImag * acos(a%w/abs(a)), & - a%y/absImag * acos(a%w/abs(a)), & - a%z/absImag * acos(a%w/abs(a))], & - IEEE_value(1.0_pReal,IEEE_SIGNALING_NAN), & - dNeq0(absImag)) - -end function log__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief return norm -!--------------------------------------------------------------------------------------------------- -real(pReal) elemental pure function abs__(self) - - class(quaternion), intent(in) :: self - - abs__ = norm2([self%w,self%x,self%y,self%z]) - -end function abs__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief calculate dot product -!--------------------------------------------------------------------------------------------------- -real(pReal) elemental pure function dot_product__(a,b) - - class(quaternion), intent(in) :: a,b - - dot_product__ = a%w*b%w + a%x*b%x + a%y*b%y + a%z*b%z - -end function dot_product__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief take conjugate complex -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function conjg__(self) - - class(quaternion), intent(in) :: self - - conjg__ = [self%w,-self%x,-self%y,-self%z] - -end function conjg__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief homomorph -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function homomorphed(self) - - class(quaternion), intent(in) :: self - - homomorphed = - self - -end function homomorphed - - -!--------------------------------------------------------------------------------------------------- -!> @brief return as plain array -!--------------------------------------------------------------------------------------------------- -pure function asArray(self) - - real(pReal), dimension(4) :: asArray - class(quaternion), intent(in) :: self - - asArray = [self%w,self%x,self%y,self%z] - -end function asArray - - -!--------------------------------------------------------------------------------------------------- -!> @brief real part (scalar) -!--------------------------------------------------------------------------------------------------- -pure function real__(self) - - real(pReal) :: real__ - class(quaternion), intent(in) :: self - - real__ = self%w - -end function real__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief imaginary part (3-vector) -!--------------------------------------------------------------------------------------------------- -pure function aimag__(self) - - real(pReal), dimension(3) :: aimag__ - class(quaternion), intent(in) :: self - - aimag__ = [self%x,self%y,self%z] - -end function aimag__ - - -!--------------------------------------------------------------------------------------------------- -!> @brief inverse -!--------------------------------------------------------------------------------------------------- -type(quaternion) elemental pure function inverse(self) - - class(quaternion), intent(in) :: self - - inverse = conjg(self)/abs(self)**2.0_pReal - -end function inverse - - -!-------------------------------------------------------------------------------------------------- -!> @brief check correctness of some quaternions functions -!-------------------------------------------------------------------------------------------------- -subroutine selfTest - - real(pReal), dimension(4) :: qu - type(quaternion) :: q, q_2 - - if(dNeq(abs(P),1.0_pReal)) error stop 'P not in {-1,+1}' - - call random_number(qu) - qu = (qu-0.5_pReal) * 2.0_pReal - q = quaternion(qu) - - q_2= qu - if(any(dNeq(q%asArray(),q_2%asArray()))) error stop 'assign_vec__' - - q_2 = q + q - if(any(dNeq(q_2%asArray(),2.0_pReal*qu))) error stop 'add__' - - q_2 = q - q - if(any(dNeq0(q_2%asArray()))) error stop 'sub__' - - q_2 = q * 5.0_pReal - if(any(dNeq(q_2%asArray(),5.0_pReal*qu))) error stop 'mul__' - - q_2 = q / 0.5_pReal - if(any(dNeq(q_2%asArray(),2.0_pReal*qu))) error stop 'div__' - - q_2 = q * 0.3_pReal - if(dNeq0(abs(q)) .and. q_2 == q) error stop 'eq__' - - q_2 = q - if(q_2 /= q) error stop 'neq__' - - if(dNeq(abs(q),norm2(qu))) error stop 'abs__' - if(dNeq(abs(q)**2.0_pReal, real(q*q%conjg()),1.0e-14_pReal)) & - error stop 'abs__/*conjg' - - if(any(dNeq(q%asArray(),qu))) error stop 'eq__' - if(dNeq(q%real(), qu(1))) error stop 'real()' - if(any(dNeq(q%aimag(), qu(2:4)))) error stop 'aimag()' - - q_2 = q%homomorphed() - if(q /= q_2* (-1.0_pReal)) error stop 'homomorphed' - if(dNeq(q_2%real(), qu(1)* (-1.0_pReal))) error stop 'homomorphed/real' - if(any(dNeq(q_2%aimag(),qu(2:4)*(-1.0_pReal)))) error stop 'homomorphed/aimag' - - q_2 = conjg(q) - if(dNeq(abs(q),abs(q_2))) error stop 'conjg/abs' - if(q /= conjg(q_2)) error stop 'conjg/involution' - if(dNeq(q_2%real(), q%real())) error stop 'conjg/real' - if(any(dNeq(q_2%aimag(),q%aimag()*(-1.0_pReal)))) error stop 'conjg/aimag' - - if(abs(q) > 0.0_pReal) then - q_2 = q * q%inverse() - if( dNeq(real(q_2), 1.0_pReal,1.0e-15_pReal)) error stop 'inverse/real' - if(any(dNeq0(aimag(q_2), 1.0e-15_pReal))) error stop 'inverse/aimag' - - q_2 = q/abs(q) - q_2 = conjg(q_2) - inverse(q_2) - if(any(dNeq0(q_2%asArray(),1.0e-15_pReal))) error stop 'inverse/conjg' - endif - if(dNeq(dot_product(qu,qu),dot_product(q,q))) error stop 'dot_product' - -#if !(defined(__GFORTRAN__) && __GNUC__ < 9) - if (norm2(aimag(q)) > 0.0_pReal) then - if (dNeq0(abs(q-exp(log(q))),1.0e-13_pReal)) error stop 'exp/log' - if (dNeq0(abs(q-log(exp(q))),1.0e-13_pReal)) error stop 'log/exp' - endif -#endif - -end subroutine selfTest - - -end module quaternions diff --git a/src/rotations.f90 b/src/rotations.f90 index 888e73762..73f8a16a1 100644 --- a/src/rotations.f90 +++ b/src/rotations.f90 @@ -47,16 +47,16 @@ !--------------------------------------------------------------------------------------------------- module rotations - use prec use IO use math - use quaternions implicit none private + real(pReal), parameter :: P = -1.0_pReal !< parameter for orientation conversion. + type, public :: rotation - type(quaternion) :: q + real(pReal), dimension(4) :: q contains procedure, public :: asQuaternion procedure, public :: asEulers @@ -103,7 +103,6 @@ contains !-------------------------------------------------------------------------------------------------- subroutine rotations_init - call quaternions_init print'(/,a)', ' <<<+- rotations init -+>>>'; flush(IO_STDOUT) print*, 'Rowenhorst et al., Modelling and Simulation in Materials Science and Engineering 23:083501, 2015' @@ -122,7 +121,7 @@ pure function asQuaternion(self) class(rotation), intent(in) :: self real(pReal), dimension(4) :: asQuaternion - asQuaternion = self%q%asArray() + asQuaternion = self%q end function asQuaternion !--------------------------------------------------------------------------------------------------- @@ -131,7 +130,7 @@ pure function asEulers(self) class(rotation), intent(in) :: self real(pReal), dimension(3) :: asEulers - asEulers = qu2eu(self%q%asArray()) + asEulers = qu2eu(self%q) end function asEulers !--------------------------------------------------------------------------------------------------- @@ -140,7 +139,7 @@ pure function asAxisAngle(self) class(rotation), intent(in) :: self real(pReal), dimension(4) :: asAxisAngle - asAxisAngle = qu2ax(self%q%asArray()) + asAxisAngle = qu2ax(self%q) end function asAxisAngle !--------------------------------------------------------------------------------------------------- @@ -149,7 +148,7 @@ pure function asMatrix(self) class(rotation), intent(in) :: self real(pReal), dimension(3,3) :: asMatrix - asMatrix = qu2om(self%q%asArray()) + asMatrix = qu2om(self%q) end function asMatrix !--------------------------------------------------------------------------------------------------- @@ -158,7 +157,7 @@ pure function asRodrigues(self) class(rotation), intent(in) :: self real(pReal), dimension(4) :: asRodrigues - asRodrigues = qu2ro(self%q%asArray()) + asRodrigues = qu2ro(self%q) end function asRodrigues !--------------------------------------------------------------------------------------------------- @@ -167,7 +166,7 @@ pure function asHomochoric(self) class(rotation), intent(in) :: self real(pReal), dimension(3) :: asHomochoric - asHomochoric = qu2ho(self%q%asArray()) + asHomochoric = qu2ho(self%q) end function asHomochoric @@ -259,7 +258,7 @@ pure elemental function rotRot__(self,R) result(rRot) type(rotation) :: rRot class(rotation), intent(in) :: self,R - rRot = rotation(self%q*R%q) + rRot = rotation(multiply_quaternion(self%q,R%q)) call rRot%standardize() end function rotRot__ @@ -272,14 +271,14 @@ pure elemental subroutine standardize(self) class(rotation), intent(inout) :: self - if (real(self%q) < 0.0_pReal) self%q = self%q%homomorphed() + if (self%q(1) < 0.0_pReal) self%q = - self%q end subroutine standardize !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University -!> @brief rotate a vector passively (default) or actively +!> @brief Rotate a vector passively (default) or actively. !--------------------------------------------------------------------------------------------------- pure function rotVector(self,v,active) result(vRot) @@ -288,9 +287,8 @@ pure function rotVector(self,v,active) result(vRot) real(pReal), intent(in), dimension(3) :: v logical, intent(in), optional :: active - real(pReal), dimension(3) :: v_normed - type(quaternion) :: q - logical :: passive + real(pReal), dimension(4) :: v_normed, q + logical :: passive if (present(active)) then passive = .not. active @@ -301,13 +299,13 @@ pure function rotVector(self,v,active) result(vRot) if (dEq0(norm2(v))) then vRot = v else - v_normed = v/norm2(v) + v_normed = [0.0_pReal,v]/norm2(v) if (passive) then - q = self%q * (quaternion([0.0_pReal, v_normed(1), v_normed(2), v_normed(3)]) * conjg(self%q) ) + q = multiply_quaternion(self%q, multiply_quaternion(v_normed, conjugate_quaternion(self%q))) else - q = conjg(self%q) * (quaternion([0.0_pReal, v_normed(1), v_normed(2), v_normed(3)]) * self%q ) + q = multiply_quaternion(conjugate_quaternion(self%q), multiply_quaternion(v_normed, self%q)) endif - vRot = q%aimag()*norm2(v) + vRot = q(2:4)*norm2(v) endif end function rotVector @@ -315,8 +313,8 @@ end function rotVector !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University -!> @brief rotate a rank-2 tensor passively (default) or actively -!> @details: rotation is based on rotation matrix +!> @brief Rotate a rank-2 tensor passively (default) or actively. +!> @details: Rotation is based on rotation matrix !--------------------------------------------------------------------------------------------------- pure function rotTensor2(self,T,active) result(tRot) @@ -403,7 +401,7 @@ pure elemental function misorientation(self,other) type(rotation) :: misorientation class(rotation), intent(in) :: self, other - misorientation%q = other%q * conjg(self%q) + misorientation%q = multiply_quaternion(other%q, [self%q(1),-self%q(2:4)]) end function misorientation @@ -1338,7 +1336,7 @@ end function cu2ho !-------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH -!> @brief determine to which pyramid a point in a cubic grid belongs +!> @brief Determine to which pyramid a point in a cubic grid belongs. !-------------------------------------------------------------------------- pure function GetPyramidOrder(xyz) @@ -1362,7 +1360,39 @@ end function GetPyramidOrder !-------------------------------------------------------------------------------------------------- -!> @brief check correctness of some rotations functions +!> @brief Multiply two quaternions. +!-------------------------------------------------------------------------------------------------- +pure function multiply_quaternion(qu1,qu2) + + real(pReal), dimension(4), intent(in) :: qu1, qu2 + real(pReal), dimension(4) :: multiply_quaternion + + + multiply_quaternion(1) = qu1(1)*qu2(1) - qu1(2)*qu2(2) - qu1(3)*qu2(3) - qu1(4)*qu2(4) + multiply_quaternion(2) = qu1(1)*qu2(2) + qu1(2)*qu2(1) + P * (qu1(3)*qu2(4) - qu1(4)*qu2(3)) + multiply_quaternion(3) = qu1(1)*qu2(3) + qu1(3)*qu2(1) + P * (qu1(4)*qu2(2) - qu1(2)*qu2(4)) + multiply_quaternion(4) = qu1(1)*qu2(4) + qu1(4)*qu2(1) + P * (qu1(2)*qu2(3) - qu1(3)*qu2(2)) + +end function multiply_quaternion + + +!-------------------------------------------------------------------------------------------------- +!> @brief Calculate conjugate complex of a quaternion. +!-------------------------------------------------------------------------------------------------- +pure function conjugate_quaternion(qu) + + real(pReal), dimension(4), intent(in) :: qu + real(pReal), dimension(4) :: conjugate_quaternion + + + conjugate_quaternion = [qu(1), -qu(2), -qu(3), -qu(4)] + + +end function conjugate_quaternion + + +!-------------------------------------------------------------------------------------------------- +!> @brief Check correctness of some rotations functions. !-------------------------------------------------------------------------------------------------- subroutine selfTest @@ -1374,7 +1404,8 @@ subroutine selfTest real :: A,B integer :: i - do i=1,10 + + do i = 1, 10 #if defined(__GFORTRAN__) && __GNUC__<9 if(i<7) cycle