adopted same algorithm as in addEuclideanDistance
This commit is contained in:
parent
096204cd79
commit
0e93d51fed
|
@ -1,96 +1,52 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# -*- coding: UTF-8 no BOM -*-
|
|
||||||
|
|
||||||
import os,sys,string,re,numpy,skfmm
|
import os,re,sys,math,numpy,string,damask
|
||||||
from optparse import OptionParser, OptionGroup, Option, SUPPRESS_HELP
|
|
||||||
from scipy import ndimage
|
from scipy import ndimage
|
||||||
|
from optparse import OptionParser, Option
|
||||||
|
|
||||||
# -----------------------------
|
# -----------------------------
|
||||||
class extendedOption(Option):
|
class extendableOption(Option):
|
||||||
# -----------------------------
|
# -----------------------------
|
||||||
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
||||||
# taken from online tutorial http://docs.python.org/library/optparse.html
|
# taken from online tutorial http://docs.python.org/library/optparse.html
|
||||||
|
|
||||||
ACTIONS = Option.ACTIONS + ("extend",)
|
ACTIONS = Option.ACTIONS + ("extend",)
|
||||||
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
||||||
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
||||||
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
||||||
|
|
||||||
def take_action(self, action, dest, opt, value, values, parser):
|
def take_action(self, action, dest, opt, value, values, parser):
|
||||||
if action == "extend":
|
if action == "extend":
|
||||||
lvalue = value.split(",")
|
lvalue = value.split(",")
|
||||||
values.ensure_value(dest, []).extend(lvalue)
|
values.ensure_value(dest, []).extend(lvalue)
|
||||||
else:
|
|
||||||
Option.take_action(self, action, dest, opt, value, values, parser)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def outStdout(cmd,locals):
|
|
||||||
if cmd[0:3] == '(!)':
|
|
||||||
exec(cmd[3:])
|
|
||||||
elif cmd[0:3] == '(?)':
|
|
||||||
cmd = eval(cmd[3:])
|
|
||||||
print cmd
|
|
||||||
else:
|
|
||||||
print cmd
|
|
||||||
return
|
|
||||||
|
|
||||||
def outFile(cmd,locals):
|
|
||||||
if cmd[0:3] == '(!)':
|
|
||||||
exec(cmd[3:])
|
|
||||||
elif cmd[0:3] == '(?)':
|
|
||||||
cmd = eval(cmd[3:])
|
|
||||||
locals['filepointer'].write(cmd+'\n')
|
|
||||||
else:
|
|
||||||
locals['filepointer'].write(cmd+'\n')
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
def output(cmds,locals,dest):
|
|
||||||
for cmd in cmds:
|
|
||||||
if isinstance(cmd,list):
|
|
||||||
output(cmd,locals,dest)
|
|
||||||
else:
|
else:
|
||||||
{\
|
Option.take_action(self, action, dest, opt, value, values, parser)
|
||||||
'File': outFile,\
|
|
||||||
'Stdout': outStdout,\
|
|
||||||
}[dest](str(cmd),locals)
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
# +++++++++++++++++++++++++++++++++++++++++++++++++++
|
def periodic_3Dpad(array, rimdim=(1,1,1)):
|
||||||
def vtk_writeASCII_mesh(dim,res,origin,data):
|
|
||||||
# +++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
||||||
""" function writes data array defined on a rectilinear grid """
|
|
||||||
N = res[0]*res[1]*res[2]
|
|
||||||
|
|
||||||
cmds = [\
|
|
||||||
'# vtk DataFile Version 3.1',
|
|
||||||
string.replace('powered by $Id: spectral_geomCheck.py 1575 2012-06-26 18:07:38Z MPIE\p.eisenlohr $','\n','\\n'),
|
|
||||||
'ASCII',
|
|
||||||
'DATASET RECTILINEAR_GRID',
|
|
||||||
'DIMENSIONS %i %i %i'%(res[0]+1,res[1]+1,res[2]+1),
|
|
||||||
'X_COORDINATES %i float'%(res[0]+1),
|
|
||||||
' '.join(map(str,[i*dim[0]/res[0]+origin[0] for i in range(res[0]+1)])),
|
|
||||||
'Y_COORDINATES %i float'%(res[1]+1),
|
|
||||||
' '.join(map(str,[i*dim[1]/res[1]+origin[1] for i in range(res[1]+1)])),
|
|
||||||
'Z_COORDINATES %i float'%(res[2]+1),
|
|
||||||
' '.join(map(str,[i*dim[2]/res[2]+origin[2] for i in range(res[2]+1)])),
|
|
||||||
'CELL_DATA %i'%N,
|
|
||||||
]
|
|
||||||
|
|
||||||
for datatype in data:
|
|
||||||
for item in data[datatype]:
|
|
||||||
cmds += [\
|
|
||||||
'%s %s float'%(datatype.upper()+{True:'',False:'S'}[datatype.lower().endswith('s')],item),
|
|
||||||
'LOOKUP_TABLE default',
|
|
||||||
[[['\t'.join(map(str,data[datatype][item][:,j,k]))] for j in range(res[1])] for k in range(res[2])]
|
|
||||||
]
|
|
||||||
|
|
||||||
return cmds
|
rimdim = numpy.array(rimdim,'i')
|
||||||
|
size = numpy.array(array.shape,'i')
|
||||||
|
padded = numpy.empty(size+2*rimdim,array.dtype)
|
||||||
|
padded[rimdim[0]:rimdim[0]+size[0],
|
||||||
|
rimdim[1]:rimdim[1]+size[1],
|
||||||
|
rimdim[2]:rimdim[2]+size[2]] = array
|
||||||
|
|
||||||
|
p = numpy.zeros(3,'i')
|
||||||
|
for side in xrange(3):
|
||||||
|
for p[(side+2)%3] in xrange(padded.shape[(side+2)%3]):
|
||||||
|
for p[(side+1)%3] in xrange(padded.shape[(side+1)%3]):
|
||||||
|
for p[side%3] in xrange(rimdim[side%3]):
|
||||||
|
spot = (p-rimdim)%size
|
||||||
|
padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]]
|
||||||
|
for p[side%3] in xrange(rimdim[side%3]+size[side%3],size[side%3]+2*rimdim[side%3]):
|
||||||
|
spot = (p-rimdim)%size
|
||||||
|
padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]]
|
||||||
|
return padded
|
||||||
|
|
||||||
# ----------------------- MAIN -------------------------------
|
# --------------------------------------------------------------------
|
||||||
|
# MAIN
|
||||||
|
# --------------------------------------------------------------------
|
||||||
|
|
||||||
identifiers = {
|
identifiers = {
|
||||||
'resolution': ['a','b','c'],
|
'resolution': ['a','b','c'],
|
||||||
|
@ -103,28 +59,108 @@ mappings = {
|
||||||
'origin': lambda x: float(x),
|
'origin': lambda x: float(x),
|
||||||
}
|
}
|
||||||
|
|
||||||
parser = OptionParser(option_class=extendedOption, usage='%prog [geomfile[s]]', description = """
|
features = [ \
|
||||||
Produce Euclidean distance map from geom description
|
{'aliens': 1, 'names': ['boundary','biplane'],},
|
||||||
|
{'aliens': 2, 'names': ['tripleline',],},
|
||||||
|
{'aliens': 3, 'names': ['quadruplepoint',],}
|
||||||
|
]
|
||||||
|
|
||||||
""" + string.replace('$Id: spectral_geomCheck.py 1575 2012-06-26 18:07:38Z MPIE\p.eisenlohr $','\n','\\n')
|
neighborhoods = {
|
||||||
|
'neumann':numpy.array([
|
||||||
|
[-1, 0, 0],
|
||||||
|
[ 1, 0, 0],
|
||||||
|
[ 0,-1, 0],
|
||||||
|
[ 0, 1, 0],
|
||||||
|
[ 0, 0,-1],
|
||||||
|
[ 0, 0, 1],
|
||||||
|
]),
|
||||||
|
'moore':numpy.array([
|
||||||
|
[-1,-1,-1],
|
||||||
|
[ 0,-1,-1],
|
||||||
|
[ 1,-1,-1],
|
||||||
|
[-1, 0,-1],
|
||||||
|
[ 0, 0,-1],
|
||||||
|
[ 1, 0,-1],
|
||||||
|
[-1, 1,-1],
|
||||||
|
[ 0, 1,-1],
|
||||||
|
[ 1, 1,-1],
|
||||||
|
[-1,-1, 0],
|
||||||
|
[ 0,-1, 0],
|
||||||
|
[ 1,-1, 0],
|
||||||
|
[-1, 0, 0],
|
||||||
|
#
|
||||||
|
[ 1, 0, 0],
|
||||||
|
[-1, 1, 0],
|
||||||
|
[ 0, 1, 0],
|
||||||
|
[ 1, 1, 0],
|
||||||
|
[-1,-1, 1],
|
||||||
|
[ 0,-1, 1],
|
||||||
|
[ 1,-1, 1],
|
||||||
|
[-1, 0, 1],
|
||||||
|
[ 0, 0, 1],
|
||||||
|
[ 1, 0, 1],
|
||||||
|
[-1, 1, 1],
|
||||||
|
[ 0, 1, 1],
|
||||||
|
[ 1, 1, 1],
|
||||||
|
])
|
||||||
|
}
|
||||||
|
|
||||||
|
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
|
||||||
|
Produce geom files containing Euclidean distance to grain structural features:
|
||||||
|
boundaries, triple lines, and quadruple points.
|
||||||
|
|
||||||
|
""" + string.replace('$Id: addEuclideanDistance.py 2039 2012-12-19 14:50:45Z MPIE\p.shanthraj $','\n','\\n')
|
||||||
)
|
)
|
||||||
|
|
||||||
(options, filenames) = parser.parse_args()
|
parser.add_option('-t','--type', dest='type', action='extend', type='string', \
|
||||||
|
help='feature type (%s)'%(', '.join(map(lambda x:', '.join(x['names']),features))))
|
||||||
|
parser.add_option('-n','--neighborhood', dest='neigborhood', action='store', type='string', \
|
||||||
|
help='type of neighborhood (%s)'%(', '.join(neighborhoods.keys())), \
|
||||||
|
metavar='<int>')
|
||||||
|
parser.add_option('-2', '--twodimensional', dest='twoD', action='store_true', \
|
||||||
|
help='output geom file with two-dimensional data arrangement')
|
||||||
|
|
||||||
|
parser.set_defaults(type = [])
|
||||||
|
parser.set_defaults(neighborhood = 'neumann')
|
||||||
|
parser.set_defaults(twoD = False)
|
||||||
|
|
||||||
|
(options,filenames) = parser.parse_args()
|
||||||
|
|
||||||
|
options.neighborhood = options.neighborhood.lower()
|
||||||
|
if options.neighborhood not in neighborhoods:
|
||||||
|
parser.error('unknown neighborhood %s!'%options.neighborhood)
|
||||||
|
|
||||||
|
feature_list = []
|
||||||
|
for i,feature in enumerate(features):
|
||||||
|
for name in feature['names']:
|
||||||
|
for type in options.type:
|
||||||
|
if name.startswith(type):
|
||||||
|
feature_list.append(i) # remember valid features
|
||||||
|
break
|
||||||
|
|
||||||
|
print feature_list
|
||||||
# ------------------------------------------ setup file handles ---------------------------------------
|
# ------------------------------------------ setup file handles ---------------------------------------
|
||||||
|
|
||||||
files = []
|
files = []
|
||||||
if filenames == []:
|
if filenames == []:
|
||||||
files.append({'name':'STDIN', 'input':sys.stdin})
|
files.append({'name':'STDIN',
|
||||||
|
'input':sys.stdin,
|
||||||
|
'output':sys.stdout,
|
||||||
|
'croak':sys.stderr,
|
||||||
|
})
|
||||||
else:
|
else:
|
||||||
for name in filenames:
|
for name in filenames:
|
||||||
if os.path.exists(name):
|
if os.path.exists(name):
|
||||||
files.append({'name':name, 'input':open(name)})
|
files.append({'name':name,
|
||||||
|
'input':open(name),
|
||||||
|
'output':[open(features[feature]['names'][0]+'_'+name,'w') for feature in feature_list],
|
||||||
|
'croak':sys.stdout,
|
||||||
|
})
|
||||||
|
|
||||||
# ------------------------------------------ loop over input files ---------------------------------------
|
# ------------------------------------------ loop over input files ---------------------------------------
|
||||||
|
|
||||||
for file in files:
|
for file in files:
|
||||||
if file['name'] != 'STDIN': print file['name']
|
if file['name'] != 'STDIN': file['croak'].write(file['name']+'\n')
|
||||||
|
|
||||||
# get labels by either read the first row, or - if keyword header is present - the last line of the header
|
# get labels by either read the first row, or - if keyword header is present - the last line of the header
|
||||||
|
|
||||||
|
@ -132,7 +168,7 @@ for file in files:
|
||||||
m = re.search('(\d+)\s*head', firstline.lower())
|
m = re.search('(\d+)\s*head', firstline.lower())
|
||||||
if m:
|
if m:
|
||||||
headerlines = int(m.group(1))
|
headerlines = int(m.group(1))
|
||||||
headers = [file['input'].readline() for i in range(headerlines)]
|
headers = [firstline]+[file['input'].readline() for i in range(headerlines)]
|
||||||
else:
|
else:
|
||||||
headerlines = 1
|
headerlines = 1
|
||||||
headers = firstline
|
headers = firstline
|
||||||
|
@ -140,56 +176,110 @@ for file in files:
|
||||||
content = file['input'].readlines()
|
content = file['input'].readlines()
|
||||||
file['input'].close()
|
file['input'].close()
|
||||||
|
|
||||||
info = {'resolution': [0,0,0],
|
info = {'resolution': numpy.array([0,0,0]),
|
||||||
'dimension': [0.0,0.0,0.0],
|
'dimension': numpy.array([0.0,0.0,0.0]),
|
||||||
'origin': [0.0,0.0,0.0],
|
'origin': numpy.array([0.0,0.0,0.0]),
|
||||||
|
'homogenization': 1,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
new_header = []
|
||||||
for header in headers:
|
for header in headers:
|
||||||
headitems = map(str.lower,header.split())
|
headitems = map(str.lower,header.split())
|
||||||
if headitems[0] in identifiers.keys():
|
if headitems[0] in mappings.keys():
|
||||||
for i in xrange(len(identifiers[headitems[0]])):
|
if headitems[0] in identifiers.keys():
|
||||||
info[headitems[0]][i] = mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
|
for i in xrange(len(identifiers[headitems[0]])):
|
||||||
|
info[headitems[0]][i] = \
|
||||||
|
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
|
||||||
|
else:
|
||||||
|
info[headitems[0]] = mappings[headitems[0]](headitems[1])
|
||||||
|
|
||||||
if info['resolution'] == [0,0,0]:
|
if numpy.all(info['resolution'] == 0):
|
||||||
print 'no resolution info found.'
|
file['croak'].write('no resolution info found.\n')
|
||||||
sys.exit(1)
|
continue
|
||||||
if info['dimension'] == [0.0,0.0,0.0]:
|
if numpy.all(info['dimension'] == 0.0):
|
||||||
print 'no dimension info found.'
|
file['croak'].write('no dimension info found.\n')
|
||||||
sys.exit(1)
|
continue
|
||||||
|
|
||||||
print 'resolution: %s'%(' x '.join(map(str,info['resolution'])))
|
file['croak'].write('resolution: %s\n'%(' x '.join(map(str,info['resolution']))) + \
|
||||||
print 'dimension: %s'%(' x '.join(map(str,info['dimension'])))
|
'dimension: %s\n'%(' x '.join(map(str,info['dimension']))) + \
|
||||||
print 'origin: %s'%(' : '.join(map(str,info['origin'])))
|
'origin: %s\n'%(' : '.join(map(str,info['origin']))) + \
|
||||||
|
'homogenization: %i\n'%info['homogenization'])
|
||||||
|
|
||||||
dx = info['dimension'][0]/info['resolution'][0]
|
new_header.append("resolution\ta %i\tb %i\tc %i\n"%(
|
||||||
|
info['resolution'][0],
|
||||||
data = {'scalar':{'perimeter':numpy.zeros(info['resolution'],'i'),
|
info['resolution'][1],
|
||||||
'distance':numpy.zeros(info['resolution'],'i')}}
|
info['resolution'][2],))
|
||||||
|
new_header.append("dimension\tx %f\ty %f\tz %f\n"%(
|
||||||
|
info['dimension'][0],
|
||||||
|
info['dimension'][1],
|
||||||
|
info['dimension'][2],))
|
||||||
|
new_header.append("origin\tx %f\ty %f\tz %f\n"%(
|
||||||
|
info['origin'][0],
|
||||||
|
info['origin'][1],
|
||||||
|
info['origin'][2],))
|
||||||
|
new_header.append("homogenization\t%i\n"%info['homogenization'])
|
||||||
|
|
||||||
|
structure = numpy.zeros(info['resolution'],'i')
|
||||||
i = 0
|
i = 0
|
||||||
for line in content:
|
for line in content:
|
||||||
for item in map(int,line.split()):
|
for item in map(int,line.split()):
|
||||||
data['scalar']['perimeter'][i%info['resolution'][0],(i/info['resolution'][0])%info['resolution'][1],i/info['resolution'][0]/info['resolution'][1]] = item
|
structure[i%info['resolution'][0],
|
||||||
|
(i/info['resolution'][0])%info['resolution'][1],
|
||||||
|
i/info['resolution'][0] /info['resolution'][1]] = item
|
||||||
i += 1
|
i += 1
|
||||||
|
|
||||||
|
neighborhood = neighborhoods[options.neighborhood]
|
||||||
|
convoluted = numpy.empty([len(neighborhood)]+list(info['resolution']+2),'i')
|
||||||
|
microstructure = periodic_3Dpad(structure)
|
||||||
|
|
||||||
|
for i,p in enumerate(neighborhood):
|
||||||
|
stencil = numpy.zeros((3,3,3),'i')
|
||||||
|
stencil[1,1,1] = -1
|
||||||
|
stencil[p[0]+1,
|
||||||
|
p[1]+1,
|
||||||
|
p[2]+1] = 1
|
||||||
|
|
||||||
# data['scalar']['perimeter'] = numpy.where(ndimage.morphology.grey_dilation(data['scalar']['perimeter'],size=(3,3,3))-data['scalar']['perimeter']>0,0,1)
|
convoluted[i,:,:,:] = ndimage.convolve(microstructure,stencil)
|
||||||
|
|
||||||
FDstencil_x = numpy.zeros([3,3,3])
|
distance = numpy.ones((len(feature_list),info['resolution'][0],info['resolution'][1],info['resolution'][2]),'d')
|
||||||
FDstencil_x[:,1,1] = [-1,0,1]
|
|
||||||
FDstencil_y = numpy.zeros([3,3,3])
|
|
||||||
FDstencil_y[1,:,1] = [-1,0,1]
|
|
||||||
FDstencil_z = numpy.zeros([3,3,3])
|
|
||||||
FDstencil_z[1,1,:] = [-1,0,1]
|
|
||||||
data['scalar']['perimeter'] = numpy.where(numpy.abs(ndimage.convolve(data['scalar']['perimeter'], FDstencil_x)) + numpy.abs(ndimage.convolve(data['scalar']['perimeter'], FDstencil_y)) + numpy.abs(ndimage.convolve(data['scalar']['perimeter'], FDstencil_z))>0,0,1)
|
|
||||||
data['scalar']['distance'] = skfmm.distance(data['scalar']['perimeter'], dx=dx)
|
|
||||||
|
|
||||||
out = {}
|
convoluted = numpy.sort(convoluted,axis=0)
|
||||||
out['mesh'] = vtk_writeASCII_mesh(info['dimension'],info['resolution'],info['origin'],data)
|
uniques = numpy.zeros(info['resolution'])
|
||||||
|
check = numpy.empty(info['resolution'])
|
||||||
|
check[:,:,:] = numpy.nan
|
||||||
|
for i in xrange(len(neighborhood)):
|
||||||
|
uniques += numpy.where(convoluted[i,1:-1,1:-1,1:-1] == check,0,1)
|
||||||
|
check = convoluted[i,1:-1,1:-1,1:-1]
|
||||||
|
for i,feature_id in enumerate(feature_list):
|
||||||
|
distance[i,:,:,:] = numpy.where(uniques > features[feature_id]['aliens'],0.0,1.0)
|
||||||
|
|
||||||
for what in out.keys():
|
for i in xrange(len(feature_list)):
|
||||||
if file['name'] == 'STDIN':
|
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[max(info['dimension']/info['resolution'])]*3
|
||||||
output(out[what],{},'Stdout')
|
|
||||||
else:
|
|
||||||
(head,tail) = os.path.split(file['name'])
|
for i,feature in enumerate(feature_list):
|
||||||
vtk = open(os.path.join(head,what+'_'+os.path.splitext(tail)[0]+'.vtk'), 'w')
|
formatwidth = int(math.floor(math.log10(distance[i,:,:,:].max())+1))
|
||||||
output(out[what],{'filepointer':vtk},'File')
|
|
||||||
vtk.close()
|
# ------------------------------------------ assemble header ---------------------------------------
|
||||||
|
|
||||||
|
output = '%i\theader\n'%(len(new_header))
|
||||||
|
output += ''.join(new_header)
|
||||||
|
|
||||||
|
# ------------------------------------- regenerate texture information ----------------------------------
|
||||||
|
|
||||||
|
for z in xrange(info['resolution'][2]):
|
||||||
|
for y in xrange(info['resolution'][1]):
|
||||||
|
output += {True:' ',False:'\n'}[options.twoD].join(map(lambda x: ('%%%ii'%formatwidth)%(round(x)), distance[i,:,y,z])) + '\n'
|
||||||
|
|
||||||
|
|
||||||
|
# ------------------------------------------ output result ---------------------------------------
|
||||||
|
|
||||||
|
file['output'][i].write(output)
|
||||||
|
|
||||||
|
if file['name'] != 'STDIN':
|
||||||
|
file['output'][i].close()
|
||||||
|
|
||||||
|
if file['name'] != 'STDIN':
|
||||||
|
file['input'].close() # close input geom file
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue