Merge branch 'grid-filters' into MiscImprovements

This commit is contained in:
Martin Diehl 2019-12-21 06:57:38 +01:00
commit 0d1ff72c45
17 changed files with 580 additions and 850 deletions

View File

@ -4,7 +4,7 @@ import os
import sys import sys
from optparse import OptionParser from optparse import OptionParser
import re import re
import collections from collections.abc import Iterable
import math # noqa import math # noqa
import scipy # noqa import scipy # noqa
@ -18,7 +18,7 @@ scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version]) scriptID = ' '.join([scriptName,damask.version])
def listify(x): def listify(x):
return x if isinstance(x, collections.Iterable) else [x] return x if isinstance(x, Iterable) else [x]
# -------------------------------------------------------------------- # --------------------------------------------------------------------
@ -65,9 +65,10 @@ for i in range(len(options.formulas)):
if filenames == []: filenames = [None] if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
try: table = damask.ASCIItable(name = name, try:
buffered = False) table = damask.ASCIItable(name = name, buffered = False)
except: continue except IOError:
continue
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
# ------------------------------------------ read header ------------------------------------------- # ------------------------------------------ read header -------------------------------------------

View File

@ -41,9 +41,9 @@ if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
try: try:
table = damask.ASCIItable(name = name, table = damask.ASCIItable(name = name, buffered = False)
buffered = False) except IOError:
except IOError: continue continue
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
# ------------------------------------------ read header ------------------------------------------ # ------------------------------------------ read header ------------------------------------------

View File

@ -2,6 +2,7 @@
import os import os
import sys import sys
from io import StringIO
from optparse import OptionParser from optparse import OptionParser
import numpy as np import numpy as np
@ -12,48 +13,6 @@ import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version]) scriptID = ' '.join([scriptName,damask.version])
def merge_dicts(*dict_args):
"""Given any number of dicts, shallow copy and merge into a new dict, with precedence going to key value pairs in latter dicts."""
result = {}
for dictionary in dict_args:
result.update(dictionary)
return result
def curlFFT(geomdim,field):
"""Calculate curl of a vector or tensor field by transforming into Fourier space."""
shapeFFT = np.array(np.shape(field))[0:3]
grid = np.array(np.shape(field)[2::-1])
N = grid.prod() # field size
n = np.array(np.shape(field)[3:]).prod() # data size
field_fourier = np.fft.rfftn(field,axes=(0,1,2),s=shapeFFT)
curl_fourier = np.empty(field_fourier.shape,'c16')
# differentiation in Fourier space
TWOPIIMG = 2.0j*np.pi
einsums = {
3:'slm,ijkl,ijkm->ijks', # vector, 3 -> 3
9:'slm,ijkl,ijknm->ijksn', # tensor, 3x3 -> 3x3
}
k_sk = np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2]))/geomdim[0]
if grid[2]%2 == 0: k_sk[grid[2]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011)
k_sj = np.where(np.arange(grid[1])>grid[1]//2,np.arange(grid[1])-grid[1],np.arange(grid[1]))/geomdim[1]
if grid[1]%2 == 0: k_sj[grid[1]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011)
k_si = np.arange(grid[0]//2+1)/geomdim[2]
kk, kj, ki = np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij')
k_s = np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3).astype('c16')
e = np.zeros((3, 3, 3))
e[0, 1, 2] = e[1, 2, 0] = e[2, 0, 1] = 1.0 # Levi-Civita symbols
e[0, 2, 1] = e[2, 1, 0] = e[1, 0, 2] = -1.0
curl_fourier = np.einsum(einsums[n],e,k_s,field_fourier)*TWOPIIMG
return np.fft.irfftn(curl_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,n])
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# MAIN # MAIN
@ -61,8 +20,7 @@ def curlFFT(geomdim,field):
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [ASCIItable(s)]', description = """ parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [ASCIItable(s)]', description = """
Add column(s) containing curl of requested column(s). Add column(s) containing curl of requested column(s).
Operates on periodic ordered three-dimensional data sets Operates on periodic ordered three-dimensional data sets of vector and tensor fields.
of vector and tensor fields.
""", version = scriptID) """, version = scriptID)
parser.add_option('-p','--pos','--periodiccellcenter', parser.add_option('-p','--pos','--periodiccellcenter',
@ -70,93 +28,30 @@ parser.add_option('-p','--pos','--periodiccellcenter',
type = 'string', metavar = 'string', type = 'string', metavar = 'string',
help = 'label of coordinates [%default]') help = 'label of coordinates [%default]')
parser.add_option('-l','--label', parser.add_option('-l','--label',
dest = 'data', dest = 'labels',
action = 'extend', metavar = '<string LIST>', action = 'extend', metavar = '<string LIST>',
help = 'label(s) of field values') help = 'label(s) of field values')
parser.set_defaults(pos = 'pos', parser.set_defaults(pos = 'pos',
) )
(options,filenames) = parser.parse_args() (options,filenames) = parser.parse_args()
if options.data is None: parser.error('no data column specified.')
# --- define possible data types -------------------------------------------------------------------
datatypes = {
3: {'name': 'vector',
'shape': [3],
},
9: {'name': 'tensor',
'shape': [3,3],
},
}
# --- loop over input files ------------------------------------------------------------------------
if filenames == []: filenames = [None] if filenames == []: filenames = [None]
if options.labels is None: parser.error('no data column specified.')
for name in filenames: for name in filenames:
try: table = damask.ASCIItable(name = name,buffered = False)
except: continue
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
# --- interpret header ---------------------------------------------------------------------------- table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid,size,origin = damask.grid_filters.cell_coord0_2_DNA(table.get(options.pos))
table.head_read() for label in options.labels:
field = table.get(label)
shape = (3,) if np.prod(field.shape)//np.prod(grid) == 3 else (3,3) # vector or tensor
field = field.reshape(np.append(grid[::-1],shape))
table.add('curlFFT({})'.format(label),
damask.grid_filters.curl(size[::-1],field).reshape((-1,np.prod(shape))),
scriptID+' '+' '.join(sys.argv[1:]))
remarks = [] table.to_ASCII(sys.stdout if name is None else name)
errors = []
active = []
coordDim = table.label_dimension(options.pos)
if coordDim != 3:
errors.append('coordinates "{}" must be three-dimensional.'.format(options.pos))
else: coordCol = table.label_index(options.pos)
for me in options.data:
dim = table.label_dimension(me)
if dim in datatypes:
active.append(merge_dicts({'label':me},datatypes[dim]))
remarks.append('differentiating {} "{}"...'.format(datatypes[dim]['name'],me))
else:
remarks.append('skipping "{}" of dimension {}...'.format(me,dim) if dim != -1 else \
'"{}" not found...'.format(me) )
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for data in active:
table.labels_append(['{}_curlFFT({})'.format(i+1,data['label'])
for i in range(np.prod(np.array(data['shape'])))]) # extend ASCII header with new labels
table.head_write()
# --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray()
grid,size = damask.util.coordGridAndSize(table.data[:,table.label_indexrange(options.pos)])
# ------------------------------------------ process value field -----------------------------------
stack = [table.data]
for data in active:
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
stack.append(curlFFT(size[::-1],
table.data[:,table.label_indexrange(data['label'])].
reshape(grid[::-1].tolist()+data['shape'])))
# ------------------------------------------ output result -----------------------------------------
if len(stack) > 1: table.data = np.hstack(tuple(stack))
table.data_writeArray('%.12g')
# ------------------------------------------ output finalization -----------------------------------
table.close() # close input ASCII table (works for stdin)

View File

@ -2,10 +2,10 @@
import os import os
import sys import sys
from io import StringIO
from optparse import OptionParser from optparse import OptionParser
import numpy as np import numpy as np
import scipy.ndimage
import damask import damask
@ -14,79 +14,6 @@ scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version]) scriptID = ' '.join([scriptName,damask.version])
#--------------------------------------------------------------------------------------------------
def cell2node(cellData,grid):
nodeData = 0.0
datalen = np.array(cellData.shape[3:]).prod()
for i in range(datalen):
node = scipy.ndimage.convolve(cellData.reshape(tuple(grid[::-1])+(datalen,))[...,i],
np.ones((2,2,2))/8., # 2x2x2 neighborhood of cells
mode = 'wrap',
origin = -1, # offset to have cell origin as center
) # now averaged at cell origins
node = np.append(node,node[np.newaxis,0,:,:,...],axis=0) # wrap along z
node = np.append(node,node[:,0,np.newaxis,:,...],axis=1) # wrap along y
node = np.append(node,node[:,:,0,np.newaxis,...],axis=2) # wrap along x
nodeData = node[...,np.newaxis] if i==0 else np.concatenate((nodeData,node[...,np.newaxis]),axis=-1)
return nodeData
#--------------------------------------------------------------------------------------------------
def displacementAvgFFT(F,grid,size,nodal=False,transformed=False):
"""Calculate average cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
if nodal:
x, y, z = np.meshgrid(np.linspace(0,size[2],1+grid[2]),
np.linspace(0,size[1],1+grid[1]),
np.linspace(0,size[0],1+grid[0]),
indexing = 'ij')
else:
delta = size/grid*0.5
x, y, z = np.meshgrid(np.linspace(delta[2],size[2]-delta[2],grid[2]),
np.linspace(delta[1],size[1]-delta[1],grid[1]),
np.linspace(delta[0],size[0]-delta[0],grid[0]),
indexing = 'ij')
origCoords = np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
F_fourier = F if transformed else np.fft.rfftn(F,axes=(0,1,2)) # transform or use provided data
Favg = np.real(F_fourier[0,0,0,:,:])/grid.prod() # take zero freq for average
avgDisplacement = np.einsum('ml,ijkl->ijkm',Favg-np.eye(3),origCoords) # dX = Favg.X
return avgDisplacement
#--------------------------------------------------------------------------------------------------
def displacementFluctFFT(F,grid,size,nodal=False,transformed=False):
"""Calculate cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
integrator = 0.5j * size / np.pi
kk, kj, ki = np.meshgrid(np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2])),
np.where(np.arange(grid[1])>grid[1]//2,np.arange(grid[1])-grid[1],np.arange(grid[1])),
np.arange(grid[0]//2+1),
indexing = 'ij')
k_s = np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3)
k_sSquared = np.einsum('...l,...l',k_s,k_s)
k_sSquared[0,0,0] = 1.0 # ignore global average frequency
#--------------------------------------------------------------------------------------------------
# integration in Fourier space
displacement_fourier = -np.einsum('ijkml,ijkl,l->ijkm',
F if transformed else np.fft.rfftn(F,axes=(0,1,2)),
k_s,
integrator,
) / k_sSquared[...,np.newaxis]
#--------------------------------------------------------------------------------------------------
# backtransformation to real space
displacement = np.fft.irfftn(displacement_fourier,grid[::-1],axes=(0,1,2))
return cell2node(displacement,grid) if nodal else displacement
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# MAIN # MAIN
# -------------------------------------------------------------------- # --------------------------------------------------------------------
@ -100,7 +27,7 @@ Outputs at cell centers or cell nodes (into separate file).
parser.add_option('-f', parser.add_option('-f',
'--defgrad', '--defgrad',
dest = 'defgrad', dest = 'f',
metavar = 'string', metavar = 'string',
help = 'label of deformation gradient [%default]') help = 'label of deformation gradient [%default]')
parser.add_option('-p', parser.add_option('-p',
@ -113,108 +40,34 @@ parser.add_option('--nodal',
action = 'store_true', action = 'store_true',
help = 'output nodal (instead of cell-centered) displacements') help = 'output nodal (instead of cell-centered) displacements')
parser.set_defaults(defgrad = 'f', parser.set_defaults(f = 'f',
pos = 'pos', pos = 'pos',
) )
(options,filenames) = parser.parse_args() (options,filenames) = parser.parse_args()
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
outname = (os.path.splitext(name)[0] + damask.util.report(scriptName,name)
'_nodal' +
os.path.splitext(name)[1]) if (options.nodal and name) else None
try: table = damask.ASCIItable(name = name,
outname = outname,
buffered = False)
except: continue
damask.util.report(scriptName,'{}{}'.format(name if name else '',
' --> {}'.format(outname) if outname else ''))
# ------------------------------------------ read header ------------------------------------------ table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid,size,origin = damask.grid_filters.cell_coord0_2_DNA(table.get(options.pos))
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
errors = []
remarks = []
if table.label_dimension(options.defgrad) != 9:
errors.append('deformation gradient "{}" is not a 3x3 tensor.'.format(options.defgrad))
coordDim = table.label_dimension(options.pos)
if not 3 >= coordDim >= 1:
errors.append('coordinates "{}" need to have one, two, or three dimensions.'.format(options.pos))
elif coordDim < 3:
remarks.append('appending {} dimension{} to coordinates "{}"...'.format(3-coordDim,
's' if coordDim < 2 else '',
options.pos))
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss=True)
continue
# --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray([options.defgrad,options.pos])
table.data_rewind()
if len(table.data.shape) < 2: table.data.shape += (1,) # expand to 2D shape
if table.data[:,9:].shape[1] < 3:
table.data = np.hstack((table.data,
np.zeros((table.data.shape[0],
3-table.data[:,9:].shape[1]),dtype='f'))) # fill coords up to 3D with zeros
grid,size = damask.util.coordGridAndSize(table.data[:,9:12])
N = grid.prod()
if N != len(table.data): errors.append('data count {} does not match grid {}x{}x{}.'.format(N,*grid))
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ process data ------------------------------------------
F_fourier = np.fft.rfftn(table.data[:,:9].reshape(grid[2],grid[1],grid[0],3,3),axes=(0,1,2)) # perform transform only once...
fluctDisplacement = displacementFluctFFT(F_fourier,grid,size,options.nodal,transformed=True)
avgDisplacement = displacementAvgFFT (F_fourier,grid,size,options.nodal,transformed=True)
# ------------------------------------------ assemble header ---------------------------------------
F = table.get(options.f).reshape(np.append(grid[::-1],(3,3)))
if options.nodal: if options.nodal:
table.info_clear() table = damask.Table(damask.grid_filters.node_coord0(grid[::-1],size[::-1]).reshape((-1,3)),
table.labels_clear() {'pos':(3,)})
table.add('avg({}).{}'.format(options.f,options.pos),
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) damask.grid_filters.node_displacement_avg(size[::-1],F).reshape((-1,3)),
table.labels_append((['{}_pos' .format(i+1) for i in range(3)] if options.nodal else []) + scriptID+' '+' '.join(sys.argv[1:]))
['{}_avg({}).{}' .format(i+1,options.defgrad,options.pos) for i in range(3)] + table.add('fluct({}).{}'.format(options.f,options.pos),
['{}_fluct({}).{}'.format(i+1,options.defgrad,options.pos) for i in range(3)] ) damask.grid_filters.node_displacement_fluct(size[::-1],F).reshape((-1,3)),
table.head_write() scriptID+' '+' '.join(sys.argv[1:]))
table.to_ASCII(sys.stdout if name is None else os.path.splitext(name)[0]+'_nodal.txt')
# ------------------------------------------ output data ------------------------------------------- else:
table.add('avg({}).{}'.format(options.f,options.pos),
Zrange = np.linspace(0,size[2],1+grid[2]) if options.nodal else range(grid[2]) damask.grid_filters.cell_displacement_avg(size[::-1],F).reshape((-1,3)),
Yrange = np.linspace(0,size[1],1+grid[1]) if options.nodal else range(grid[1]) scriptID+' '+' '.join(sys.argv[1:]))
Xrange = np.linspace(0,size[0],1+grid[0]) if options.nodal else range(grid[0]) table.add('fluct({}).{}'.format(options.f,options.pos),
damask.grid_filters.cell_displacement_fluct(size[::-1],F).reshape((-1,3)),
for i,z in enumerate(Zrange): scriptID+' '+' '.join(sys.argv[1:]))
for j,y in enumerate(Yrange): table.to_ASCII(sys.stdout if name is None else name)
for k,x in enumerate(Xrange):
if options.nodal: table.data_clear()
else: table.data_read()
table.data_append([x,y,z] if options.nodal else [])
table.data_append(list( avgDisplacement[i,j,k,:]))
table.data_append(list(fluctDisplacement[i,j,k,:]))
table.data_write()
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables

View File

@ -2,6 +2,7 @@
import os import os
import sys import sys
from io import StringIO
from optparse import OptionParser from optparse import OptionParser
import numpy as np import numpy as np
@ -12,53 +13,14 @@ import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version]) scriptID = ' '.join([scriptName,damask.version])
def merge_dicts(*dict_args):
"""Given any number of dicts, shallow copy and merge into a new dict, with precedence going to key value pairs in latter dicts."""
result = {}
for dictionary in dict_args:
result.update(dictionary)
return result
def divFFT(geomdim,field):
"""Calculate divergence of a vector or tensor field by transforming into Fourier space."""
shapeFFT = np.array(np.shape(field))[0:3]
grid = np.array(np.shape(field)[2::-1])
N = grid.prod() # field size
n = np.array(np.shape(field)[3:]).prod() # data size
field_fourier = np.fft.rfftn(field,axes=(0,1,2),s=shapeFFT)
div_fourier = np.empty(field_fourier.shape[0:len(np.shape(field))-1],'c16')
# differentiation in Fourier space
TWOPIIMG = 2.0j*np.pi
einsums = {
3:'ijkl,ijkl->ijk', # vector, 3 -> 1
9:'ijkm,ijklm->ijkl', # tensor, 3x3 -> 3
}
k_sk = np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2]))/geomdim[0]
if grid[2]%2 == 0: k_sk[grid[2]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011)
k_sj = np.where(np.arange(grid[1])>grid[1]//2,np.arange(grid[1])-grid[1],np.arange(grid[1]))/geomdim[1]
if grid[1]%2 == 0: k_sj[grid[1]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011)
k_si = np.arange(grid[0]//2+1)/geomdim[2]
kk, kj, ki = np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij')
k_s = np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3).astype('c16')
div_fourier = np.einsum(einsums[n],k_s,field_fourier)*TWOPIIMG
return np.fft.irfftn(div_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,n//3])
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# MAIN # MAIN
# -------------------------------------------------------------------- # --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog option(s) [ASCIItable(s)]', description = """ parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [ASCIItable(s)]', description = """
Add column(s) containing curl of requested column(s). Add column(s) containing divergence of requested column(s).
Operates on periodic ordered three-dimensional data sets Operates on periodic ordered three-dimensional data sets of vector and tensor fields.
of vector and tensor fields.
""", version = scriptID) """, version = scriptID)
parser.add_option('-p','--pos','--periodiccellcenter', parser.add_option('-p','--pos','--periodiccellcenter',
@ -66,95 +28,30 @@ parser.add_option('-p','--pos','--periodiccellcenter',
type = 'string', metavar = 'string', type = 'string', metavar = 'string',
help = 'label of coordinates [%default]') help = 'label of coordinates [%default]')
parser.add_option('-l','--label', parser.add_option('-l','--label',
dest = 'data', dest = 'labels',
action = 'extend', metavar = '<string LIST>', action = 'extend', metavar = '<string LIST>',
help = 'label(s) of field values') help = 'label(s) of field values')
parser.set_defaults(pos = 'pos', parser.set_defaults(pos = 'pos',
) )
(options,filenames) = parser.parse_args() (options,filenames) = parser.parse_args()
if options.data is None: parser.error('no data column specified.')
# --- define possible data types -------------------------------------------------------------------
datatypes = {
3: {'name': 'vector',
'shape': [3],
},
9: {'name': 'tensor',
'shape': [3,3],
},
}
# --- loop over input files ------------------------------------------------------------------------
if filenames == []: filenames = [None] if filenames == []: filenames = [None]
if options.labels is None: parser.error('no data column specified.')
for name in filenames: for name in filenames:
try: table = damask.ASCIItable(name = name,buffered = False)
except: continue
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
# --- interpret header ---------------------------------------------------------------------------- table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid,size,origin = damask.grid_filters.cell_coord0_2_DNA(table.get(options.pos))
table.head_read() for label in options.labels:
field = table.get(label)
shape = (3,) if np.prod(field.shape)//np.prod(grid) == 3 else (3,3) # vector or tensor
field = field.reshape(np.append(grid[::-1],shape))
table.add('divFFT({})'.format(label),
damask.grid_filters.divergence(size[::-1],field).reshape((-1,np.prod(shape)//3)),
scriptID+' '+' '.join(sys.argv[1:]))
remarks = [] table.to_ASCII(sys.stdout if name is None else name)
errors = []
active = []
coordDim = table.label_dimension(options.pos)
if coordDim != 3:
errors.append('coordinates "{}" must be three-dimensional.'.format(options.pos))
else: coordCol = table.label_index(options.pos)
for me in options.data:
dim = table.label_dimension(me)
if dim in datatypes:
active.append(merge_dicts({'label':me},datatypes[dim]))
remarks.append('differentiating {} "{}"...'.format(datatypes[dim]['name'],me))
else:
remarks.append('skipping "{}" of dimension {}...'.format(me,dim) if dim != -1 else \
'"{}" not found...'.format(me) )
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for data in active:
table.labels_append(['divFFT({})'.format(data['label']) if data['shape'] == [3] \
else '{}_divFFT({})'.format(i+1,data['label'])
for i in range(np.prod(np.array(data['shape']))//3)]) # extend ASCII header with new labels
table.head_write()
# --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray()
grid,size = damask.util.coordGridAndSize(table.data[:,table.label_indexrange(options.pos)])
# ------------------------------------------ process value field -----------------------------------
stack = [table.data]
for data in active:
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
stack.append(divFFT(size[::-1],
table.data[:,table.label_indexrange(data['label'])].
reshape(grid[::-1].tolist()+data['shape'])))
# ------------------------------------------ output result -----------------------------------------
if len(stack) > 1: table.data = np.hstack(tuple(stack))
table.data_writeArray('%.12g')
# ------------------------------------------ output finalization -----------------------------------
table.close() # close input ASCII table (works for stdin)

View File

@ -2,6 +2,7 @@
import os import os
import sys import sys
from io import StringIO
from optparse import OptionParser from optparse import OptionParser
import numpy as np import numpy as np
@ -12,44 +13,6 @@ import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version]) scriptID = ' '.join([scriptName,damask.version])
def merge_dicts(*dict_args):
"""Given any number of dicts, shallow copy and merge into a new dict, with precedence going to key value pairs in latter dicts."""
result = {}
for dictionary in dict_args:
result.update(dictionary)
return result
def gradFFT(geomdim,field):
"""Calculate gradient of a vector or scalar field by transforming into Fourier space."""
shapeFFT = np.array(np.shape(field))[0:3]
grid = np.array(np.shape(field)[2::-1])
N = grid.prod() # field size
n = np.array(np.shape(field)[3:]).prod() # data size
field_fourier = np.fft.rfftn(field,axes=(0,1,2),s=shapeFFT)
grad_fourier = np.empty(field_fourier.shape+(3,),'c16')
# differentiation in Fourier space
TWOPIIMG = 2.0j*np.pi
einsums = {
1:'ijkl,ijkm->ijkm', # scalar, 1 -> 3
3:'ijkl,ijkm->ijklm', # vector, 3 -> 3x3
}
k_sk = np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2]))/geomdim[0]
if grid[2]%2 == 0: k_sk[grid[2]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011)
k_sj = np.where(np.arange(grid[1])>grid[1]//2,np.arange(grid[1])-grid[1],np.arange(grid[1]))/geomdim[1]
if grid[1]%2 == 0: k_sj[grid[1]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011)
k_si = np.arange(grid[0]//2+1)/geomdim[2]
kk, kj, ki = np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij')
k_s = np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3).astype('c16')
grad_fourier = np.einsum(einsums[n],field_fourier,k_s)*TWOPIIMG
return np.fft.irfftn(grad_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,3*n])
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# MAIN # MAIN
@ -57,9 +20,7 @@ def gradFFT(geomdim,field):
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [ASCIItable(s)]', description = """ parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [ASCIItable(s)]', description = """
Add column(s) containing gradient of requested column(s). Add column(s) containing gradient of requested column(s).
Operates on periodic ordered three-dimensional data sets Operates on periodic ordered three-dimensional data sets of scalar and vector fields.
of vector and scalar fields.
""", version = scriptID) """, version = scriptID)
parser.add_option('-p','--pos','--periodiccellcenter', parser.add_option('-p','--pos','--periodiccellcenter',
@ -67,7 +28,7 @@ parser.add_option('-p','--pos','--periodiccellcenter',
type = 'string', metavar = 'string', type = 'string', metavar = 'string',
help = 'label of coordinates [%default]') help = 'label of coordinates [%default]')
parser.add_option('-l','--label', parser.add_option('-l','--label',
dest = 'data', dest = 'labels',
action = 'extend', metavar = '<string LIST>', action = 'extend', metavar = '<string LIST>',
help = 'label(s) of field values') help = 'label(s) of field values')
@ -75,85 +36,22 @@ parser.set_defaults(pos = 'pos',
) )
(options,filenames) = parser.parse_args() (options,filenames) = parser.parse_args()
if options.data is None: parser.error('no data column specified.')
# --- define possible data types -------------------------------------------------------------------
datatypes = {
1: {'name': 'scalar',
'shape': [1],
},
3: {'name': 'vector',
'shape': [3],
},
}
# --- loop over input files ------------------------------------------------------------------------
if filenames == []: filenames = [None] if filenames == []: filenames = [None]
if options.labels is None: parser.error('no data column specified.')
for name in filenames: for name in filenames:
try: table = damask.ASCIItable(name = name,buffered = False)
except: continue
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
# --- interpret header ---------------------------------------------------------------------------- table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid,size,origin = damask.grid_filters.cell_coord0_2_DNA(table.get(options.pos))
table.head_read() for label in options.labels:
field = table.get(label)
shape = (1,) if np.prod(field.shape)//np.prod(grid) == 1 else (3,) # scalar or vector
field = field.reshape(np.append(grid[::-1],shape))
table.add('gradFFT({})'.format(label),
damask.grid_filters.gradient(size[::-1],field).reshape((-1,np.prod(shape)*3)),
scriptID+' '+' '.join(sys.argv[1:]))
remarks = [] table.to_ASCII(sys.stdout if name is None else name)
errors = []
active = []
coordDim = table.label_dimension(options.pos)
if coordDim != 3:
errors.append('coordinates "{}" must be three-dimensional.'.format(options.pos))
else: coordCol = table.label_index(options.pos)
for me in options.data:
dim = table.label_dimension(me)
if dim in datatypes:
active.append(merge_dicts({'label':me},datatypes[dim]))
remarks.append('differentiating {} "{}"...'.format(datatypes[dim]['name'],me))
else:
remarks.append('skipping "{}" of dimension {}...'.format(me,dim) if dim != -1 else \
'"{}" not found...'.format(me) )
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for data in active:
table.labels_append(['{}_gradFFT({})'.format(i+1,data['label'])
for i in range(coordDim*np.prod(np.array(data['shape'])))]) # extend ASCII header with new labels
table.head_write()
# --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray()
grid,size = damask.util.coordGridAndSize(table.data[:,table.label_indexrange(options.pos)])
# ------------------------------------------ process value field -----------------------------------
stack = [table.data]
for data in active:
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
stack.append(gradFFT(size[::-1],
table.data[:,table.label_indexrange(data['label'])].
reshape(grid[::-1].tolist()+data['shape'])))
# ------------------------------------------ output result -----------------------------------------
if len(stack) > 1: table.data = np.hstack(tuple(stack))
table.data_writeArray('%.12g')
# ------------------------------------------ output finalization -----------------------------------
table.close() # close input ASCII table (works for stdin)

View File

@ -125,9 +125,10 @@ R = damask.Rotation.fromAxisAngle(np.array(options.labrotation),options.degrees,
if filenames == []: filenames = [None] if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
try: table = damask.ASCIItable(name = name, try:
buffered = False) table = damask.ASCIItable(name = name, buffered = False)
except Exception: continue except IOError:
continue
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
# ------------------------------------------ read header ------------------------------------------ # ------------------------------------------ read header ------------------------------------------

View File

@ -78,36 +78,15 @@ for name in filenames:
table = damask.ASCIItable(name = name,readonly=True) table = damask.ASCIItable(name = name,readonly=True)
table.head_read() # read ASCII header info table.head_read() # read ASCII header info
# ------------------------------------------ sanity checks ---------------------------------------
coordDim = table.label_dimension(options.pos)
errors = []
if not 3 >= coordDim >= 2:
errors.append('coordinates "{}" need to have two or three dimensions.'.format(options.pos))
if not np.all(table.label_dimension(label) == dim):
errors.append('input "{}" needs to have dimension {}.'.format(label,dim))
if options.phase and table.label_dimension(options.phase) != 1:
errors.append('phase column "{}" is not scalar.'.format(options.phase))
if errors != []:
damask.util.croak(errors)
continue
table.data_readArray([options.pos] \ table.data_readArray([options.pos] \
+ (label if isinstance(label, list) else [label]) \ + (label if isinstance(label, list) else [label]) \
+ ([options.phase] if options.phase else [])) + ([options.phase] if options.phase else []))
if coordDim == 2:
table.data = np.insert(table.data,2,np.zeros(len(table.data)),axis=1) # add zero z coordinate for two-dimensional input
if options.phase is None: if options.phase is None:
table.data = np.column_stack((table.data,np.ones(len(table.data)))) # add single phase if no phase column given table.data = np.column_stack((table.data,np.ones(len(table.data)))) # add single phase if no phase column given
grid,size = damask.util.coordGridAndSize(table.data[:,0:3]) grid,size,origin = damask.grid_filters.cell_coord0_2_DNA(table.data[:,0:3])
coords = [np.unique(table.data[:,i]) for i in range(3)]
mincorner = np.array(list(map(min,coords)))
origin = mincorner - 0.5*size/grid # shift from cell center to corner
indices = np.lexsort((table.data[:,0],table.data[:,1],table.data[:,2])) # indices of position when sorting x fast, z slow indices = np.lexsort((table.data[:,0],table.data[:,1],table.data[:,2])) # indices of position when sorting x fast, z slow
microstructure = np.empty(grid,dtype = int) # initialize empty microstructure microstructure = np.empty(grid,dtype = int) # initialize empty microstructure
@ -142,7 +121,6 @@ for name in filenames:
config_header += ['<microstructure>'] config_header += ['<microstructure>']
for i,data in enumerate(unique): for i,data in enumerate(unique):
config_header += ['[Grain{}]'.format(i+1), config_header += ['[Grain{}]'.format(i+1),
'crystallite 1',
'(constituent)\tphase {}\ttexture {}\tfraction 1.0'.format(int(data[4]),i+1), '(constituent)\tphase {}\ttexture {}\tfraction 1.0'.format(int(data[4]),i+1),
] ]

View File

@ -2,10 +2,8 @@
import os import os
import sys import sys
from optparse import OptionParser
from io import StringIO from io import StringIO
from optparse import OptionParser
import numpy as np
import damask import damask
@ -24,38 +22,25 @@ Translate geom description into ASCIItable containing position and microstructur
""", version = scriptID) """, version = scriptID)
(options, filenames) = parser.parse_args() (options, filenames) = parser.parse_args()
if filenames == []: filenames = [None] if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
geom = damask.Geom.from_file(StringIO(''.join(sys.stdin.read())) if name is None else name) geom = damask.Geom.from_file(StringIO(''.join(sys.stdin.read())) if name is None else name)
damask.util.croak(geom) damask.util.croak(geom)
# --- generate grid -------------------------------------------------------------------------------- coord0 = damask.grid_filters.cell_coord0(geom.grid,geom.size,geom.origin).reshape((-1,3),order='F')
grid = geom.get_grid() comments = geom.comments \
size = geom.get_size() + [scriptID + ' ' + ' '.join(sys.argv[1:]),
origin = geom.get_origin() "grid\ta {}\tb {}\tc {}".format(*geom.grid),
"size\tx {}\ty {}\tz {}".format(*geom.size),
"origin\tx {}\ty {}\tz {}".format(*geom.origin),
"homogenization\t{}".format(geom.homogenization)]
x = (0.5 + np.arange(grid[0],dtype=float))/grid[0]*size[0]+origin[0] table = damask.Table(coord0,{'pos':(3,)},comments)
y = (0.5 + np.arange(grid[1],dtype=float))/grid[1]*size[1]+origin[1] table.add('microstructure',geom.microstructure.reshape((-1,1)))
z = (0.5 + np.arange(grid[2],dtype=float))/grid[2]*size[2]+origin[2]
xx = np.tile( x, grid[1]* grid[2]) table.to_ASCII(sys.stdout if name is None else \
yy = np.tile(np.repeat(y,grid[0] ),grid[2]) os.path.splitext(name)[0]+'.txt')
zz = np.repeat(z,grid[0]*grid[1])
# --- create ASCII table --------------------------------------------------------------------------
table = damask.ASCIItable(outname = os.path.splitext(name)[0]+'.txt' if name else name)
table.info_append(geom.get_comments() + [scriptID + '\t' + ' '.join(sys.argv[1:])])
table.labels_append(['{}_{}'.format(1+i,'pos') for i in range(3)]+['microstructure'])
table.head_write()
table.output_flush()
table.data = np.squeeze(np.dstack((xx,yy,zz,geom.microstructure.flatten('F'))),axis=0)
table.data_writeArray()
table.close()

View File

@ -1,9 +1,10 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
# -*- coding: UTF-8 no BOM -*-
import os,sys import os
import numpy as np import sys
from io import StringIO
from optparse import OptionParser from optparse import OptionParser
import damask import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptName = os.path.splitext(os.path.basename(__file__))[0]
@ -191,21 +192,16 @@ parser.add_option('-p', '--port',
dest = 'port', dest = 'port',
type = 'int', metavar = 'int', type = 'int', metavar = 'int',
help = 'Mentat connection port [%default]') help = 'Mentat connection port [%default]')
parser.add_option('--homogenization',
dest = 'homogenization',
type = 'int', metavar = 'int',
help = 'homogenization index to be used [auto]')
parser.set_defaults(port = None, parser.set_defaults(port = None,
homogenization = None,
) )
(options, filenames) = parser.parse_args() (options, filenames) = parser.parse_args()
if options.port: if options.port is not None:
try: try:
import py_mentat import py_mentat
except: except ImportError:
parser.error('no valid Mentat release found.') parser.error('no valid Mentat release found.')
# --- loop over input files ------------------------------------------------------------------------ # --- loop over input files ------------------------------------------------------------------------
@ -213,44 +209,17 @@ if options.port:
if filenames == []: filenames = [None] if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
try:
table = damask.ASCIItable(name = name,
outname = os.path.splitext(name)[0]+'.proc' if name else name,
buffered = False, labeled = False)
except: continue
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
# --- interpret header ---------------------------------------------------------------------------- geom = damask.Geom.from_file(StringIO(''.join(sys.stdin.read())) if name is None else name)
microstructure = geom.get_microstructure().flatten(order='F')
table.head_read()
info,extra_header = table.head_getGeom()
if options.homogenization: info['homogenization'] = options.homogenization
damask.util.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# --- read data ------------------------------------------------------------------------------------
microstructure = table.microstructure_read(info['grid']).reshape(info['grid'].prod(),order='F') # read microstructure
cmds = [\ cmds = [\
init(), init(),
mesh(info['grid'],info['size']), mesh(geom.grid,geom.size),
material(), material(),
geometry(), geometry(),
initial_conditions(info['homogenization'],microstructure), initial_conditions(geom.homogenization,microstructure),
'*identify_sets', '*identify_sets',
'*show_model', '*show_model',
'*redraw', '*redraw',
@ -263,6 +232,5 @@ for name in filenames:
output(cmds,outputLocals,'Mentat') output(cmds,outputLocals,'Mentat')
py_mentat.py_disconnect() py_mentat.py_disconnect()
else: else:
output(cmds,outputLocals,table.__IO__['out']) # bad hack into internals of table class... with sys.stdout if name is None else open(os.path.splitext(name)[0]+'.proc','w') as f:
output(cmds,outputLocals,f)
table.close()

View File

@ -1,9 +1,12 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
# -*- coding: UTF-8 no BOM -*-
import os,sys import os
import numpy as np import sys
from io import StringIO
from optparse import OptionParser from optparse import OptionParser
import numpy as np
import damask import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptName = os.path.splitext(os.path.basename(__file__))[0]
@ -29,88 +32,39 @@ parser.add_option('-b',
action = 'extend', metavar = '<int LIST>', action = 'extend', metavar = '<int LIST>',
dest = 'blacklist', dest = 'blacklist',
help = 'blacklist of grain IDs') help = 'blacklist of grain IDs')
parser.add_option('-p',
'--pos', '--seedposition',
dest = 'pos',
type = 'string', metavar = 'string',
help = 'label of coordinates [%default]')
parser.set_defaults(whitelist = [], parser.set_defaults(whitelist = [],
blacklist = [], blacklist = [],
pos = 'pos',
) )
(options,filenames) = parser.parse_args() (options,filenames) = parser.parse_args()
options.whitelist = list(map(int,options.whitelist))
options.blacklist = list(map(int,options.blacklist))
# --- loop over output files -------------------------------------------------------------------------
if filenames == []: filenames = [None] if filenames == []: filenames = [None]
options.whitelist = [int(i) for i in options.whitelist]
options.blacklist = [int(i) for i in options.blacklist]
for name in filenames: for name in filenames:
try: table = damask.ASCIItable(name = name,
outname = os.path.splitext(name)[0]+'.seeds' if name else name,
buffered = False,
labeled = False)
except: continue
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
# --- interpret header ---------------------------------------------------------------------------- geom = damask.Geom.from_file(StringIO(''.join(sys.stdin.read())) if name is None else name)
microstructure = geom.get_microstructure().reshape((-1,1),order='F')
table.head_read() mask = np.logical_and(np.in1d(microstructure,options.whitelist,invert=False) if options.whitelist else \
info,extra_header = table.head_getGeom() np.full(geom.grid.prod(),True,dtype=bool),
damask.util.report_geom(info) np.in1d(microstructure,options.blacklist,invert=True) if options.blacklist else \
np.full(geom.grid.prod(),True,dtype=bool))
errors = [] seeds = np.concatenate((damask.grid_filters.cell_coord0(geom.grid,geom.size).reshape((-1,3)),
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.') microstructure),
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.') axis=1)[mask]
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# --- read data ------------------------------------------------------------------------------------ comments = geom.comments \
+ [scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta {}\tb {}\tc {}".format(*geom.grid),
"size\tx {}\ty {}\tz {}".format(*geom.size),
"origin\tx {}\ty {}\tz {}".format(*geom.origin),
"homogenization\t{}".format(geom.homogenization)]
microstructure = table.microstructure_read(info['grid']) # read (linear) microstructure table = damask.Table(seeds,{'pos':(3,),'microstructure':(1,)},comments)
table.to_ASCII(sys.stdout if name is None else \
# --- generate grid -------------------------------------------------------------------------------- os.path.splitext(name)[0]+'.seeds')
x = (0.5 + np.arange(info['grid'][0],dtype=float))/info['grid'][0]*info['size'][0]+info['origin'][0]
y = (0.5 + np.arange(info['grid'][1],dtype=float))/info['grid'][1]*info['size'][1]+info['origin'][1]
z = (0.5 + np.arange(info['grid'][2],dtype=float))/info['grid'][2]*info['size'][2]+info['origin'][2]
xx = np.tile( x, info['grid'][1]* info['grid'][2])
yy = np.tile(np.repeat(y,info['grid'][0] ),info['grid'][2])
zz = np.repeat(z,info['grid'][0]*info['grid'][1])
mask = np.logical_and(np.in1d(microstructure,options.whitelist,invert=False) if options.whitelist != []
else np.full_like(microstructure,True,dtype=bool),
np.in1d(microstructure,options.blacklist,invert=True ) if options.blacklist != []
else np.full_like(microstructure,True,dtype=bool))
# ------------------------------------------ assemble header ---------------------------------------
table.info_clear()
table.info_append(extra_header+[
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta {}\tb {}\tc {}".format(*info['grid']),
"size\tx {}\ty {}\tz {}".format(*info['size']),
"origin\tx {}\ty {}\tz {}".format(*info['origin']),
"homogenization\t{}".format(info['homogenization']),
"microstructures\t{}".format(info['microstructures']),
])
table.labels_clear()
table.labels_append(['{dim}_{label}'.format(dim = 1+i,label = options.pos) for i in range(3)]+['microstructure'])
table.head_write()
table.output_flush()
# --- write seeds information ------------------------------------------------------------
table.data = np.squeeze(np.dstack((xx,yy,zz,microstructure)))[mask]
table.data_writeArray()
# ------------------------------------------ finalize output ---------------------------------------
table.close()

View File

@ -1,11 +1,14 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
# -*- coding: UTF-8 no BOM -*-
import os,math,sys import os
import numpy as np import sys
import damask from io import StringIO
from optparse import OptionParser from optparse import OptionParser
import numpy as np
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version]) scriptID = ' '.join([scriptName,damask.version])
@ -35,117 +38,58 @@ parser.add_option('-y',
action = 'store_true', action = 'store_true',
dest = 'y', dest = 'y',
help = 'poke 45 deg along y') help = 'poke 45 deg along y')
parser.add_option('-p','--position',
dest = 'position',
type = 'string', metavar = 'string',
help = 'column label for coordinates [%default]')
parser.set_defaults(x = False, parser.set_defaults(x = False,
y = False, y = False,
box = [0.0,1.0,0.0,1.0,0.0,1.0], box = [0.0,1.0,0.0,1.0,0.0,1.0],
N = 16, N = 16,
position = 'pos',
) )
(options,filenames) = parser.parse_args() (options,filenames) = parser.parse_args()
if filenames == []: filenames = [None]
options.box = np.array(options.box).reshape(3,2) options.box = np.array(options.box).reshape(3,2)
# --- loop over output files -------------------------------------------------------------------------
if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
try:
table = damask.ASCIItable(name = name,
outname = os.path.splitext(name)[-2]+'_poked_{}.seeds'.format(options.N) if name else name,
buffered = False, labeled = False)
except: continue
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
geom = damask.Geom.from_file(StringIO(''.join(sys.stdin.read())) if name is None else name)
# --- interpret header ---------------------------------------------------------------------------- offset =(np.amin(options.box, axis=1)*geom.grid/geom.size).astype(int)
box = np.amax(options.box, axis=1) \
- np.amin(options.box, axis=1)
table.head_read() Nx = int(options.N/np.sqrt(options.N*geom.size[1]*box[1]/geom.size[0]/box[0]))
info,extra_header = table.head_getGeom() Ny = int(options.N/np.sqrt(options.N*geom.size[0]*box[0]/geom.size[1]/box[1]))
Nz = int(box[2]*geom.grid[2])
damask.util.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.')
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# --- read data ------------------------------------------------------------------------------------
microstructure = table.microstructure_read(info['grid']).reshape(info['grid'],order='F') # read microstructure
# --- do work ------------------------------------------------------------------------------------
newInfo = {
'microstructures': 0,
}
offset = (np.amin(options.box, axis=1)*info['grid']/info['size']).astype(int)
box = np.amax(options.box, axis=1) - np.amin(options.box, axis=1)
Nx = int(options.N/math.sqrt(options.N*info['size'][1]*box[1]/info['size'][0]/box[0]))
Ny = int(options.N/math.sqrt(options.N*info['size'][0]*box[0]/info['size'][1]/box[1]))
Nz = int(box[2]*info['grid'][2])
damask.util.croak('poking {} x {} x {} in box {} {} {}...'.format(Nx,Ny,Nz,*box)) damask.util.croak('poking {} x {} x {} in box {} {} {}...'.format(Nx,Ny,Nz,*box))
seeds = np.zeros((Nx*Ny*Nz,4),'d') seeds = np.zeros((Nx*Ny*Nz,4),'d')
grid = np.zeros(3,'i') g = np.zeros(3,'i')
n = 0 n = 0
for i in range(Nx): for i in range(Nx):
for j in range(Ny): for j in range(Ny):
grid[0] = round((i+0.5)*box[0]*info['grid'][0]/Nx-0.5)+offset[0] g[0] = round((i+0.5)*box[0]*geom.grid[0]/Nx-0.5)+offset[0]
grid[1] = round((j+0.5)*box[1]*info['grid'][1]/Ny-0.5)+offset[1] g[1] = round((j+0.5)*box[1]*geom.grid[1]/Ny-0.5)+offset[1]
for k in range(Nz): for k in range(Nz):
grid[2] = k + offset[2] g[2] = k + offset[2]
grid %= info['grid'] g %= geom.grid
seeds[n,0:3] = (0.5+grid)/info['grid'] # normalize coordinates to box seeds[n,0:3] = (g+0.5)/geom.grid # normalize coordinates to box
seeds[n, 3] = microstructure[grid[0],grid[1],grid[2]] seeds[n, 3] = geom.microstructure[g[0],g[1],g[2]]
if options.x: grid[0] += 1 if options.x: g[0] += 1
if options.y: grid[1] += 1 if options.y: g[1] += 1
n += 1 n += 1
newInfo['microstructures'] = len(np.unique(seeds[:,3]))
# --- report --------------------------------------------------------------------------------------- comments = geom.comments \
if (newInfo['microstructures'] != info['microstructures']): + [scriptID + ' ' + ' '.join(sys.argv[1:]),
damask.util.croak('--> microstructures: %i'%newInfo['microstructures'])
# ------------------------------------------ assemble header ---------------------------------------
table.info_clear()
table.info_append(extra_header+[
scriptID + ' ' + ' '.join(sys.argv[1:]),
"poking\ta {}\tb {}\tc {}".format(Nx,Ny,Nz), "poking\ta {}\tb {}\tc {}".format(Nx,Ny,Nz),
"grid\ta {}\tb {}\tc {}".format(*info['grid']), "grid\ta {}\tb {}\tc {}".format(*geom.grid),
"size\tx {}\ty {}\tz {}".format(*info['size']), "size\tx {}\ty {}\tz {}".format(*geom.size),
"origin\tx {}\ty {}\tz {}".format(*info['origin']), "origin\tx {}\ty {}\tz {}".format(*geom.origin),
"homogenization\t{}".format(info['homogenization']), "homogenization\t{}".format(geom.homogenization)]
"microstructures\t{}".format(newInfo['microstructures']),
])
table.labels_clear()
table.labels_append(['{dim}_{label}'.format(dim = 1+i,label = options.position) for i in range(3)]+['microstructure'])
table.head_write()
table.output_flush()
# --- write seeds information ------------------------------------------------------------ table = damask.Table(seeds,{'pos':(3,),'microstructure':(1,)},comments)
table.to_ASCII(sys.stdout if name is None else \
table.data = seeds os.path.splitext(name)[0]+'_poked_{}.seeds'.format(options.N))
table.data_writeArray()
# --- output finalization --------------------------------------------------------------------------
table.close() # close ASCII table

View File

@ -23,4 +23,5 @@ from .util import extendableOption # noqa
# functions in modules # functions in modules
from . import mechanics # noqa from . import mechanics # noqa
from . import grid_filters # noqa

View File

@ -205,6 +205,9 @@ class Geom():
else: else:
self.homogenization = homogenization self.homogenization = homogenization
@property
def grid(self):
return self.get_grid()
def get_microstructure(self): def get_microstructure(self):
"""Return the microstructure representation.""" """Return the microstructure representation."""

View File

@ -0,0 +1,299 @@
from scipy import spatial
import numpy as np
def __ks(size,grid,first_order=False):
"""
Get wave numbers operator.
Parameters
----------
size : numpy.ndarray
physical size of the periodic field.
"""
k_sk = np.where(np.arange(grid[0])>grid[0]//2,np.arange(grid[0])-grid[0],np.arange(grid[0]))/size[0]
if grid[0]%2 == 0 and first_order: k_sk[grid[0]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011)
k_sj = np.where(np.arange(grid[1])>grid[1]//2,np.arange(grid[1])-grid[1],np.arange(grid[1]))/size[1]
if grid[1]%2 == 0 and first_order: k_sj[grid[1]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011)
k_si = np.arange(grid[2]//2+1)/size[2]
kk, kj, ki = np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij')
return np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3)
def curl(size,field):
"""
Calculate curl of a vector or tensor field in Fourier space.
Parameters
----------
size : numpy.ndarray
physical size of the periodic field.
"""
n = np.prod(field.shape[3:])
k_s = __ks(size,field.shape[:3],True)
e = np.zeros((3, 3, 3))
e[0, 1, 2] = e[1, 2, 0] = e[2, 0, 1] = +1.0 # Levi-Civita symbol
e[0, 2, 1] = e[2, 1, 0] = e[1, 0, 2] = -1.0
field_fourier = np.fft.rfftn(field,axes=(0,1,2))
curl = (np.einsum('slm,ijkl,ijkm ->ijks', e,k_s,field_fourier)*2.0j*np.pi if n == 3 else # vector, 3 -> 3
np.einsum('slm,ijkl,ijknm->ijksn',e,k_s,field_fourier)*2.0j*np.pi) # tensor, 3x3 -> 3x3
return np.fft.irfftn(curl,axes=(0,1,2),s=field.shape[:3])
def divergence(size,field):
"""
Calculate divergence of a vector or tensor field in Fourier space.
Parameters
----------
size : numpy.ndarray
physical size of the periodic field.
"""
n = np.prod(field.shape[3:])
k_s = __ks(size,field.shape[:3],True)
field_fourier = np.fft.rfftn(field,axes=(0,1,2))
divergence = (np.einsum('ijkl,ijkl ->ijk', k_s,field_fourier)*2.0j*np.pi if n == 3 else # vector, 3 -> 1
np.einsum('ijkm,ijklm->ijkl',k_s,field_fourier)*2.0j*np.pi) # tensor, 3x3 -> 3
return np.fft.irfftn(divergence,axes=(0,1,2),s=field.shape[:3])
def gradient(size,field):
"""
Calculate gradient of a vector or scalar field in Fourier space.
Parameters
----------
size : numpy.ndarray
physical size of the periodic field.
"""
n = np.prod(field.shape[3:])
k_s = __ks(size,field.shape[:3],True)
field_fourier = np.fft.rfftn(field,axes=(0,1,2))
gradient = (np.einsum('ijkl,ijkm->ijkm', field_fourier,k_s)*2.0j*np.pi if n == 1 else # scalar, 1 -> 3
np.einsum('ijkl,ijkm->ijklm',field_fourier,k_s)*2.0j*np.pi) # vector, 3 -> 3x3
return np.fft.irfftn(gradient,axes=(0,1,2),s=field.shape[:3])
def cell_coord0(grid,size,origin=np.zeros(3)):
"""
Cell center positions (undeformed).
Parameters
----------
grid : numpy.ndarray
number of grid points.
size : numpy.ndarray
physical size of the periodic field.
"""
start = origin + size/grid*.5
end = origin - size/grid*.5 + size
x, y, z = np.meshgrid(np.linspace(start[2],end[2],grid[2]),
np.linspace(start[1],end[1],grid[1]),
np.linspace(start[0],end[0],grid[0]),
indexing = 'ij')
return np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
def cell_displacement_fluct(size,F):
"""
Cell center displacement field from fluctuation part of the deformation gradient field.
Parameters
----------
size : numpy.ndarray
physical size of the periodic field.
F : numpy.ndarray
deformation gradient field.
"""
integrator = 0.5j*size/np.pi
k_s = __ks(size,F.shape[:3],False)
k_s_squared = np.einsum('...l,...l',k_s,k_s)
k_s_squared[0,0,0] = 1.0
displacement = -np.einsum('ijkml,ijkl,l->ijkm',
np.fft.rfftn(F,axes=(0,1,2)),
k_s,
integrator,
) / k_s_squared[...,np.newaxis]
return np.fft.irfftn(displacement,axes=(0,1,2),s=F.shape[:3])
def cell_displacement_avg(size,F):
"""
Cell center displacement field from average part of the deformation gradient field.
Parameters
----------
size : numpy.ndarray
physical size of the periodic field.
F : numpy.ndarray
deformation gradient field.
"""
F_avg = np.average(F,axis=(0,1,2))
return np.einsum('ml,ijkl->ijkm',F_avg-np.eye(3),cell_coord0(F.shape[:3],size))
def cell_coord0_2_DNA(coord0,ordered=True):
"""
Return grid 'DNA', i.e. grid, size, and origin from array of cell positions.
Parameters
----------
coord0 : numpy.ndarray
array of undeformed cell coordinates.
ordered : bool, optional
expect coord0 data to be ordered (x fast, z slow).
"""
coords = [np.unique(coord0[:,i]) for i in range(3)]
mincorner = np.array(list(map(min,coords)))
maxcorner = np.array(list(map(max,coords)))
grid = np.array(list(map(len,coords)),'i')
size = grid/np.maximum(grid-1,1) * (maxcorner-mincorner)
delta = size/grid
origin = mincorner - delta*.5
if grid.prod() != len(coord0):
raise ValueError('Data count {} does not match grid {}.'.format(len(coord0),grid))
start = origin + delta*.5
end = origin - delta*.5 + size
if not np.allclose(coords[0],np.linspace(start[0],end[0],grid[0])) and \
np.allclose(coords[1],np.linspace(start[1],end[1],grid[1])) and \
np.allclose(coords[2],np.linspace(start[2],end[2],grid[2])):
raise ValueError('Regular grid spacing violated.')
if ordered and not np.allclose(coord0.reshape(tuple(grid[::-1])+(3,)),cell_coord0(grid,size,origin)):
raise ValueError('Input data is not a regular grid.')
return (grid,size,origin)
def node_coord0(grid,size,origin=np.zeros(3)):
"""
Nodal positions (undeformed).
Parameters
----------
grid : numpy.ndarray
number of grid points.
size : numpy.ndarray
physical size of the periodic field.
"""
x, y, z = np.meshgrid(np.linspace(origin[2],size[2]+origin[2],1+grid[2]),
np.linspace(origin[1],size[1]+origin[1],1+grid[1]),
np.linspace(origin[0],size[0]+origin[0],1+grid[0]),
indexing = 'ij')
return np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
def node_displacement_fluct(size,F):
"""
Nodal displacement field from fluctuation part of the deformation gradient field.
Parameters
----------
size : numpy.ndarray
physical size of the periodic field.
F : numpy.ndarray
deformation gradient field.
"""
return cell_2_node(cell_displacement_fluct(size,F))
def node_displacement_avg(size,F):
"""
Nodal displacement field from average part of the deformation gradient field.
Parameters
----------
size : numpy.ndarray
physical size of the periodic field.
F : numpy.ndarray
deformation gradient field.
"""
F_avg = np.average(F,axis=(0,1,2))
return np.einsum('ml,ijkl->ijkm',F_avg-np.eye(3),node_coord0(F.shape[:3],size))
def cell_2_node(cell_data):
"""Interpolate cell data to nodal data."""
n = ( cell_data + np.roll(cell_data,1,(0,1,2))
+ np.roll(cell_data,1,(0,)) + np.roll(cell_data,1,(1,)) + np.roll(cell_data,1,(2,))
+ np.roll(cell_data,1,(0,1)) + np.roll(cell_data,1,(1,2)) + np.roll(cell_data,1,(2,0)))*0.125
return np.pad(n,((0,1),(0,1),(0,1))+((0,0),)*len(cell_data.shape[3:]),mode='wrap')
def node_2_cell(node_data):
"""Interpolate nodal data to cell data."""
c = ( node_data + np.roll(node_data,1,(0,1,2))
+ np.roll(node_data,1,(0,)) + np.roll(node_data,1,(1,)) + np.roll(node_data,1,(2,))
+ np.roll(node_data,1,(0,1)) + np.roll(node_data,1,(1,2)) + np.roll(node_data,1,(2,0)))*0.125
return c[:-1,:-1,:-1]
def node_coord0_2_DNA(coord0,ordered=False):
"""
Return grid 'DNA', i.e. grid, size, and origin from array of nodal positions.
Parameters
----------
coord0 : numpy.ndarray
array of undeformed nodal coordinates
ordered : bool, optional
expect coord0 data to be ordered (x fast, z slow).
"""
coords = [np.unique(coord0[:,i]) for i in range(3)]
mincorner = np.array(list(map(min,coords)))
maxcorner = np.array(list(map(max,coords)))
grid = np.array(list(map(len,coords)),'i') - 1
size = maxcorner-mincorner
origin = mincorner
if (grid+1).prod() != len(coord0):
raise ValueError('Data count {} does not match grid {}.'.format(len(coord0),grid))
if not np.allclose(coords[0],np.linspace(mincorner[0],maxcorner[0],grid[0]+1)) and \
np.allclose(coords[1],np.linspace(mincorner[1],maxcorner[1],grid[1]+1)) and \
np.allclose(coords[2],np.linspace(mincorner[2],maxcorner[2],grid[2]+1)):
raise ValueError('Regular grid spacing violated.')
if ordered and not np.allclose(coord0.reshape(tuple((grid+1)[::-1])+(3,)),node_coord0(grid,size,origin)):
raise ValueError('Input data is not a regular grid.')
return (grid,size,origin)
def regrid(size,F,new_grid):
"""tbd."""
c = cell_coord0(F.shape[:3][::-1],size) \
+ cell_displacement_avg(size,F) \
+ cell_displacement_fluct(size,F)
outer = np.dot(np.average(F,axis=(0,1,2)),size)
for d in range(3):
c[np.where(c[:,:,:,d]<0)] += outer[d]
c[np.where(c[:,:,:,d]>outer[d])] -= outer[d]
tree = spatial.cKDTree(c.reshape((-1,3)),boxsize=outer)
return tree.query(cell_coord0(new_grid,outer))[1]

View File

@ -97,7 +97,6 @@ class Table():
@property @property
def labels(self): def labels(self):
"""Return the labels of all columns."""
return list(self.shapes.keys()) return list(self.shapes.keys())

View File

@ -0,0 +1,54 @@
import pytest
import numpy as np
from damask import grid_filters
class TestGridFilters:
def test_cell_coord0(self):
size = np.random.random(3)
grid = np.random.randint(8,32,(3))
coord = grid_filters.cell_coord0(grid,size)
assert np.allclose(coord[0,0,0],size/grid*.5) and coord.shape == tuple(grid[::-1]) + (3,)
def test_node_coord0(self):
size = np.random.random(3)
grid = np.random.randint(8,32,(3))
coord = grid_filters.node_coord0(grid,size)
assert np.allclose(coord[-1,-1,-1],size) and coord.shape == tuple(grid[::-1]+1) + (3,)
def test_coord0(self):
size = np.random.random(3)
grid = np.random.randint(8,32,(3))
c = grid_filters.cell_coord0(grid+1,size+size/grid)
n = grid_filters.node_coord0(grid,size) + size/grid*.5
assert np.allclose(c,n)
@pytest.mark.parametrize('mode',[('cell'),('node')])
def test_grid_DNA(self,mode):
"""Ensure that xx_coord0_2_DNA is the inverse of xx_coord0."""
grid = np.random.randint(8,32,(3))
size = np.random.random(3)
origin = np.random.random(3)
coord0 = eval('grid_filters.{}_coord0(grid,size,origin)'.format(mode)) # noqa
_grid,_size,_origin = eval('grid_filters.{}_coord0_2_DNA(coord0.reshape((-1,3)))'.format(mode))
assert np.allclose(grid,_grid) and np.allclose(size,_size) and np.allclose(origin,_origin)
@pytest.mark.parametrize('mode',[('cell'),('node')])
def test_displacement_avg_vanishes(self,mode):
"""Ensure that random fluctuations in F do not result in average displacement."""
size = np.random.random(3) # noqa
grid = np.random.randint(8,32,(3))
F = np.random.random(tuple(grid)+(3,3))
F += np.eye(3) - np.average(F,axis=(0,1,2))
assert np.allclose(eval('grid_filters.{}_displacement_avg(size,F)'.format(mode)),0.0)
@pytest.mark.parametrize('mode',[('cell'),('node')])
def test_displacement_fluct_vanishes(self,mode):
"""Ensure that constant F does not result in fluctuating displacement."""
size = np.random.random(3) # noqa
grid = np.random.randint(8,32,(3))
F = np.broadcast_to(np.random.random((3,3)), tuple(grid)+(3,3)) # noqa
assert np.allclose(eval('grid_filters.{}_displacement_fluct(size,F)'.format(mode)),0.0)