Merge branch 'table-slicing' into 'development'

slicing of damask.Table objects

See merge request damask/DAMASK!359
This commit is contained in:
Martin Diehl 2021-03-31 18:30:07 +00:00
commit 0c08c9753c
5 changed files with 212 additions and 57 deletions

View File

@ -27,20 +27,69 @@ class Table:
self.comments = [] if comments_ is None else [c for c in comments_] self.comments = [] if comments_ is None else [c for c in comments_]
self.data = pd.DataFrame(data=data) self.data = pd.DataFrame(data=data)
self.shapes = { k:(v,) if isinstance(v,(np.int64,np.int32,int)) else v for k,v in shapes.items() } self.shapes = { k:(v,) if isinstance(v,(np.int64,np.int32,int)) else v for k,v in shapes.items() }
self._label_uniform() self._relabel('uniform')
def __repr__(self): def __repr__(self):
"""Brief overview.""" """Brief overview."""
return '\n'.join(['# '+c for c in self.comments])+'\n'+self.data.__repr__() self._relabel('shapes')
data_repr = self.data.__repr__()
self._relabel('uniform')
return '\n'.join(['# '+c for c in self.comments])+'\n'+data_repr
def __getitem__(self,item): def __getitem__(self,item):
"""Return slice according to item.""" """
return self.__class__(data=self.data[item],shapes=self.shapes,comments=self.comments) Slice the Table according to item.
Parameters
----------
item : row and/or column indexer
Slice to select from Table.
Returns
-------
slice : Table
Sliced part of the Table.
Examples
--------
>>> import damask
>>> import numpy as np
>>> tbl = damask.Table(data=np.arange(12).reshape((4,3)),
... shapes=dict(colA=(1,),colB=(1,),colC=(1,)))
>>> tbl['colA','colB']
colA colB
0 0 1
1 3 4
2 6 7
3 9 10
>>> tbl[::2,['colB','colA']]
colB colA
0 1 0
2 7 6
>>> tbl[1:2,'colB']
colB
1 4
2 7
"""
item = (item,slice(None,None,None)) if isinstance(item,slice) else \
item if isinstance(item[0],slice) else \
(slice(None,None,None),item)
sliced = self.data.loc[item]
cols = np.array(sliced.columns if isinstance(sliced,pd.core.frame.DataFrame) else [item[1]])
_,idx = np.unique(cols,return_index=True)
return self.__class__(data=sliced,
shapes = {k:self.shapes[k] for k in cols[np.sort(idx)]},
comments=self.comments)
def __len__(self): def __len__(self):
"""Number of rows.""" """Number of rows."""
return len(self.data) return len(self.data)
def __copy__(self): def __copy__(self):
"""Create deep copy.""" """Create deep copy."""
return copy.deepcopy(self) return copy.deepcopy(self)
@ -48,21 +97,51 @@ class Table:
copy = __copy__ copy = __copy__
def _label_discrete(self): def _label(self,what,how):
"""Label data individually, e.g. v v v ==> 1_v 2_v 3_v.""" """
Expand labels according to data shape.
Parameters
----------
what : str or list
Labels to expand.
how : str
Mode of labeling.
'uniform' ==> v v v
'shapes' ==> 3:v v v
'linear' ==> 1_v 2_v 3_v
"""
what = [what] if isinstance(what,str) else what
labels = [] labels = []
for label,shape in self.shapes.items(): for label in what:
size = int(np.prod(shape)) shape = self.shapes[label]
labels += [('' if size == 1 else f'{i+1}_')+label for i in range(size)] size = np.prod(shape,dtype=int)
self.data.columns = labels if how == 'uniform':
labels += [label] * size
elif how == 'shapes':
labels += [('' if size == 1 or i>0 else f'{util.srepr(shape,"x")}:')+label for i in range(size)]
elif how == 'linear':
labels += [('' if size == 1 else f'{i+1}_')+label for i in range(size)]
else:
raise KeyError
return labels
def _label_uniform(self): def _relabel(self,how):
"""Label data uniformly, e.g. 1_v 2_v 3_v ==> v v v.""" """
labels = [] Modify labeling of data in-place.
for label,shape in self.shapes.items():
labels += [label] * int(np.prod(shape)) Parameters
self.data.columns = labels ----------
how : str
Mode of labeling.
'uniform' ==> v v v
'shapes' ==> 3:v v v
'linear' ==> 1_v 2_v 3_v
"""
self.data.columns = self._label(self.shapes,how)
def _add_comment(self,label,shape,info): def _add_comment(self,label,shape,info):
@ -72,6 +151,62 @@ class Table:
self.comments.append(f'{specific} / {general}') self.comments.append(f'{specific} / {general}')
def isclose(self,other,rtol=1e-5,atol=1e-8,equal_nan=True):
"""
Report where values are approximately equal to corresponding ones of other Table.
Parameters
----------
other : Table
Table to compare against.
rtol : float, optional
Relative tolerance of equality.
atol : float, optional
Absolute tolerance of equality.
equal_nan : bool, optional
Consider matching NaN values as equal. Defaults to True.
Returns
-------
mask : numpy.ndarray bool
Mask indicating where corresponding table values are close.
"""
return np.isclose( self.data.to_numpy(),
other.data.to_numpy(),
rtol=rtol,
atol=atol,
equal_nan=equal_nan)
def allclose(self,other,rtol=1e-5,atol=1e-8,equal_nan=True):
"""
Test whether all values are approximately equal to corresponding ones of other Table.
Parameters
----------
other : Table
Table to compare against.
rtol : float, optional
Relative tolerance of equality.
atol : float, optional
Absolute tolerance of equality.
equal_nan : bool, optional
Consider matching NaN values as equal. Defaults to True.
Returns
-------
answer : bool
Whether corresponding values are close between both tables.
"""
return np.allclose( self.data.to_numpy(),
other.data.to_numpy(),
rtol=rtol,
atol=atol,
equal_nan=equal_nan)
@staticmethod @staticmethod
def load(fname): def load(fname):
""" """
@ -130,12 +265,13 @@ class Table:
return Table(data,shapes,comments) return Table(data,shapes,comments)
@staticmethod @staticmethod
def load_ang(fname): def load_ang(fname):
""" """
Load from ang file. Load from ang file.
A valid TSL ang file needs to contains the following columns: A valid TSL ang file has to have the following columns:
* Euler angles (Bunge notation) in radians, 3 floats, label 'eu'. * Euler angles (Bunge notation) in radians, 3 floats, label 'eu'.
* Spatial position in meters, 2 floats, label 'pos'. * Spatial position in meters, 2 floats, label 'pos'.
* Image quality, 1 float, label 'IQ'. * Image quality, 1 float, label 'IQ'.
@ -225,10 +361,12 @@ class Table:
""" """
dup = self.copy() dup = self.copy()
dup._add_comment(label,data.shape[1:],info) dup._add_comment(label,data.shape[1:],info)
m = re.match(r'(.*)\[((\d+,)*(\d+))\]',label)
if re.match(r'[0-9]*?_',label): if m:
idx,key = label.split('_',1) key = m.group(1)
iloc = dup.data.columns.get_loc(key).tolist().index(True) + int(idx) -1 idx = np.ravel_multi_index(tuple(map(int,m.group(2).split(","))),
self.shapes[key])
iloc = dup.data.columns.get_loc(key).tolist().index(True) + idx
dup.data.iloc[:,iloc] = data dup.data.iloc[:,iloc] = data
else: else:
dup.data[label] = data.reshape(dup.data[label].shape) dup.data[label] = data.reshape(dup.data[label].shape)
@ -331,10 +469,18 @@ class Table:
Updated table. Updated table.
""" """
labels_ = [labels] if isinstance(labels,str) else labels.copy()
for i,l in enumerate(labels_):
m = re.match(r'(.*)\[((\d+,)*(\d+))\]',l)
if m:
idx = np.ravel_multi_index(tuple(map(int,m.group(2).split(','))),
self.shapes[m.group(1)])
labels_[i] = f'{1+idx}_{m.group(1)}'
dup = self.copy() dup = self.copy()
dup._label_discrete() dup._relabel('linear')
dup.data.sort_values(labels,axis=0,inplace=True,ascending=ascending) dup.data.sort_values(labels_,axis=0,inplace=True,ascending=ascending)
dup._label_uniform() dup._relabel('uniform')
dup.comments.append(f'sorted {"ascending" if ascending else "descending"} by {labels}') dup.comments.append(f'sorted {"ascending" if ascending else "descending"} by {labels}')
return dup return dup
@ -399,7 +545,7 @@ class Table:
---------- ----------
fname : file, str, or pathlib.Path fname : file, str, or pathlib.Path
Filename or file for writing. Filename or file for writing.
legacy : Boolean, optional legacy : bool, optional
Write table in legacy style, indicating header lines by "N header" Write table in legacy style, indicating header lines by "N header"
in contrast to using comment sign ('#') at beginning of lines. in contrast to using comment sign ('#') at beginning of lines.

View File

@ -399,7 +399,7 @@ class Test:
tables = [damask.Table.load(filename) for filename in files] tables = [damask.Table.load(filename) for filename in files]
for table in tables: for table in tables:
table._label_discrete() table._relabel('linear')
columns += [columns[0]]*(len(files)-len(columns)) # extend to same length as files columns += [columns[0]]*(len(files)-len(columns)) # extend to same length as files
columns = columns[:len(files)] # truncate to same length as files columns = columns[:len(files)] # truncate to same length as files
@ -419,7 +419,7 @@ class Test:
data = [] data = []
for table,labels in zip(tables,columns): for table,labels in zip(tables,columns):
table._label_uniform() table._relabel('uniform')
data.append(np.hstack(list(table.get(label) for label in labels))) data.append(np.hstack(list(table.get(label) for label in labels)))

View File

@ -86,9 +86,12 @@ class TestConfigMaterial:
def test_from_table(self): def test_from_table(self):
N = np.random.randint(3,10) N = np.random.randint(3,10)
a = np.vstack((np.hstack((np.arange(N),np.arange(N)[::-1])),np.ones(N*2),np.zeros(N*2),np.ones(N*2),np.ones(N*2))).T a = np.vstack((np.hstack((np.arange(N),np.arange(N)[::-1])),
t = Table(a,{'varying':1,'constant':4}) np.ones(N*2),np.zeros(N*2),np.ones(N*2),np.ones(N*2),
c = ConfigMaterial.from_table(t,**{'phase':'varying','O':'constant','homogenization':'4_constant'}) np.ones(N*2),
)).T
t = Table(a,{'varying':1,'constant':4,'ones':1})
c = ConfigMaterial.from_table(t,**{'phase':'varying','O':'constant','homogenization':'ones'})
assert len(c['material']) == N assert len(c['material']) == N
for i,m in enumerate(c['material']): for i,m in enumerate(c['material']):
assert m['homogenization'] == 1 and (m['constituents'][0]['O'] == [1,0,1,1]).all() assert m['homogenization'] == 1 and (m['constituents'][0]['O'] == [1,0,1,1]).all()

View File

@ -407,7 +407,8 @@ class TestGrid:
z=np.ones(cells.prod()) z=np.ones(cells.prod())
z[cells[:2].prod()*int(cells[2]/2):]=0 z[cells[:2].prod()*int(cells[2]/2):]=0
t = Table(np.column_stack((coords,z)),{'coords':3,'z':1}) t = Table(np.column_stack((coords,z)),{'coords':3,'z':1})
g = Grid.from_table(t,'coords',['1_coords','z']) t = t.add('indicator',t.get('coords')[:,0])
g = Grid.from_table(t,'coords',['indicator','z'])
assert g.N_materials == g.cells[0]*2 and (g.material[:,:,-1]-g.material[:,:,0] == cells[0]).all() assert g.N_materials == g.cells[0]*2 and (g.material[:,:,-1]-g.material[:,:,0] == cells[0]).all()

View File

@ -36,13 +36,33 @@ class TestTable:
d = default.get('F') d = default.get('F')
assert np.allclose(d,1.0) and d.shape[1:] == (3,3) assert np.allclose(d,1.0) and d.shape[1:] == (3,3)
def test_get_component(self,default): def test_set(self,default):
d = default.get('5_F') d = default.set('F',np.zeros((5,3,3)),'set to zero').get('F')
assert np.allclose(d,1.0) and d.shape[1:] == (1,) assert np.allclose(d,0.0) and d.shape[1:] == (3,3)
@pytest.mark.parametrize('N',[10,40]) def test_set_component(self,default):
def test_getitem(self,N): d = default.set('F[0,0]',np.zeros((5)),'set to zero').get('F')
assert len(Table(np.random.rand(N,1),{'X':1})[:N//2]) == N//2 assert np.allclose(d[...,0,0],0.0) and d.shape[1:] == (3,3)
def test_labels(self,default):
assert default.labels == ['F','v','s']
def test_add(self,default):
d = np.random.random((5,9))
assert np.allclose(d,default.add('nine',d,'random data').get('nine'))
def test_isclose(self,default):
assert default.isclose(default).all()
def test_allclose(self,default):
assert default.allclose(default)
@pytest.mark.parametrize('N',[1,3,4])
def test_slice(self,default,N):
assert len(default[:N]) == 1+N
assert len(default[:N,['F','s']]) == 1+N
assert default[N:].get('F').shape == (len(default)-N,3,3)
assert (default[:N,['v','s']].data == default['v','s'][:N].data).all().all()
@pytest.mark.parametrize('mode',['str','path']) @pytest.mark.parametrize('mode',['str','path'])
def test_write_read(self,default,tmp_path,mode): def test_write_read(self,default,tmp_path,mode):
@ -91,21 +111,6 @@ class TestTable:
with open(ref_path/fname) as f: with open(ref_path/fname) as f:
Table.load(f) Table.load(f)
def test_set(self,default):
d = default.set('F',np.zeros((5,3,3)),'set to zero').get('F')
assert np.allclose(d,0.0) and d.shape[1:] == (3,3)
def test_set_component(self,default):
d = default.set('1_F',np.zeros((5)),'set to zero').get('F')
assert np.allclose(d[...,0,0],0.0) and d.shape[1:] == (3,3)
def test_labels(self,default):
assert default.labels == ['F','v','s']
def test_add(self,default):
d = np.random.random((5,9))
assert np.allclose(d,default.add('nine',d,'random data').get('nine'))
def test_rename_equivalent(self): def test_rename_equivalent(self):
x = np.random.random((5,13)) x = np.random.random((5,13))
t = Table(x,{'F':(3,3),'v':(3,),'s':(1,)},['random test data']) t = Table(x,{'F':(3,3),'v':(3,),'s':(1,)},['random test data'])
@ -176,15 +181,15 @@ class TestTable:
def test_sort_component(self): def test_sort_component(self):
x = np.random.random((5,12)) x = np.random.random((5,12))
t = Table(x,{'F':(3,3),'v':(3,)},['random test data']) t = Table(x,{'F':(3,3),'v':(3,)},['random test data'])
unsort = t.get('4_F') unsort = t.get('F')[:,1,0]
sort = t.sort_by('4_F').get('4_F') sort = t.sort_by('F[1,0]').get('F')[:,1,0]
assert np.all(np.sort(unsort,0)==sort) assert np.all(np.sort(unsort,0)==sort)
def test_sort_revert(self): def test_sort_revert(self):
x = np.random.random((5,12)) x = np.random.random((5,12))
t = Table(x,{'F':(3,3),'v':(3,)},['random test data']) t = Table(x,{'F':(3,3),'v':(3,)},['random test data'])
sort = t.sort_by('4_F',ascending=False).get('4_F') sort = t.sort_by('F[1,0]',ascending=False).get('F')[:,1,0]
assert np.all(np.sort(sort,0)==sort[::-1,:]) assert np.all(np.sort(sort,0)==sort[::-1])
def test_sort(self): def test_sort(self):
t = Table(np.array([[0,1,],[2,1,]]), t = Table(np.array([[0,1,],[2,1,]]),
@ -192,4 +197,4 @@ class TestTable:
['test data'])\ ['test data'])\
.add('s',np.array(['b','a']))\ .add('s',np.array(['b','a']))\
.sort_by('s') .sort_by('s')
assert np.all(t.get('1_v') == np.array([2,0]).reshape(2,1)) assert np.all(t.get('v')[:,0] == np.array([2,0]))