some more detailed doxygen comments

This commit is contained in:
Martin Diehl 2013-02-26 19:01:31 +00:00
parent 04c2b22766
commit 0be6706483
2 changed files with 200 additions and 249 deletions

View File

@ -21,7 +21,7 @@
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief reading in of data when doing a restart !> @brief triggering reading in of restart information when doing a restart
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module FEsolving module FEsolving
use prec, only: & use prec, only: &
@ -69,9 +69,11 @@ contains
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief determine whether a symmetric solver is used and whether restart is requested !> @brief determine whether a symmetric solver is used and whether restart is requested
!> @details restart information is found in input file in case of FEM solvers, in case of spectal
!> solver the information is provided by the interface module
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine FE_init subroutine FE_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: & use debug, only: &
debug_level, & debug_level, &
debug_FEsolving, & debug_FEsolving, &

View File

@ -16,28 +16,22 @@
! You should have received a copy of the GNU General Public License ! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>. ! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
! !
!############################################################## !--------------------------------------------------------------------------------------------------
!* $Id$ ! $Id$
!************************************ !--------------------------------------------------------------------------------------------------
!* Module: LATTICE * !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!************************************ !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!* contains: * !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!* - Lattice structure definition * !> @brief defines lattice structure definitions, slip and twin system definitions, Schimd matrix
!* - Slip system definition * !> calculation and non-Schmid behavior
!* - Schmid matrices calculation * !--------------------------------------------------------------------------------------------------
!************************************
module lattice module lattice
use prec, only: &
use prec, only: pReal, & pReal, &
pInt pInt
implicit none implicit none
private private
!************************************
!* Lattice structures *
!************************************
integer(pInt), parameter, public :: & integer(pInt), parameter, public :: &
lattice_maxNslipFamily = 5_pInt, & !< max # of slip system families over lattice structures lattice_maxNslipFamily = 5_pInt, & !< max # of slip system families over lattice structures
lattice_maxNtwinFamily = 4_pInt, & !< max # of twin system families over lattice structures lattice_maxNtwinFamily = 4_pInt, & !< max # of twin system families over lattice structures
@ -51,10 +45,10 @@ module lattice
lattice_NtwinSystem !< # of twin systems in each family lattice_NtwinSystem !< # of twin systems in each family
integer(pInt), allocatable, dimension(:,:,:), protected, public :: & integer(pInt), allocatable, dimension(:,:,:), protected, public :: &
lattice_interactionSlipSlip, & !< interaction type between slip/slip lattice_interactionSlipSlip, & !< Slip--slip interaction type
lattice_interactionSlipTwin, & !< interaction type between slip/twin lattice_interactionSlipTwin, & !< Slip--twin interaction type
lattice_interactionTwinSlip, & !< interaction type between twin/slip lattice_interactionTwinSlip, & !< Twin--slip interaction type
lattice_interactionTwinTwin !< interaction type between twin/twin lattice_interactionTwinTwin !< Twin--twin interaction type
real(pReal), allocatable, dimension(:,:,:,:), protected, public :: & real(pReal), allocatable, dimension(:,:,:,:), protected, public :: &
@ -91,20 +85,19 @@ module lattice
interactionTwinTwin interactionTwinTwin
integer(pInt), allocatable, dimension(:), protected, public :: & integer(pInt), allocatable, dimension(:), protected, public :: &
NnonSchmid !< # of Non Schmid contributions for each structure NnonSchmid !< # of non-Schmid contributions for each structure
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! fcc (1) ! fcc (1)
integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: & integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: &
lattice_fcc_NslipSystem = int([12, 0, 0, 0, 0],pInt) lattice_fcc_NslipSystem = int([12, 0, 0, 0, 0],pInt) !< # of slip systems per family for fcc
integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: & integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: &
lattice_fcc_NtwinSystem = int([12, 0, 0, 0],pInt) lattice_fcc_NtwinSystem = int([12, 0, 0, 0],pInt) !< # of twin systems per family for fcc
integer(pInt), parameter, private :: & integer(pInt), parameter, private :: &
lattice_fcc_Nslip = 12_pInt, & ! sum(lattice_fcc_NslipSystem) lattice_fcc_Nslip = sum(lattice_fcc_NslipSystem), & !< total # of slip systems for fcc
lattice_fcc_Ntwin = 12_pInt ! sum(lattice_fcc_NtwinSystem) lattice_fcc_Ntwin = sum(lattice_fcc_NtwinSystem) !< total # of twin systems for fcc
integer(pInt), private :: & integer(pInt), private :: &
lattice_fcc_Nstructure = 0_pInt lattice_fcc_Nstructure = 0_pInt
@ -123,7 +116,7 @@ module lattice
0, 1, 1, -1, 1,-1, & 0, 1, 1, -1, 1,-1, &
1, 0,-1, -1, 1,-1, & 1, 0,-1, -1, 1,-1, &
-1,-1, 0, -1, 1,-1 & -1,-1, 0, -1, 1,-1 &
],pReal),[ 3_pInt + 3_pInt,lattice_fcc_Nslip]) !< Slip system <110>{111} Sorted according to Eisenlohr & Hantcherli ],pReal),[ 3_pInt + 3_pInt,lattice_fcc_Nslip]) !< Slip system <110>{111} directions. Sorted according to Eisenlohr & Hantcherli
real(pReal), dimension(3+3,lattice_fcc_Ntwin), parameter, private :: & real(pReal), dimension(3+3,lattice_fcc_Ntwin), parameter, private :: &
lattice_fcc_systemTwin = reshape(real( [& lattice_fcc_systemTwin = reshape(real( [&
@ -139,7 +132,7 @@ module lattice
2, 1,-1, -1, 1,-1, & 2, 1,-1, -1, 1,-1, &
-1,-2,-1, -1, 1,-1, & -1,-2,-1, -1, 1,-1, &
-1, 1, 2, -1, 1,-1 & -1, 1, 2, -1, 1,-1 &
],pReal),[ 3_pInt + 3_pInt ,lattice_fcc_Ntwin]) !< Twin system <112>{111} Sorted according to Eisenlohr & Hantcherli ],pReal),[ 3_pInt + 3_pInt ,lattice_fcc_Ntwin]) !< Twin system <112>{111} directions. Sorted according to Eisenlohr & Hantcherli
real(pReal), dimension(lattice_fcc_Ntwin), parameter, private :: & real(pReal), dimension(lattice_fcc_Ntwin), parameter, private :: &
lattice_fcc_shearTwin = reshape([& lattice_fcc_shearTwin = reshape([&
@ -155,7 +148,7 @@ module lattice
0.7071067812_pReal, & 0.7071067812_pReal, &
0.7071067812_pReal, & 0.7071067812_pReal, &
0.7071067812_pReal & 0.7071067812_pReal &
],[lattice_fcc_Ntwin]) !< Twin system <112>{111} Sorted according to Eisenlohr & Hantcherli ],[lattice_fcc_Ntwin]) !< Twin system <112>{111} ??? Sorted according to Eisenlohr & Hantcherli
integer(pInt), dimension(lattice_fcc_Nslip,lattice_fcc_Nslip), target, public :: & integer(pInt), dimension(lattice_fcc_Nslip,lattice_fcc_Nslip), target, public :: &
lattice_fcc_interactionSlipSlip = reshape(int( [& lattice_fcc_interactionSlipSlip = reshape(int( [&
@ -171,15 +164,13 @@ module lattice
4,5,6,3,5,5,4,6,5,1,2,2, & 4,5,6,3,5,5,4,6,5,1,2,2, &
5,3,5,5,4,6,6,4,5,2,1,2, & 5,3,5,5,4,6,6,4,5,2,1,2, &
6,5,4,5,6,4,5,5,3,2,2,1 & 6,5,4,5,6,4,5,5,3,2,2,1 &
],pInt),[lattice_fcc_Nslip,lattice_fcc_Nslip],order=[2,1]) ],pInt),[lattice_fcc_Nslip,lattice_fcc_Nslip],order=[2,1]) !< Slip--slip interaction types for fcc
!< Interaction types !< 1: self interaction
!< 1 --- self interaction !< 2: coplanar interaction
!< 2 --- coplanar interaction !< 3: collinear interaction
!< 3 --- collinear interaction !< 4: Hirth locks
!< 4 --- Hirth locks !< 5: glissile junctions
!< 5 --- glissile junctions !< 6: Lomer locks
!< 6 --- Lomer locks
integer(pInt), dimension(lattice_fcc_Nslip,lattice_fcc_Ntwin), target, public :: & integer(pInt), dimension(lattice_fcc_Nslip,lattice_fcc_Ntwin), target, public :: &
lattice_fcc_interactionSlipTwin = reshape(int( [& lattice_fcc_interactionSlipTwin = reshape(int( [&
1,1,1,3,3,3,2,2,2,3,3,3, & ! ---> twin 1,1,1,3,3,3,2,2,2,3,3,3, & ! ---> twin
@ -194,14 +185,12 @@ module lattice
3,3,3,2,2,2,3,3,3,1,1,1, & 3,3,3,2,2,2,3,3,3,1,1,1, &
2,2,2,3,3,3,3,3,3,1,1,1, & 2,2,2,3,3,3,3,3,3,1,1,1, &
3,3,3,3,3,3,2,2,2,1,1,1 & 3,3,3,3,3,3,2,2,2,1,1,1 &
],pInt),[lattice_fcc_Nslip,lattice_fcc_Ntwin],order=[2,1]) ],pInt),[lattice_fcc_Nslip,lattice_fcc_Ntwin],order=[2,1]) !< Slip--twin interaction types for fcc
!< Interaction types !< 1: coplanar interaction
!< 1 --- coplanar interaction !< 2: screw trace between slip system and twin habit plane (easy cross slip)
!< 2 --- screw trace between slip system and twin habit plane (easy cross slip) !< 3: other interaction
!< 3 --- other interaction
integer(pInt), dimension(lattice_fcc_Ntwin,lattice_fcc_Nslip), target, public :: & integer(pInt), dimension(lattice_fcc_Ntwin,lattice_fcc_Nslip), target, public :: &
lattice_fcc_interactionTwinSlip = 0_pInt lattice_fcc_interactionTwinSlip = 0_pInt !< Twin--Slip interaction types for fcc
integer(pInt), dimension(lattice_fcc_Ntwin,lattice_fcc_Ntwin), target, public :: & integer(pInt), dimension(lattice_fcc_Ntwin,lattice_fcc_Ntwin), target, public :: &
lattice_fcc_interactionTwinTwin = reshape(int( [& lattice_fcc_interactionTwinTwin = reshape(int( [&
@ -217,30 +206,25 @@ module lattice
2,2,2,2,2,2,2,2,2,1,1,1, & 2,2,2,2,2,2,2,2,2,1,1,1, &
2,2,2,2,2,2,2,2,2,1,1,1, & 2,2,2,2,2,2,2,2,2,1,1,1, &
2,2,2,2,2,2,2,2,2,1,1,1 & 2,2,2,2,2,2,2,2,2,1,1,1 &
],pInt),[lattice_fcc_Ntwin,lattice_fcc_Ntwin],order=[2,1]) ],pInt),[lattice_fcc_Ntwin,lattice_fcc_Ntwin],order=[2,1]) !< Twin--twin interaction types for fcc
! Number of Non Schmid contributions for FCC integer(pInt), parameter, private :: NnonSchmid_fcc = 0_pInt !< # of non-Schmid contributions for fcc
integer(pInt), parameter, private :: NnonSchmid_fcc = 0_pInt
! Tensor for each non schmid contribution
real(pReal), dimension(3,3,2,NnonSchmid_fcc,lattice_fcc_Nslip), parameter, private :: & real(pReal), dimension(3,3,2,NnonSchmid_fcc,lattice_fcc_Nslip), parameter, private :: &
lattice_nonSchmid_fcc = 0.0_pReal ! reshape([],[3,3,2,NnonSchmid_fcc,lattice_fcc_Nslip]) lattice_nonSchmid_fcc = 0.0_pReal ! reshape([],[3,3,2,NnonSchmid_fcc,lattice_fcc_Nslip]) !< Tensor for each non-Schmid contribution for fcc
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! bcc (2) ! bcc (2)
integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: & integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: &
lattice_bcc_NslipSystem = int([ 12, 12, 0, 0, 0], pInt) lattice_bcc_NslipSystem = int([ 12, 12, 0, 0, 0], pInt) !< # of slip systems per family for bcc
integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: & integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: &
lattice_bcc_NtwinSystem = int([ 12, 0, 0, 0], pInt) lattice_bcc_NtwinSystem = int([ 12, 0, 0, 0], pInt) !< # of twin systems per family for bcc
integer(pInt), parameter, private :: & integer(pInt), parameter, private :: &
lattice_bcc_Nslip = 24_pInt ! sum(lattice_bcc_NslipSystem) lattice_bcc_Nslip = sum(lattice_bcc_NslipSystem), & !< total # of slip systems for bcc
lattice_bcc_Ntwin = sum(lattice_bcc_NtwinSystem) !< total # of twin systems for bcc
integer(pInt), parameter, private :: &
lattice_bcc_Ntwin = 12_pInt ! sum(lattice_bcc_NtwinSystem)
integer(pInt), private :: & integer(pInt), private :: &
lattice_bcc_Nstructure = 0_pInt lattice_bcc_Nstructure = 0_pInt
@ -333,7 +317,6 @@ module lattice
0.7071067812_pReal & 0.7071067812_pReal &
],[lattice_bcc_Ntwin]) ],[lattice_bcc_Ntwin])
! slip--slip interactions for BCC structures (2) from Lee et al. Int J Plast 15 (1999) 625-645
integer(pInt), dimension(lattice_bcc_Nslip,lattice_bcc_Nslip), target, public :: & integer(pInt), dimension(lattice_bcc_Nslip,lattice_bcc_Nslip), target, public :: &
lattice_bcc_interactionSlipSlip = reshape(int( [& lattice_bcc_interactionSlipSlip = reshape(int( [&
1,3,6,6,5,4,4,2,4,2,5,4, 6,6,4,2,2,4,6,6,4,2,6,6, & ! ---> slip 1,3,6,6,5,4,4,2,4,2,5,4, 6,6,4,2,2,4,6,6,4,2,6,6, & ! ---> slip
@ -361,15 +344,13 @@ module lattice
2,4,6,6,6,6,4,2,4,2,6,6, 6,5,6,2,2,5,6,6,6,1,5,6, & 2,4,6,6,6,6,4,2,4,2,6,6, 6,5,6,2,2,5,6,6,6,1,5,6, &
6,6,4,2,2,4,6,6,2,4,6,6, 2,6,5,6,6,6,5,2,6,5,1,6, & 6,6,4,2,2,4,6,6,2,4,6,6, 2,6,5,6,6,6,5,2,6,5,1,6, &
6,6,2,4,6,6,2,4,6,6,2,4, 6,2,6,5,6,6,2,5,5,6,6,1 & 6,6,2,4,6,6,2,4,6,6,2,4, 6,2,6,5,6,6,2,5,5,6,6,1 &
],pInt),[lattice_bcc_Nslip,lattice_bcc_Nslip],order=[2,1]) ],pInt),[lattice_bcc_Nslip,lattice_bcc_Nslip],order=[2,1]) !< Slip--slip interaction types for bcc from Lee et al. Int J Plast 15 (1999) 625-645
!< Interaction types !< 1: self interaction
!< 1 --- self interaction !< 2: no interaction
!< 2 --- no interaction !< 3: coplanar interaction
!< 3 --- coplanar interaction !< 4: glissile interaction
!< 4 --- glissile interaction !< 5: weak sessile interaction
!< 5 --- weak sessile interaction !< 6: strong sessile interaction
!< 6 --- strong sessile interaction
integer(pInt), dimension(lattice_bcc_Nslip,lattice_bcc_Ntwin), target, public :: & integer(pInt), dimension(lattice_bcc_Nslip,lattice_bcc_Ntwin), target, public :: &
lattice_bcc_interactionSlipTwin = reshape(int( [& lattice_bcc_interactionSlipTwin = reshape(int( [&
3,3,3,2,2,3,3,3,3,2,3,3, & ! ---> twin 3,3,3,2,2,3,3,3,3,2,3,3, & ! ---> twin
@ -397,17 +378,13 @@ module lattice
3,3,3,2,2,3,3,3,3,1,3,3, & 3,3,3,2,2,3,3,3,3,1,3,3, &
2,3,3,3,3,3,3,2,3,3,1,3, & 2,3,3,3,3,3,3,2,3,3,1,3, &
3,2,3,3,3,3,2,3,3,3,3,1 & 3,2,3,3,3,3,2,3,3,3,3,1 &
],pInt),[lattice_bcc_Nslip,lattice_bcc_Ntwin],order=[2,1]) ],pInt),[lattice_bcc_Nslip,lattice_bcc_Ntwin],order=[2,1]) !< Slip--twin interaction types for bcc
!< Interaction types !< 1: coplanar interaction
!< 1 --- coplanar interaction !< 2: screw trace between slip system and twin habit plane (easy cross slip)
!< 2 --- screw trace between slip system and twin habit plane (easy cross slip) !< 3: other interaction
!< 3 --- other interaction
! twin--slip interactions for BCC structures (2) MISSING: not implemented yet
integer(pInt), dimension(lattice_bcc_Ntwin,lattice_bcc_Nslip), target, public :: & integer(pInt), dimension(lattice_bcc_Ntwin,lattice_bcc_Nslip), target, public :: &
lattice_bcc_interactionTwinSlip = 0_pInt lattice_bcc_interactionTwinSlip = 0_pInt !< Twin--slip interaction types for bcc @todo not implemented yet
! twin--twin interactions for BCC structures (2)
integer(pInt), dimension(lattice_bcc_Ntwin,lattice_bcc_Ntwin), target, public :: & integer(pInt), dimension(lattice_bcc_Ntwin,lattice_bcc_Ntwin), target, public :: &
lattice_bcc_interactionTwinTwin = reshape(int( [& lattice_bcc_interactionTwinTwin = reshape(int( [&
1,3,3,3,3,3,3,2,3,3,2,3, & ! ---> twin 1,3,3,3,3,3,3,2,3,3,2,3, & ! ---> twin
@ -422,38 +399,30 @@ module lattice
3,3,3,2,2,3,3,3,3,1,3,3, & 3,3,3,2,2,3,3,3,3,1,3,3, &
2,3,3,3,3,3,3,2,3,3,1,3, & 2,3,3,3,3,3,3,2,3,3,1,3, &
3,2,3,3,3,3,2,3,3,3,3,1 & 3,2,3,3,3,3,2,3,3,3,3,1 &
],pInt),[lattice_bcc_Ntwin,lattice_bcc_Ntwin],order=[2,1]) ],pInt),[lattice_bcc_Ntwin,lattice_bcc_Ntwin],order=[2,1]) !< Twin--twin interaction types for bcc
!< Interaction types !< 1: self interaction
!< 1 --- self interaction !< 2: collinear interaction
!< 2 --- collinear interaction !< 3: other interaction
!< 3 --- other interaction integer(pInt), parameter, private :: NnonSchmid_bcc = 0_pInt !< # of non-Schmid contributions for bcc
! Number of Non Schmid contributions for BCC
integer(pInt), parameter, private :: NnonSchmid_bcc = 0_pInt
! Tensor for each non schmid contribution
real(pReal), dimension(3,3,2,NnonSchmid_bcc,lattice_bcc_Nslip), parameter, private :: & real(pReal), dimension(3,3,2,NnonSchmid_bcc,lattice_bcc_Nslip), parameter, private :: &
lattice_nonSchmid_bcc = 0.0_pReal ! reshape([],[3,3,2,NnonSchmid_bcc,lattice_bcc_Nslip]) lattice_nonSchmid_bcc = 0.0_pReal ! reshape([],[3,3,2,NnonSchmid_bcc,lattice_bcc_Nslip]) !< Tensor for each non-Schmid contribution for bcc
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! hex (3+) ! hex (3+)
integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: & integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: &
lattice_hex_NslipSystem = int([ 3, 3, 6, 12, 6],pInt) lattice_hex_NslipSystem = int([ 3, 3, 6, 12, 6],pInt) !< # of slip systems per family for hex
integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: & integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: &
lattice_hex_NtwinSystem = int([ 6, 6, 6, 6],pInt) lattice_hex_NtwinSystem = int([ 6, 6, 6, 6],pInt) !< # of slip systems per family for hex
integer(pInt), parameter , private :: & integer(pInt), parameter , private :: &
lattice_hex_Nslip = 30_pInt ! sum(lattice_hex_NslipSystem) lattice_hex_Nslip = sum(lattice_hex_NslipSystem),& !< total # of slip systems for hex
lattice_hex_Ntwin = sum(lattice_hex_NtwinSystem) !< total # of twin systems for hex
integer(pInt), parameter, private :: &
lattice_hex_Ntwin = 24_pInt ! sum(lattice_hex_NtwinSystem)
integer(pInt), private :: & integer(pInt), private :: &
lattice_hex_Nstructure = 0_pInt lattice_hex_Nstructure = 0_pInt
!* sorted by A. Alankar & P. Eisenlohr
real(pReal), dimension(4+4,lattice_hex_Nslip), parameter, private :: & real(pReal), dimension(4+4,lattice_hex_Nslip), parameter, private :: &
lattice_hex_systemSlip = reshape(real([& lattice_hex_systemSlip = reshape(real([&
! Basal systems <1120>{0001} (independent of c/a-ratio, Bravais notation (4 coordinate base)) ! Basal systems <1120>{0001} (independent of c/a-ratio, Bravais notation (4 coordinate base))
@ -486,12 +455,12 @@ module lattice
2, -1, -1, -3, 1, 0, -1, 1, & 2, -1, -1, -3, 1, 0, -1, 1, &
! pyramidal system: c+a slip <11.-3>{11.2} -- as for hexagonal Ice (Castelnau et al 1996, similar to twin system found below) ! pyramidal system: c+a slip <11.-3>{11.2} -- as for hexagonal Ice (Castelnau et al 1996, similar to twin system found below)
2, -1, -1, -3, 2, -1, -1, 2, & ! <11.-3>{11.2} shear = 2((c/a)^2-2)/(3 c/a) 2, -1, -1, -3, 2, -1, -1, 2, & ! <11.-3>{11.2} shear = 2((c/a)^2-2)/(3 c/a)
1, 1, -2, -3, 1, 1, -2, 2, & ! not sorted, just copied from twin system 1, 1, -2, -3, 1, 1, -2, 2, & ! sorted according to similar twin system
-1, 2, -1, -3, -1, 2, -1, 2, & -1, 2, -1, -3, -1, 2, -1, 2, &
-2, 1, 1, -3, -2, 1, 1, 2, & -2, 1, 1, -3, -2, 1, 1, 2, &
-1, -1, 2, -3, -1, -1, 2, 2, & -1, -1, 2, -3, -1, -1, 2, 2, &
1, -2, 1, -3, 1, -2, 1, 2 & 1, -2, 1, -3, 1, -2, 1, 2 &
],pReal),[ 4_pInt + 4_pInt,lattice_hex_Nslip]) ],pReal),[ 4_pInt + 4_pInt,lattice_hex_Nslip]) !< slip systems for hex sorted by A. Alankar & P. Eisenlohr
real(pReal), dimension(4+4,lattice_hex_Ntwin), parameter, private :: & real(pReal), dimension(4+4,lattice_hex_Ntwin), parameter, private :: &
lattice_hex_systemTwin = reshape(real([& lattice_hex_systemTwin = reshape(real([&
@ -519,7 +488,7 @@ module lattice
0, -1, 1, -2, 0, -1, 1, 1, & 0, -1, 1, -2, 0, -1, 1, 1, &
1, -1, 0, -2, 1, -1, 0, 1, & 1, -1, 0, -2, 1, -1, 0, 1, &
-1, 1, 0, -2, -1, 1, 0, 1 & -1, 1, 0, -2, -1, 1, 0, 1 &
],pReal),[ 4_pInt + 4_pInt ,lattice_hex_Ntwin]) !* Sort? Numbering of twin system follows Prof. Tom Bieler's scheme (to be consistent with his work); but numbering in data was restarted from 1 & ],pReal),[ 4_pInt + 4_pInt ,lattice_hex_Ntwin]) !< twin systems for hex, order follows Prof. Tom Bieler's scheme; but numbering in data was restarted from 1
integer(pInt), dimension(lattice_hex_Ntwin), parameter, private :: & integer(pInt), dimension(lattice_hex_Ntwin), parameter, private :: &
lattice_hex_shearTwin = reshape(int( [& ! indicator to formula further below lattice_hex_shearTwin = reshape(int( [& ! indicator to formula further below
@ -548,12 +517,6 @@ module lattice
4, & 4, &
4 & 4 &
],pInt),[lattice_hex_Ntwin]) ],pInt),[lattice_hex_Ntwin])
!* four different interaction type matrix
!* 1. slip-slip interaction - 30 types
!* 2. slip-twin interaction - 20 types
!* 3. twin-twin interaction - 20 types
!* 4. twin-slip interaction - 16 types
integer(pInt), dimension(lattice_hex_Nslip,lattice_hex_Nslip), target, public :: & integer(pInt), dimension(lattice_hex_Nslip,lattice_hex_Nslip), target, public :: &
lattice_hex_interactionSlipSlip = reshape(int( [& lattice_hex_interactionSlipSlip = reshape(int( [&
@ -591,9 +554,8 @@ module lattice
30,30,30, 29,29,29, 27,27,27,27,27,27, 24,24,24,24,24,24,24,24,24,24,24,24, 10,10,10, 5,10,10, & 30,30,30, 29,29,29, 27,27,27,27,27,27, 24,24,24,24,24,24,24,24,24,24,24,24, 10,10,10, 5,10,10, &
30,30,30, 29,29,29, 27,27,27,27,27,27, 24,24,24,24,24,24,24,24,24,24,24,24, 10,10,10,10, 5,10, & 30,30,30, 29,29,29, 27,27,27,27,27,27, 24,24,24,24,24,24,24,24,24,24,24,24, 10,10,10,10, 5,10, &
30,30,30, 29,29,29, 27,27,27,27,27,27, 24,24,24,24,24,24,24,24,24,24,24,24, 10,10,10,10,10, 5 & 30,30,30, 29,29,29, 27,27,27,27,27,27, 24,24,24,24,24,24,24,24,24,24,24,24, 10,10,10,10,10, 5 &
],pInt),[lattice_hex_Nslip,lattice_hex_Nslip],order=[2,1]) ],pInt),[lattice_hex_Nslip,lattice_hex_Nslip],order=[2,1]) !< Slip--slip interaction types for hex (30 in total)
!* isotropic interaction at the moment
integer(pInt), dimension(lattice_hex_Nslip,lattice_hex_Ntwin), target, public :: & integer(pInt), dimension(lattice_hex_Nslip,lattice_hex_Ntwin), target, public :: &
lattice_hex_interactionSlipTwin = reshape(int( [& lattice_hex_interactionSlipTwin = reshape(int( [&
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! --> twin 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! --> twin
@ -630,9 +592,8 @@ module lattice
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, & 17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, & 17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20 & 17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20 &
],pInt),[lattice_hex_Nslip,lattice_hex_Ntwin],order=[2,1]) ],pInt),[lattice_hex_Nslip,lattice_hex_Ntwin],order=[2,1]) !< Slip--twin interaction types for hex (isotropic, 20 in total)
!* isotropic interaction at the moment
integer(pInt), dimension(lattice_hex_Ntwin,lattice_hex_Nslip), target, public :: & integer(pInt), dimension(lattice_hex_Ntwin,lattice_hex_Nslip), target, public :: &
lattice_hex_interactionTwinSlip = reshape(int( [& lattice_hex_interactionTwinSlip = reshape(int( [&
1, 1, 1, 5, 5, 5, 9, 9, 9, 9, 9, 9, 13,13,13,13,13,13,13,13,13,13,13,13, 17,17,17,17,17,17, & ! --> slip 1, 1, 1, 5, 5, 5, 9, 9, 9, 9, 9, 9, 13,13,13,13,13,13,13,13,13,13,13,13, 17,17,17,17,17,17, & ! --> slip
@ -662,8 +623,7 @@ module lattice
4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20, & 4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20, &
4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20, & 4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20, &
4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20 & 4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20 &
],pInt),[lattice_hex_Ntwin,lattice_hex_Nslip],order=[2,1]) ],pInt),[lattice_hex_Ntwin,lattice_hex_Nslip],order=[2,1]) !< Twin--twin interaction types for hex (isotropic, 20 in total)
integer(pInt), dimension(lattice_hex_Ntwin,lattice_hex_Ntwin), target, public :: & integer(pInt), dimension(lattice_hex_Ntwin,lattice_hex_Ntwin), target, public :: &
lattice_hex_interactionTwinTwin = reshape(int( [& lattice_hex_interactionTwinTwin = reshape(int( [&
@ -694,14 +654,12 @@ module lattice
20,20,20,20,20,20, 19,19,19,19,19,19, 17,17,17,17,17,17, 8, 8, 8, 4, 8, 8, & 20,20,20,20,20,20, 19,19,19,19,19,19, 17,17,17,17,17,17, 8, 8, 8, 4, 8, 8, &
20,20,20,20,20,20, 19,19,19,19,19,19, 17,17,17,17,17,17, 8, 8, 8, 8, 4, 8, & 20,20,20,20,20,20, 19,19,19,19,19,19, 17,17,17,17,17,17, 8, 8, 8, 8, 4, 8, &
20,20,20,20,20,20, 19,19,19,19,19,19, 17,17,17,17,17,17, 8, 8, 8, 8, 8, 4 & 20,20,20,20,20,20, 19,19,19,19,19,19, 17,17,17,17,17,17, 8, 8, 8, 8, 8, 4 &
],pInt),[lattice_hex_Ntwin,lattice_hex_Ntwin],order=[2,1]) ],pInt),[lattice_hex_Ntwin,lattice_hex_Ntwin],order=[2,1]) !< Twin--slip interaction types for hex (isotropic, 16 in total)
! Number of Non Schmid contributions for hex integer(pInt), parameter, private :: NnonSchmid_hex = 0_pInt !< # of non-Schmid contributions for hex
integer(pInt), parameter, private :: NnonSchmid_hex = 0_pInt
! Tensor for each non schmid contribution
real(pReal), dimension(3,3,2,NnonSchmid_hex,lattice_hex_Nslip), parameter, private :: & real(pReal), dimension(3,3,2,NnonSchmid_hex,lattice_hex_Nslip), parameter, private :: &
lattice_nonSchmid_hex = 0.0_pReal ! reshape([],[3,3,2,NnonSchmid_hex,lattice_hex_Nslip]) lattice_nonSchmid_hex = 0.0_pReal ! reshape([],[3,3,2,NnonSchmid_hex,lattice_hex_Nslip]) !< Tensor for each non-Schmid contribution for hex
public :: & public :: &
lattice_init, & lattice_init, &
@ -712,135 +670,44 @@ module lattice
contains contains
!--------------------------------------------------------------------------------------------------
!> @brief Maps structure to symmetry type
!> @details fcc(1) and bcc(2) are cubic(1) hex(3+) is hexagonal(2)
!--------------------------------------------------------------------------------------------------
integer(pInt) pure function lattice_symmetryType(structName)
implicit none
character(len=32), intent(in) :: structName
select case(structName(1:3))
case ('fcc','bcc')
lattice_symmetryType = 1_pInt
case ('hex')
lattice_symmetryType = 2_pInt
case default
lattice_symmetryType = 0_pInt
end select
return
end function lattice_symmetryType
!--------------------------------------------------------------------------------------------------
!> @brief Symmetrizes stiffness matrix according to lattice type
!--------------------------------------------------------------------------------------------------
pure function lattice_symmetrizeC66(structName,C66)
implicit none
character(len=32), intent(in) :: structName
real(pReal), dimension(6,6), intent(in) :: C66
real(pReal), dimension(6,6) :: lattice_symmetrizeC66
integer(pInt) :: j,k
lattice_symmetrizeC66 = 0.0_pReal
select case(structName(1:3))
case ('iso')
forall(k=1_pInt:3_pInt)
forall(j=1_pInt:3_pInt) lattice_symmetrizeC66(k,j) = C66(1,2)
lattice_symmetrizeC66(k,k) = C66(1,1)
lattice_symmetrizeC66(k+3,k+3) = 0.5_pReal*(C66(1,1)-C66(1,2))
end forall
case ('fcc','bcc')
forall(k=1_pInt:3_pInt)
forall(j=1_pInt:3_pInt) lattice_symmetrizeC66(k,j) = C66(1,2)
lattice_symmetrizeC66(k,k) = C66(1,1)
lattice_symmetrizeC66(k+3_pInt,k+3_pInt) = C66(4,4)
end forall
case ('hex')
lattice_symmetrizeC66(1,1) = C66(1,1)
lattice_symmetrizeC66(2,2) = C66(1,1)
lattice_symmetrizeC66(3,3) = C66(3,3)
lattice_symmetrizeC66(1,2) = C66(1,2)
lattice_symmetrizeC66(2,1) = C66(1,2)
lattice_symmetrizeC66(1,3) = C66(1,3)
lattice_symmetrizeC66(3,1) = C66(1,3)
lattice_symmetrizeC66(2,3) = C66(1,3)
lattice_symmetrizeC66(3,2) = C66(1,3)
lattice_symmetrizeC66(4,4) = C66(4,4)
lattice_symmetrizeC66(5,5) = C66(4,4)
lattice_symmetrizeC66(6,6) = 0.5_pReal*(C66(1,1)-C66(1,2))
case ('ort')
lattice_symmetrizeC66(1,1) = C66(1,1)
lattice_symmetrizeC66(2,2) = C66(2,2)
lattice_symmetrizeC66(3,3) = C66(3,3)
lattice_symmetrizeC66(1,2) = C66(1,2)
lattice_symmetrizeC66(2,1) = C66(1,2)
lattice_symmetrizeC66(1,3) = C66(1,3)
lattice_symmetrizeC66(3,1) = C66(1,3)
lattice_symmetrizeC66(2,3) = C66(2,3)
lattice_symmetrizeC66(3,2) = C66(2,3)
lattice_symmetrizeC66(4,4) = C66(4,4)
lattice_symmetrizeC66(5,5) = C66(5,5)
lattice_symmetrizeC66(6,6) = C66(6,6)
end select
return
end function lattice_symmetrizeC66
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Module initialization !> @brief Module initialization
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine lattice_init subroutine lattice_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: IO_open_file,& use IO, only: &
IO_open_jobFile_stat, & IO_open_file,&
IO_countSections, & IO_open_jobFile_stat, &
IO_countTagInPart, & IO_countSections, &
IO_error, & IO_countTagInPart, &
IO_timeStamp IO_error
use material, only: material_configfile, & use material, only: &
material_localFileExt, & material_configfile, &
material_partPhase material_localFileExt, &
use debug, only: debug_level, & material_partPhase
debug_lattice, & use debug, only: &
debug_levelBasic debug_level, &
debug_lattice, &
debug_levelBasic
implicit none implicit none
integer(pInt), parameter :: fileunit = 200_pInt integer(pInt), parameter :: fileunit = 200_pInt
integer(pInt) :: Nsections integer(pInt) :: Nsections
!$OMP CRITICAL (write2out) write(6,'(/,a)') ' <<<+- lattice init -+>>>'
write(6,*) write(6,'(a)') ' $Id$'
write(6,*) '<<<+- lattice init -+>>>'
write(6,*) '$Id$'
write(6,'(a16,a)') ' Current time : ',IO_timeStamp()
#include "compilation_info.f90" #include "compilation_info.f90"
!$OMP END CRITICAL (write2out)
if (.not. IO_open_jobFile_stat(fileunit,material_localFileExt)) then ! no local material configuration present... if (.not. IO_open_jobFile_stat(fileunit,material_localFileExt)) then ! no local material configuration present...
call IO_open_file(fileunit,material_configFile) ! ... open material.config file call IO_open_file(fileunit,material_configFile) ! ... open material.config file
endif endif
Nsections = IO_countSections(fileunit,material_partPhase) Nsections = IO_countSections(fileunit,material_partPhase)
lattice_Nstructure = 2_pInt + sum(IO_countTagInPart(fileunit,material_partPhase,'covera_ratio',Nsections)) ! fcc + bcc + all hex lattice_Nstructure = 2_pInt + sum(IO_countTagInPart(fileunit,material_partPhase,'covera_ratio',Nsections)) ! fcc + bcc + all hex
! lattice_Nstructure = Nsections + 2_pInt ! most conservative assumption
close(fileunit) close(fileunit)
if (iand(debug_level(debug_lattice),debug_levelBasic) /= 0_pInt) then if (iand(debug_level(debug_lattice),debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (write2out) write(6,'(a16,1x,i5)') ' # phases:',Nsections
write(6,'(a16,1x,i5)') '# phases:',Nsections write(6,'(a16,1x,i5,/)') ' # structures:',lattice_Nstructure
write(6,'(a16,1x,i5)') '# structures:',lattice_Nstructure
write(6,*)
!$OMP END CRITICAL (write2out)
endif endif
allocate(NnonSchmid(lattice_Nstructure)); NnonSchmid = 0_pInt allocate(NnonSchmid(lattice_Nstructure)); NnonSchmid = 0_pInt
@ -878,16 +745,17 @@ end subroutine lattice_init
!> @brief Calculation of Schmid matrices, etc. !> @brief Calculation of Schmid matrices, etc.
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
integer(pInt) function lattice_initializeStructure(struct,CoverA) integer(pInt) function lattice_initializeStructure(struct,CoverA)
use prec, only: pReal,pInt use math, only: &
use math, only: math_vectorproduct, & math_vectorproduct, &
math_tensorproduct, & math_tensorproduct, &
math_norm3, & math_norm3, &
math_trace33, & math_trace33, &
math_symmetric33, & math_symmetric33, &
math_Mandel33to6, & math_Mandel33to6, &
math_axisAngleToR, & math_axisAngleToR, &
INRAD INRAD
use IO, only: IO_error use IO, only: &
IO_error
implicit none implicit none
character(len=*) struct character(len=*) struct
@ -1016,10 +884,10 @@ integer(pInt) function lattice_initializeStructure(struct,CoverA)
if (processMe) then if (processMe) then
if (myStructure > lattice_Nstructure) & if (myStructure > lattice_Nstructure) &
call IO_error(666_pInt,myStructure,ext_msg = 'structure index out of bounds') ! check for memory leakage call IO_error(666_pInt,myStructure,ext_msg = 'structure index out of bounds') ! check for memory leakage
do i = 1_pInt,myNslip ! store slip system vectors and Schmid matrix for my structure do i = 1_pInt,myNslip ! store slip system vectors and Schmid matrix for my structure
lattice_sd(1:3,i,myStructure) = sd(1:3,i)/math_norm3(sd(1:3,i)) ! make unit vector lattice_sd(1:3,i,myStructure) = sd(1:3,i)/math_norm3(sd(1:3,i)) ! make unit vector
lattice_sn(1:3,i,myStructure) = sn(1:3,i)/math_norm3(sn(1:3,i)) ! make unit vector lattice_sn(1:3,i,myStructure) = sn(1:3,i)/math_norm3(sn(1:3,i)) ! make unit vector
lattice_st(1:3,i,myStructure) = math_vectorproduct(lattice_sd(1:3,i,myStructure), & lattice_st(1:3,i,myStructure) = math_vectorproduct(lattice_sd(1:3,i,myStructure), &
lattice_sn(1:3,i,myStructure)) lattice_sn(1:3,i,myStructure))
lattice_Sslip(1:3,1:3,i,myStructure) = math_tensorproduct(lattice_sd(1:3,i,myStructure), & lattice_Sslip(1:3,1:3,i,myStructure) = math_tensorproduct(lattice_sd(1:3,i,myStructure), &
@ -1032,9 +900,9 @@ integer(pInt) function lattice_initializeStructure(struct,CoverA)
if (abs(math_trace33(lattice_Sslip(1:3,1:3,i,myStructure))) > 1.0e-8_pReal) & if (abs(math_trace33(lattice_Sslip(1:3,1:3,i,myStructure))) > 1.0e-8_pReal) &
call IO_error(0_pInt,myStructure,i,0_pInt,ext_msg = 'dilatational slip Schmid matrix') call IO_error(0_pInt,myStructure,i,0_pInt,ext_msg = 'dilatational slip Schmid matrix')
enddo enddo
do i = 1_pInt,myNtwin ! store twin system vectors and Schmid plus rotation matrix for my structure do i = 1_pInt,myNtwin ! store twin system vectors and Schmid plus rotation matrix for my structure
lattice_td(1:3,i,myStructure) = td(1:3,i)/math_norm3(td(1:3,i)) ! make unit vector lattice_td(1:3,i,myStructure) = td(1:3,i)/math_norm3(td(1:3,i)) ! make unit vector
lattice_tn(1:3,i,myStructure) = tn(1:3,i)/math_norm3(tn(1:3,i)) ! make unit vector lattice_tn(1:3,i,myStructure) = tn(1:3,i)/math_norm3(tn(1:3,i)) ! make unit vector
lattice_tt(1:3,i,myStructure) = math_vectorproduct(lattice_td(1:3,i,myStructure), & lattice_tt(1:3,i,myStructure) = math_vectorproduct(lattice_td(1:3,i,myStructure), &
lattice_tn(1:3,i,myStructure)) lattice_tn(1:3,i,myStructure))
lattice_Stwin(1:3,1:3,i,myStructure) = math_tensorproduct(lattice_td(1:3,i,myStructure), & lattice_Stwin(1:3,1:3,i,myStructure) = math_tensorproduct(lattice_td(1:3,i,myStructure), &
@ -1045,18 +913,99 @@ integer(pInt) function lattice_initializeStructure(struct,CoverA)
if (abs(math_trace33(lattice_Stwin(1:3,1:3,i,myStructure))) > 1.0e-8_pReal) & if (abs(math_trace33(lattice_Stwin(1:3,1:3,i,myStructure))) > 1.0e-8_pReal) &
call IO_error(0_pInt,myStructure,i,0_pInt,ext_msg = 'dilatational twin Schmid matrix') call IO_error(0_pInt,myStructure,i,0_pInt,ext_msg = 'dilatational twin Schmid matrix')
enddo enddo
lattice_NslipSystem(1:lattice_maxNslipFamily,myStructure) = myNslipSystem ! number of slip systems in each family lattice_NslipSystem(1:lattice_maxNslipFamily,myStructure) = myNslipSystem ! number of slip systems in each family
lattice_NtwinSystem(1:lattice_maxNtwinFamily,myStructure) = myNtwinSystem ! number of twin systems in each family lattice_NtwinSystem(1:lattice_maxNtwinFamily,myStructure) = myNtwinSystem ! number of twin systems in each family
lattice_interactionSlipSlip(1:myNslip,1:myNslip,myStructure) = interactionSlipSlip(1:myNslip,1:myNslip) lattice_interactionSlipSlip(1:myNslip,1:myNslip,myStructure) = interactionSlipSlip(1:myNslip,1:myNslip)
lattice_interactionSlipTwin(1:myNslip,1:myNtwin,myStructure) = interactionSlipTwin(1:myNslip,1:myNtwin) lattice_interactionSlipTwin(1:myNslip,1:myNtwin,myStructure) = interactionSlipTwin(1:myNslip,1:myNtwin)
lattice_interactionTwinSlip(1:myNtwin,1:myNslip,myStructure) = interactionTwinSlip(1:myNtwin,1:myNslip) lattice_interactionTwinSlip(1:myNtwin,1:myNslip,myStructure) = interactionTwinSlip(1:myNtwin,1:myNslip)
lattice_interactionTwinTwin(1:myNtwin,1:myNtwin,myStructure) = interactionTwinTwin(1:myNtwin,1:myNtwin) lattice_interactionTwinTwin(1:myNtwin,1:myNtwin,myStructure) = interactionTwinTwin(1:myNtwin,1:myNtwin)
endif endif
lattice_initializeStructure = myStructure ! report my structure index back lattice_initializeStructure = myStructure ! report my structure index back
end function lattice_initializeStructure end function lattice_initializeStructure
!--------------------------------------------------------------------------------------------------
!> @brief Maps structure to symmetry type
!> @details fcc(1) and bcc(2) are cubic(1) hex(3+) is hexagonal(2)
!--------------------------------------------------------------------------------------------------
integer(pInt) pure function lattice_symmetryType(structName)
implicit none
character(len=32), intent(in) :: structName
select case(structName(1:3))
case ('fcc','bcc')
lattice_symmetryType = 1_pInt
case ('hex')
lattice_symmetryType = 2_pInt
case default
lattice_symmetryType = 0_pInt
end select
return
end function lattice_symmetryType
!--------------------------------------------------------------------------------------------------
!> @brief Symmetrizes stiffness matrix according to lattice type
!--------------------------------------------------------------------------------------------------
pure function lattice_symmetrizeC66(structName,C66)
implicit none
character(len=32), intent(in) :: structName
real(pReal), dimension(6,6), intent(in) :: C66
real(pReal), dimension(6,6) :: lattice_symmetrizeC66
integer(pInt) :: j,k
lattice_symmetrizeC66 = 0.0_pReal
select case(structName(1:3))
case ('iso')
forall(k=1_pInt:3_pInt)
forall(j=1_pInt:3_pInt) lattice_symmetrizeC66(k,j) = C66(1,2)
lattice_symmetrizeC66(k,k) = C66(1,1)
lattice_symmetrizeC66(k+3,k+3) = 0.5_pReal*(C66(1,1)-C66(1,2))
end forall
case ('fcc','bcc')
forall(k=1_pInt:3_pInt)
forall(j=1_pInt:3_pInt) lattice_symmetrizeC66(k,j) = C66(1,2)
lattice_symmetrizeC66(k,k) = C66(1,1)
lattice_symmetrizeC66(k+3_pInt,k+3_pInt) = C66(4,4)
end forall
case ('hex')
lattice_symmetrizeC66(1,1) = C66(1,1)
lattice_symmetrizeC66(2,2) = C66(1,1)
lattice_symmetrizeC66(3,3) = C66(3,3)
lattice_symmetrizeC66(1,2) = C66(1,2)
lattice_symmetrizeC66(2,1) = C66(1,2)
lattice_symmetrizeC66(1,3) = C66(1,3)
lattice_symmetrizeC66(3,1) = C66(1,3)
lattice_symmetrizeC66(2,3) = C66(1,3)
lattice_symmetrizeC66(3,2) = C66(1,3)
lattice_symmetrizeC66(4,4) = C66(4,4)
lattice_symmetrizeC66(5,5) = C66(4,4)
lattice_symmetrizeC66(6,6) = 0.5_pReal*(C66(1,1)-C66(1,2))
case ('ort')
lattice_symmetrizeC66(1,1) = C66(1,1)
lattice_symmetrizeC66(2,2) = C66(2,2)
lattice_symmetrizeC66(3,3) = C66(3,3)
lattice_symmetrizeC66(1,2) = C66(1,2)
lattice_symmetrizeC66(2,1) = C66(1,2)
lattice_symmetrizeC66(1,3) = C66(1,3)
lattice_symmetrizeC66(3,1) = C66(1,3)
lattice_symmetrizeC66(2,3) = C66(2,3)
lattice_symmetrizeC66(3,2) = C66(2,3)
lattice_symmetrizeC66(4,4) = C66(4,4)
lattice_symmetrizeC66(5,5) = C66(5,5)
lattice_symmetrizeC66(6,6) = C66(6,6)
end select
end function lattice_symmetrizeC66
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief Number of parameters to expect in material.config section !> @brief Number of parameters to expect in material.config section
! NslipFamilies ! NslipFamilies
@ -1073,7 +1022,7 @@ function lattice_configNchunks(struct)
integer(pInt), dimension(6) :: lattice_configNchunks integer(pInt), dimension(6) :: lattice_configNchunks
character(len=*), intent(in) :: struct character(len=*), intent(in) :: struct
select case(struct(1:3)) ! check first three chars of structure name select case(struct(1:3)) ! check first three chars of structure name
case ('fcc') case ('fcc')
lattice_configNchunks(1) = count(lattice_fcc_NslipSystem > 0_pInt) lattice_configNchunks(1) = count(lattice_fcc_NslipSystem > 0_pInt)
lattice_configNchunks(2) = count(lattice_fcc_NtwinSystem > 0_pInt) lattice_configNchunks(2) = count(lattice_fcc_NtwinSystem > 0_pInt)