made some more scripts working again

This commit is contained in:
Martin Diehl 2015-08-31 21:22:44 +00:00
parent 8ff79e1eb0
commit 08f8746182
4 changed files with 102 additions and 83 deletions

View File

@ -81,7 +81,7 @@ for name in filenames:
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
if options.shape: table.labels_append('shapeMismatch({})'.format(options.defgrad)) if options.shape: table.labels_append('shapeMismatch({})'.format(options.defgrad))
if options.volume: table.labels_append('volMismatch({})'.format(options.defgrad)) if options.volume: table.labels_append('volMismatch({})'.format(options.defgrad))
table.head_write() #table.head_write()
# --------------- figure out size and grid --------------------------------------------------------- # --------------- figure out size and grid ---------------------------------------------------------
@ -96,24 +96,45 @@ for name in filenames:
N = grid.prod() N = grid.prod()
# ------------------------------------------ process deformation gradient -------------------------- # --------------- figure out columns to process ---------------------------------------------------
key = '1_%s'%options.defgrad
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
continue
else:
column = table.labels.index(key) # remember columns of requested data
F = table.data[:,colF:colF+9].transpose().reshape([3,3]+grid.tolist(),order='F') # ------------------------------------------ assemble header ---------------------------------------
Favg = damask.core.math.tensorAvg(F) if options.shape: table.labels_append(['shapeMismatch(%s)' %options.defgrad])
if options.volume: table.labels_append(['volMismatch(%s)'%options.defgrad])
table.head_write()
# ------------------------------------------ read deformation gradient field -----------------------
table.data_rewind()
F = np.zeros(N*9,'d').reshape([3,3]+list(grid))
idx = 0
while table.data_read():
(x,y,z) = damask.util.gridLocation(idx,grid) # figure out (x,y,z) position from line count
idx += 1
F[0:3,0:3,x,y,z] = np.array(map(float,table.data[column:column+9]),'d').reshape(3,3)
print 'hm'
Favg = damask.core.math.tensorAvg(F)
centres = damask.core.mesh.deformedCoordsFFT(size,F,Favg,[1.0,1.0,1.0]) centres = damask.core.mesh.deformedCoordsFFT(size,F,Favg,[1.0,1.0,1.0])
nodes = damask.core.mesh.nodesAroundCentres(size,Favg,centres) nodes = damask.core.mesh.nodesAroundCentres(size,Favg,centres)
if options.shape: shapeMismatch = damask.core.mesh.shapeMismatch( size,F,nodes,centres)
if options.volume: volumeMismatch = damask.core.mesh.volumeMismatch(size,F,nodes)
stack =[table.data] # ------------------------------------------ process data ------------------------------------------
if options.shape: stack.append(damask.core.mesh.shapeMismatch( size,F,nodes,centres).reshape([grid.prod(),1])) table.data_rewind()
if options.volume: stack.append(damask.core.mesh.volumeMismatch(size,F,nodes).reshape([grid.prod(),1])) idx = 0
outputAlive = True
for i in stack: while outputAlive and table.data_read(): # read next data line of ASCII table
print i.shape (x,y,z) = damask.util.gridLocation(idx,grid) # figure out (x,y,z) position from line count
idx += 1
# ------------------------------------------ output result ----------------------------------------- if options.shape: table.data_append( shapeMismatch[x,y,z])
if options.volume: table.data_append(volumeMismatch[x,y,z])
if len(stack) > 1: table.data = np.hstack(tuple(stack)) outputAlive = table.data_write()
table.data_writeArray()
# ------------------------------------------ output finalization ----------------------------------- # ------------------------------------------ output finalization -----------------------------------

View File

@ -94,21 +94,33 @@ for name in filenames:
# ------------------------------------------ assemble header --------------------------------------- # ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append(['{}_{}.{}'%(coord+1,options.defgrad,options.coords) for coord in xrange(3)]) # extend ASCII header with new labels for coord in xrange(3):
table.labels_append(['{}_{}.{}'.format(coord+1,options.defgrad,options.coords) ]) # extend ASCII header with new labels
table.head_write() table.head_write()
# ------------------------------------------ process deformation gradient -------------------------- # ------------------------------------------ read deformation gradient field -----------------------
table.data_rewind()
F = np.array([0.0 for i in xrange(N*9)]).reshape([3,3]+grid.tolist())
idx = 0
while table.data_read():
(x,y,z) = damask.util.gridLocation(idx,grid) # figure out (x,y,z) position from line count
idx += 1
F[0:3,0:3,x,y,z] = np.array(map(float,table.data[table.label_index(options.defgrad):\
table.label_index(options.defgrad)+9]),'d').reshape(3,3)
F = table.data[:,colF:colF+9].transpose().reshape([3,3]+list(options.dimension),order='F') # ------------------------------------------ calculate coordinates ---------------------------------
Favg = damask.core.math.tensorAvg(F) Favg = damask.core.math.tensorAvg(F)
centres = damask.core.mesh.deformedCoordsFFT(size,F,Favg,[1.0,1.0,1.0]) centroids = damask.core.mesh.deformedCoordsFFT(size,F,Favg)
stack = [table.data,centres] # ------------------------------------------ process data ------------------------------------------
table.data_rewind()
# ------------------------------------------ output result ----------------------------------------- idx = 0
outputAlive = True
if len(stack) > 1: table.data = np.hstack(tuple(stack)) while outputAlive and table.data_read(): # read next data line of ASCII table
table.data_writeArray() (x,y,z) = damask.util.gridLocation(idx,grid) # figure out (x,y,z) position from line count
idx += 1
table.data_append(list(centroids[:,x,y,z]))
outputAlive = table.data_write()
# ------------------------------------------ output finalization ----------------------------------- # ------------------------------------------ output finalization -----------------------------------

View File

@ -56,7 +56,7 @@ for name in filenames:
table = damask.ASCIItable(name = name, table = damask.ASCIItable(name = name,
buffered = False) buffered = False)
except: continue except: continue
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name else '')) table.croak(damask.util.emph(scriptName)+(': '+name if name else ''))
# ------------------------------------------ read header ------------------------------------------ # ------------------------------------------ read header ------------------------------------------

View File

@ -38,60 +38,51 @@ parser.set_defaults(size = (0.0,0.0,0.0))
options.packing = np.array(options.packing) options.packing = np.array(options.packing)
prefix = 'blowUp%ix%ix%i_'%(options.packing[0],options.packing[1],options.packing[2]) prefix = 'blowUp%ix%ix%i_'%(options.packing[0],options.packing[1],options.packing[2])
# ------------------------------------------ setup file handles ------------------------------------ # --- loop over input files -------------------------------------------------------------------------
files = []
if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
if os.path.exists(name): try:
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}) table = damask.ASCIItable(name = name,
outname = os.path.join(os.path.dirname(name),
prefix+ \
os.path.basename(name)) if name else name,
buffered = False)
except: continue
table.croak(damask.util.emph(scriptName)+(': '+name if name else ''))
#--- loop over input files ------------------------------------------------------------------------- # ------------------------------------------ read header ------------------------------------------
for file in files:
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n') table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords))
else: coordCol = table.label_index(options.coords)
# ------------------------------------------ assemble header --------------------------------------
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
# --------------- figure out size and grid --------------------------------------------------------- # --------------- figure out size and grid ---------------------------------------------------------
try:
elemCol = table.labels.index('elem')
locationCol = table.labels.index('1_%s'%options.coords) # columns containing location data
except ValueError:
try:
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data (legacy naming scheme)
except ValueError:
file['croak'].write('no coordinate (1_%s/%s.x) and/or elem data found...\n'%(options.coords,options.coords))
continue
if (any(options.grid)==0 or any(options.size)==0.0): table.data_readArray()
coords = [{},{},{}]
while table.data_read(): # read next data line of ASCII table coords = [{},{},{}]
for j in xrange(3): for i in xrange(len(table.data)):
coords[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z for j in xrange(3):
grid = np.array([len(coords[0]),\ coords[j][str(table.data[i,coordCol+j])] = True
len(coords[1]),\ grid = np.array(map(len,coords),'i')
len(coords[2]),],'i') # resolution is number of distinct coordinates found size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \
size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \ np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\
np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\ max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\
max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\ max(map(float,coords[2].keys()))-min(map(float,coords[2].keys())),\
max(map(float,coords[2].keys()))-min(map(float,coords[2].keys())),\ ],'d') # size from bounding box, corrected for cell-centeredness
],'d') # size from bounding box, corrected for cell-centeredness
origin = np.array([min(map(float,coords[0].keys())),\ size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 equal to smallest among other spacings
min(map(float,coords[1].keys())),\
min(map(float,coords[2].keys())),\
],'d') - 0.5 * size / grid
else:
grid = np.array(options.grid,'i')
size = np.array(options.size,'d')
origin = np.zeros(3,'d')
for i, res in enumerate(grid):
if res == 1:
options.packing[i] = 1
options.shift[i] = 0
mask = np.ones(3,dtype=bool)
mask[i]=0
size[i] = min(size[mask]/grid[mask]) # third spacing equal to smaller of other spacing
packing = np.array(options.packing,'i') packing = np.array(options.packing,'i')
outSize = grid*packing outSize = grid*packing
@ -113,22 +104,17 @@ for file in files:
d[1]:d[1]+packing[1], d[1]:d[1]+packing[1],
d[2]:d[2]+packing[2], d[2]:d[2]+packing[2],
: ] = np.tile(np.array(table.data_asFloat(),'d'),packing.tolist()+[1]) # tile to match blowUp voxel size : ] = np.tile(np.array(table.data_asFloat(),'d'),packing.tolist()+[1]) # tile to match blowUp voxel size
elementSize = size/grid/packing elementSize = size/grid/packing
elem = 1 elem = 1
for c in xrange(outSize[2]): for c in xrange(outSize[2]):
for b in xrange(outSize[1]): for b in xrange(outSize[1]):
for a in xrange(outSize[0]): for a in xrange(outSize[0]):
data[a,b,c,locationCol:locationCol+3] = [a+0.5,b+0.5,c+0.5]*elementSize data[a,b,c,coordCol:coordCol+3] = [a+0.5,b+0.5,c+0.5]*elementSize
data[a,b,c,elemCol] = elem data[a,b,c,table.label_index('elem')] = elem
table.data = data[a,b,c,:].tolist() table.data = data[a,b,c,:].tolist()
outputAlive = table.data_write() # output processed line outputAlive = table.data_write() # output processed line
elem += 1 elem += 1
# ------------------------------------------ output result ----------------------------------------- # ------------------------------------------ output finalization -----------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
table.input_close() # close input ASCII table table.close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table
os.rename(file['name']+'_tmp',\
os.path.join(os.path.dirname(file['name']),prefix+os.path.basename(file['name'])))