diff --git a/trunk/constitutive_dislo.f90 b/trunk/constitutive_dislo.f90 index bf16478fc..796975095 100644 --- a/trunk/constitutive_dislo.f90 +++ b/trunk/constitutive_dislo.f90 @@ -45,9 +45,7 @@ real(pReal), dimension(:) , allocatable :: material_C33 real(pReal), dimension(:) , allocatable :: material_C44 real(pReal), dimension(:) , allocatable :: material_Gmod real(pReal), dimension(:,:,:) , allocatable :: material_Cslip_66 -real(pReal), dimension(:,:,:,:,:) , allocatable :: material_Cslip_3333 real(preal), dimension(:,:,:,:) , allocatable :: material_Ctwin_66 -real(pReal), dimension(:,:,:,:,:,:), allocatable :: material_Ctwin_3333 !* Visco-plastic material parameters real(pReal), dimension(:) , allocatable :: material_rho0 real(pReal), dimension(:) , allocatable :: material_bg @@ -55,11 +53,16 @@ real(pReal), dimension(:) , allocatable :: material_Qedge real(pReal), dimension(:) , allocatable :: material_tau0 real(pReal), dimension(:) , allocatable :: material_GrainSize real(pReal), dimension(:) , allocatable :: material_StackSize +real(pReal), dimension(:) , allocatable :: material_twin_ref +real(pReal), dimension(:) , allocatable :: material_twin_res +real(pReal), dimension(:) , allocatable :: material_twin_sens real(pReal), dimension(:) , allocatable :: material_c1 real(pReal), dimension(:) , allocatable :: material_c2 real(pReal), dimension(:) , allocatable :: material_c3 real(pReal), dimension(:) , allocatable :: material_c4 real(pReal), dimension(:) , allocatable :: material_c5 +real(pReal), dimension(:) , allocatable :: material_c6 +real(pReal), dimension(:) , allocatable :: material_c7 real(pReal), dimension(:,:) , allocatable :: material_SlipIntCoeff !************************************ @@ -91,6 +94,21 @@ real(pReal), dimension(:,:,:) , allocatable :: constitutive_matVolFrac integer(pInt), dimension(:,:,:) , allocatable :: constitutive_texID real(pReal), dimension(:,:,:) , allocatable :: constitutive_texVolFrac +!************************************ +!* Kinetics variables * +!************************************ +real(pReal), dimension(:) , allocatable :: constitutive_tau_slip +real(pReal), dimension(:) , allocatable :: constitutive_tau_twin +real(pReal), dimension(:) , allocatable :: constitutive_gdot_slip +real(pReal), dimension(:) , allocatable :: constitutive_fdot_twin +real(pReal), dimension(:) , allocatable :: constitutive_dgdot_dtauslip +real(pReal), dimension(:) , allocatable :: constitutive_dfdot_dtautwin +real(pReal), dimension(:,:) , allocatable :: constitutive_dfdot_dtauslip +real(pReal), dimension(:) , allocatable :: constitutive_locks +real(pReal), dimension(:) , allocatable :: constitutive_grainboundaries +real(pReal), dimension(:) , allocatable :: constitutive_twinboundaries +real(pReal), dimension(:) , allocatable :: constitutive_recovery + !************************************ !* State variables * !************************************ @@ -106,6 +124,8 @@ real(pReal), dimension(:) , allocatable :: constitutive_rho_f real(pReal), dimension(:) , allocatable :: constitutive_rho_p real(pReal), dimension(:) , allocatable :: constitutive_g0_slip real(pReal), dimension(:) , allocatable :: constitutive_twin_volume +real(pReal), dimension(:) , allocatable :: constitutive_inv_intertwin_len +real(pReal), dimension(:) , allocatable :: constitutive_twin_mfp !************************************ !* Interaction matrices * @@ -118,7 +138,6 @@ real(pReal), dimension(:,:,:), allocatable :: constitutive_Pparallel !************************************ integer(pInt) constitutive_maxNresults integer(pInt), dimension(:,:,:), allocatable :: constitutive_Nresults -real(pReal), dimension(:,:,:,:), allocatable :: constitutive_results @@ -327,6 +346,12 @@ do while(.true.) material_GrainSize(section)=IO_floatValue(line,positions,2) case ('stack_size') material_StackSize(section)=IO_floatValue(line,positions,2) + case ('twin_reference') + material_twin_ref(section)=IO_floatValue(line,positions,2) + case ('twin_resistance') + material_twin_res(section)=IO_floatValue(line,positions,2) + case ('twin_sensitivity') + material_twin_sens(section)=IO_floatValue(line,positions,2) case ('c1') material_c1(section)=IO_floatValue(line,positions,2) case ('c2') @@ -337,6 +362,10 @@ do while(.true.) material_c4(section)=IO_floatValue(line,positions,2) case ('c5') material_c5(section)=IO_floatValue(line,positions,2) + case ('c6') + material_c5(section)=IO_floatValue(line,positions,2) + case ('c7') + material_c5(section)=IO_floatValue(line,positions,2) end select endif endif @@ -481,9 +510,7 @@ allocate(material_C33(material_maxN)) ; material allocate(material_C44(material_maxN)) ; material_C44=0.0_pReal allocate(material_Gmod(material_maxN)) ; material_Gmod=0.0_pReal allocate(material_Cslip_66(6,6,material_maxN)) ; material_Cslip_66=0.0_pReal -allocate(material_Cslip_3333(3,3,3,3,material_maxN)) ; material_Cslip_3333=0.0_pReal allocate(material_Ctwin_66(6,6,crystal_MaxMaxNtwinOfStructure,material_maxN)) ; material_Ctwin_66=0.0_pReal -allocate(material_Ctwin_3333(3,3,3,3,crystal_MaxMaxNtwinOfStructure,material_maxN)) ; material_Ctwin_3333=0.0_pReal allocate(material_rho0(material_maxN)) ; material_rho0=0.0_pReal allocate(material_SlipIntCoeff(crystal_MaxMaxNslipOfStructure,material_maxN)) ; material_SlipIntCoeff=0.0_pReal allocate(material_bg(material_maxN)) ; material_bg=0.0_pReal @@ -491,11 +518,16 @@ allocate(material_Qedge(material_maxN)) ; mat allocate(material_tau0(material_maxN)) ; material_tau0=0.0_pReal allocate(material_GrainSize(material_maxN)) ; material_GrainSize=0.0_pReal allocate(material_StackSize(material_maxN)) ; material_StackSize=0.0_pReal +allocate(material_twin_ref(material_maxN)) ; material_twin_ref=0.0_pReal +allocate(material_twin_res(material_maxN)) ; material_twin_res=0.0_pReal +allocate(material_twin_sens(material_maxN)) ; material_twin_sens=0.0_pReal allocate(material_c1(material_maxN)) ; material_c1=0.0_pReal allocate(material_c2(material_maxN)) ; material_c2=0.0_pReal allocate(material_c3(material_maxN)) ; material_c3=0.0_pReal allocate(material_c4(material_maxN)) ; material_c4=0.0_pReal allocate(material_c5(material_maxN)) ; material_c5=0.0_pReal +allocate(material_c6(material_maxN)) ; material_c5=0.0_pReal +allocate(material_c7(material_maxN)) ; material_c5=0.0_pReal allocate(texture_ODFfile(texture_maxN)) ; texture_ODFfile='' allocate(texture_Ngrains(texture_maxN)) ; texture_Ngrains=0_pInt allocate(texture_symmetry(texture_maxN)) ; texture_symmetry='' @@ -567,8 +599,7 @@ do i=1,material_maxN material_Cslip_66(5,5,i)=material_C44(i) material_Cslip_66(6,6,i)=0.5_pReal*(material_C11(i)-material_C12(i)) end select - material_Cslip_3333(:,:,:,:,i) = math_Voigt66to3333(material_Cslip_66(:,:,i)) - material_Cslip_66(:,:,i) = math_Mandel3333to66(material_Cslip_3333(:,:,:,:,i)) + material_Cslip_66(:,:,i) = math_Mandel3333to66(math_Voigt66to3333(material_Cslip_66(:,:,i))) enddo ! MISSING some consistency checks may be..? @@ -584,7 +615,7 @@ subroutine constitutive_Assignment() !********************************************************************* use prec, only: pReal,pInt use math, only: math_sampleGaussOri,math_sampleFiberOri,math_sampleRandomOri,math_symmetricEulers,math_EulerToR,& - math_Mandel3333to66 + math_Mandel3333to66,math_Mandel66to3333 use mesh, only: mesh_NcpElems,FE_Nips,FE_mapElemtype,mesh_maxNips,mesh_element use IO, only: IO_hybridIA use crystal, only: crystal_SlipIntType,crystal_sn,crystal_st,crystal_Qtwin @@ -599,6 +630,8 @@ integer(pInt), dimension(texture_maxN) :: Ncomponents,Nsym,multiplicity,ODFmap,s real(pReal), dimension(3,4*(1+texture_maxNGauss+texture_maxNfiber)) :: Euler real(pReal), dimension(4*(1+texture_maxNGauss+texture_maxNfiber)) :: texVolfrac real(pReal), dimension(texture_maxN) :: sumVolfrac +real(pReal), dimension(3,3,3,3) :: C_3333,Ctwin_3333 +real(pReal), dimension(3,3) :: Qtwin ! process textures o = 0_pInt ! ODF counter @@ -636,7 +669,10 @@ constitutive_maxNgrains = maxval(texture_Ngrains) material_maxNslip = maxval(material_Nslip) ! max of slip systems among materials present material_maxNtwin = maxval(material_Ntwin) ! max of twin systems among materials present constitutive_maxNstatevars = maxval(material_Nslip) + maxval(material_Ntwin) +! ----------------------------------------------------------------------------------------------------------------------- constitutive_maxNresults = 1_pInt +! ----------------------------------------------------------------------------------------------------------------------- + !* calc texture_totalNgrains allocate(texture_totalNgrains(texture_maxN)) ; texture_totalNgrains=0_pInt @@ -660,8 +696,6 @@ allocate(constitutive_MatVolFrac(constitutive_maxNgrains,mesh_maxNips,mesh_NcpEl allocate(constitutive_TexVolFrac(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_TexVolFrac=0.0_pReal allocate(constitutive_EulerAngles(3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_EulerAngles=0.0_pReal allocate(constitutive_Nresults(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_Nresults=0_pInt -allocate(constitutive_results(constitutive_maxNresults,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) -constitutive_results=0.0_pReal allocate(constitutive_Nstatevars(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_Nstatevars=0_pInt allocate(constitutive_state_old(constitutive_maxNstatevars,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) constitutive_state_old=0.0_pReal @@ -679,6 +713,19 @@ allocate(constitutive_jump_width(material_maxNslip)) ; constitutive_jump_ allocate(constitutive_activation_volume(material_maxNslip)) ; constitutive_activation_volume=0.0_pReal allocate(constitutive_g0_slip(material_maxNslip)) ; constitutive_g0_slip=0.0_pReal allocate(constitutive_twin_volume(material_maxNtwin)) ; constitutive_twin_volume=0.0_pReal +allocate(constitutive_inv_intertwin_len(material_maxNtwin)) ; constitutive_inv_intertwin_len=0.0_pReal +allocate(constitutive_twin_mfp(material_maxNtwin)) ; constitutive_twin_mfp=0.0_pReal +allocate(constitutive_tau_slip(material_maxNslip)) ; constitutive_tau_slip=0.0_pReal +allocate(constitutive_tau_twin(material_maxNtwin)) ; constitutive_tau_twin=0.0_pReal +allocate(constitutive_gdot_slip(material_maxNslip)) ; constitutive_gdot_slip=0.0_pReal +allocate(constitutive_fdot_twin(material_maxNtwin)) ; constitutive_fdot_twin=0.0_pReal +allocate(constitutive_dgdot_dtauslip(material_maxNslip)) ; constitutive_dgdot_dtauslip=0.0_pReal +allocate(constitutive_dfdot_dtautwin(material_maxNtwin)) ; constitutive_dfdot_dtautwin=0.0_pReal +allocate(constitutive_dfdot_dtauslip(material_maxNtwin,material_maxNslip)) ; constitutive_dfdot_dtauslip=0.0_pReal +allocate(constitutive_locks(material_maxNslip)) ; constitutive_locks=0.0_pReal +allocate(constitutive_grainboundaries(material_maxNslip)) ; constitutive_grainboundaries=0.0_pReal +allocate(constitutive_twinboundaries(material_maxNslip)) ; constitutive_twinboundaries=0.0_pReal +allocate(constitutive_recovery(material_maxNslip)) ; constitutive_locks=0.0_pReal !* Assignment of all grains in all IPs of all cp-elements do e=1,mesh_NcpElems @@ -723,7 +770,9 @@ do e=1,mesh_NcpElems constitutive_MatVolFrac(g,i,e) = 1.0_pReal ! singular material (so far) constitutive_TexVolFrac(g,i,e) = texVolfrac(s)/multiplicity(texID)/Nsym(texID) constitutive_Nstatevars(g,i,e) = material_Nslip(matID) ! number of state variables (i.e. tau_c of each slip system) - constitutive_Nresults(g,i,e) = 0 ! number of constitutive results +! ----------------------------------------------------------------------------------------------------------------------- + constitutive_Nresults(g,i,e) = 0 ! number of constitutive results output by constitutive_post_results +! ----------------------------------------------------------------------------------------------------------------------- constitutive_EulerAngles(:,g,i,e) = Euler(:,s) ! store initial orientation forall (l=1:constitutive_Nstatevars(g,i,e)) ! initialize state variables constitutive_state_old(l,g,i,e) = material_rho0(matID) @@ -737,21 +786,19 @@ enddo ! cp_element !* Construction of the rotated elasticity matrices for twinning do i=1,material_maxN + C_3333=math_Mandel66to3333(material_Cslip_66(:,:,i)) do j=1,material_Ntwin(i) + Qtwin=crystal_Qtwin(:,:,j,material_CrystalStructure(i)) do k=1,3 do l=1,3 do m=1,3 do n=1,3 - material_Ctwin_3333(k,l,m,n,j,i)=0.0_pReal + Ctwin_3333(k,l,m,n)=0.0_pReal do p=1,3 do q=1,3 do r=1,3 do s=1,3 - material_Ctwin_3333(k,l,m,n,j,i)=material_Ctwin_3333(k,l,m,n,j,i)+material_Cslip_3333(p,q,r,s,i)*& - crystal_Qtwin(k,p,j,material_CrystalStructure(i))*& - crystal_Qtwin(l,q,j,material_CrystalStructure(i))*& - crystal_Qtwin(m,r,j,material_CrystalStructure(i))*& - crystal_Qtwin(n,s,j,material_CrystalStructure(i)) + Ctwin_3333(k,l,m,n)=Ctwin_3333(k,l,m,n)+C_3333(p,q,r,s)*Qtwin(k,p)*Qtwin(l,q)*Qtwin(m,r)*Qtwin(n,s) enddo enddo enddo @@ -760,8 +807,8 @@ do i=1,material_maxN enddo enddo enddo - !* Mapping back to 66-formulation of the matices - material_Ctwin_66(:,:,j,i) = math_Mandel3333to66(material_Ctwin_3333(:,:,:,:,j,i)) + !* Mapping back to 66-format of the matrices + material_Ctwin_66(:,:,j,i) = math_Mandel3333to66(Ctwin_3333) enddo enddo @@ -801,19 +848,19 @@ implicit none !* Definition of variables integer(pInt) ipc,ip,el -integer(pInt) matID,i +integer(pInt) matID,i,startIdxTwin real(pReal), dimension(6,6) :: constitutive_homogenizedC real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: state !* Get the material-ID from the triplet(ipc,ip,el) matID = constitutive_matID(ipc,ip,el) +startIdxTwin = material_Nslip(matID) !* Homogenization scheme -constitutive_homogenizedC=(1-sum(state((material_Nslip(matID)+1):(material_Nslip(matID)+material_Ntwin(matID)))))*& - material_Cslip_66(:,:,constitutive_matID(ipc,ip,el)) +constitutive_homogenizedC=(1-sum(state((startIdxTwin+1):(startIdxTwin+material_Ntwin(matID)))))*& + material_Cslip_66(:,:,matID) do i=1,material_Ntwin(matID) - constitutive_homogenizedC=constitutive_homogenizedC+state((material_Nslip(matID)+i))*& - material_Ctwin_66(:,:,i,constitutive_matID(ipc,ip,el)) + constitutive_homogenizedC=constitutive_homogenizedC+state(startIdxTwin+i)*material_Ctwin_66(:,:,i,matID) enddo return @@ -837,14 +884,15 @@ implicit none !* Definition of variables integer(pInt) ipc,ip,el -integer(pInt) matID,i,j -real(pReal) Tp,inv_intertwin_length,twin_mfp +integer(pInt) matID,i,j,startIdxTwin +real(pReal) Tp,Ftwin real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: state !* Get the material-ID from the triplet(ipc,ip,el) matID = constitutive_matID(ipc,ip,el) +startIdxTwin = material_Nslip(matID) -!* Quantities derivated from state - slip +!* Quantities derived from state - slip constitutive_rho_f=matmul(constitutive_Pforest (1:material_Nslip(matID),1:material_Nslip(matID),matID),state) constitutive_rho_p=matmul(constitutive_Pparallel(1:material_Nslip(matID),1:material_Nslip(matID),matID),state) do i=1,material_Nslip(matID) @@ -860,17 +908,18 @@ do i=1,material_Nslip(matID) (Kb*Tp)) enddo -!* Quantities derivated from state - twin +!* Quantities derived from state - twin +Ftwin = sum(state((startIdxTwin+1):(startIdxTwin+material_Ntwin(matID)))) do i=1,material_Ntwin(matID) !* Inverse of the average distance between 2 twins of the same familly - inv_intertwin_length=0.0_pReal + constitutive_inv_intertwin_len(i)=0.0_pReal do j=1,material_Ntwin(matID) - inv_intertwin_length=inv_intertwin_length+(crystal_TwinIntType(i,j,material_CrystalStructure(matID))*& - state((material_Nslip(matID)+j)))/(2.0_pReal*material_StackSize(matID)*& - (1.0_pReal-(1-sum(state((material_Nslip(matID)+1):(material_Nslip(matID)+material_Ntwin(matID))))))) + constitutive_inv_intertwin_len(i)=constitutive_inv_intertwin_len(i)+& + (crystal_TwinIntType(i,j,material_CrystalStructure(matID))*state(startIdxTwin+j))/& + (2.0_pReal*material_StackSize(matID)*(1.0_pReal-Ftwin)) enddo - twin_mfp=(1.0_pReal)/((1.0_pReal/material_GrainSize(matID))+inv_intertwin_length) - constitutive_twin_volume(i)=(pi/6.0_pReal)*material_StackSize(matID)*twin_mfp**2.0_pReal + constitutive_twin_mfp(i)=(1.0_pReal)/((1.0_pReal/material_GrainSize(matID))+constitutive_inv_intertwin_len(i)) + constitutive_twin_volume(i)=(pi/6.0_pReal)*material_StackSize(matID)*constitutive_twin_mfp(i)**2.0_pReal enddo return @@ -893,44 +942,93 @@ subroutine constitutive_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,state,Tp,ipc,ip,el !* - dLp_dTstar : derivative of Lp (4th-order tensor) * !********************************************************************* use prec, only: pReal,pInt -use crystal, only: crystal_Sslip,crystal_Sslip_v +use crystal, only: crystal_Sslip,crystal_Sslip_v,crystal_Stwin,crystal_Stwin_v,crystal_TwinShear implicit none !* Definition of variables integer(pInt) ipc,ip,el -integer(pInt) matID,i,k,l,m,n -real(pReal) Tp +integer(pInt) matID,startIdxTwin,i,j,k,l,m,n +real(pReal) Tp,Ftwin real(pReal), dimension(6) :: Tstar_v -real(pReal), dimension(3,3) :: Lp +real(pReal), dimension(3,3) :: Lp,Sslip,Stwin real(pReal), dimension(3,3,3,3) :: dLp_dTstar -real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: state,gdot_slip,dgdot_dtauslip,tau_slip +real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: state !* Get the material-ID from the triplet(ipc,ip,el) matID = constitutive_matID(ipc,ip,el) +startIdxTwin = material_Nslip(matID) -!* Calculation of Lp +!* Recompute arrays from the microstructure (may be not needed) +call constitutive_Microstructure(state,Tp,ipc,ip,el) + +!* Calculation of Lp - slip +Ftwin = sum(state((startIdxTwin+1):(startIdxTwin+material_Ntwin(matID)))) Lp = 0.0_pReal do i=1,material_Nslip(matID) - tau_slip(i)=dot_product(Tstar_v,crystal_Sslip_v(:,i,material_CrystalStructure(matID))) - gdot_slip(i)=constitutive_g0_slip(i)*sinh((abs(tau_slip(i))*constitutive_activation_volume(i))/(Kb*Tp))*& - sign(1.0_pReal,tau_slip(i)) - Lp=Lp+gdot_slip(i)*crystal_Sslip(:,:,i,material_CrystalStructure(matID)) + constitutive_tau_slip(i)=dot_product(Tstar_v,crystal_Sslip_v(:,i,material_CrystalStructure(matID))) + constitutive_gdot_slip(i)=constitutive_g0_slip(i)*sinh((abs(constitutive_tau_slip(i))*& + constitutive_activation_volume(i))/(Kb*Tp))*sign(1.0_pReal,constitutive_tau_slip(i)) + constitutive_dgdot_dtauslip(i)=((constitutive_g0_slip(i)*constitutive_activation_volume(i))/(Kb*Tp))*& + cosh((abs(constitutive_tau_slip(i))*constitutive_activation_volume(i))/(Kb*Tp)) + Lp=Lp+(1.0_pReal-Ftwin)*constitutive_gdot_slip(i)*crystal_Sslip(:,:,i,material_CrystalStructure(matID)) +enddo + +!* Calculation of Lp - twin +do i=1,material_Ntwin(matID) + constitutive_tau_twin(i)=dot_product(Tstar_v,crystal_Stwin_v(:,i,material_CrystalStructure(matID))) + if (constitutive_tau_twin(i)>0.0_pReal) then + constitutive_fdot_twin(i)=(1.0_pReal-Ftwin)*constitutive_twin_volume(i)*& + ((material_twin_ref(matID)*sum(state(1:material_Nslip(matID)))**(1.5_pReal))/material_bg(matID))*& + sum(abs(constitutive_gdot_slip))*(constitutive_tau_twin(i)/material_twin_res(matID))**& + material_twin_sens(matID) + constitutive_dfdot_dtautwin(i)=(1.0_pReal-Ftwin)*constitutive_twin_volume(i)*& + ((material_twin_ref(matID)*sum(state(1:material_Nslip(matID)))**(1.5_pReal))/material_bg(matID))*& + sum(abs(constitutive_gdot_slip))*(material_twin_sens(matID)/material_twin_res(matID))*& + (constitutive_tau_twin(i)/material_twin_res(matID))**(material_twin_sens(matID)-1.0_pReal) + do j=1,material_Nslip(matID) + constitutive_dfdot_dtauslip(i,j)=(1.0_pReal-Ftwin)*constitutive_twin_volume(i)*& + ((material_twin_ref(matID)*sum(state(1:material_Nslip(matID)))**(1.5_pReal))/material_bg(matID))*& + abs(constitutive_dgdot_dtauslip(j))*(constitutive_tau_twin(i)/material_twin_res(matID))**& + material_twin_sens(matID) + enddo + else + constitutive_fdot_twin(i)=0.0_pReal + constitutive_dfdot_dtautwin(i)=0.0_pReal + do j=1,material_Nslip(matID) + constitutive_dfdot_dtauslip(i,j)=0.0_pReal + enddo + endif + Lp=Lp+state(material_Nslip(matID)+i)*crystal_TwinShear(material_CrystalStructure(matID))*constitutive_fdot_twin(i)*& + crystal_Stwin(:,:,i,material_CrystalStructure(matID)) enddo -!* Lp twin !* Calculation of the tangent of Lp dLp_dTstar=0.0_pReal do i=1,material_Nslip(matID) - dgdot_dtauslip(i)=((constitutive_g0_slip(i)*constitutive_activation_volume(i))/(Kb*Tp))*& - cosh((abs(tau_slip(i))*constitutive_activation_volume(i))/(Kb*Tp)) + Sslip = crystal_Sslip(:,:,i,material_CrystalStructure(matID)) forall (k=1:3,l=1:3,m=1:3,n=1:3) dLp_dTstar(k,l,m,n) = dLp_dTstar(k,l,m,n)+ & - dgdot_dtauslip(i)*crystal_Sslip(k,l,i,material_CrystalStructure(matID))* & - (crystal_Sslip(m,n,i,material_CrystalStructure(matID))+ & - crystal_Sslip(n,m,i,material_CrystalStructure(matID)))/2.0_pReal ! force m,n symmetry + (1-Ftwin)*constitutive_dgdot_dtauslip(i)*Sslip(k,l)*(Sslip(m,n)+Sslip(n,m))/2.0_pReal !force m,n symmetry endforall enddo +do i=1,material_Ntwin(matID) + Stwin = crystal_Stwin(:,:,i,material_CrystalStructure(matID)) + forall (k=1:3,l=1:3,m=1:3,n=1:3) + dLp_dTstar(k,l,m,n) = dLp_dTstar(k,l,m,n)+ & + state(material_Nslip(matID)+i)*crystal_TwinShear(material_CrystalStructure(matID))*& + constitutive_dfdot_dtautwin(i)*Stwin(k,l)*(Stwin(m,n)+Stwin(n,m))/2.0_pReal !force m,n symmetry + endforall + do j=1,material_Nslip(matID) + Sslip = crystal_Sslip(:,:,j,material_CrystalStructure(matID)) + forall (k=1:3,l=1:3,m=1:3,n=1:3) + dLp_dTstar(k,l,m,n) = dLp_dTstar(k,l,m,n)+ & + state(material_Nslip(matID)+i)*crystal_TwinShear(material_CrystalStructure(matID))*& + constitutive_dfdot_dtauslip(i,j)*Stwin(k,l)*(Sslip(m,n)+Sslip(n,m))/2.0_pReal !force m,n symmetry + endforall + enddo +enddo + return end subroutine @@ -957,21 +1055,27 @@ implicit none !* Definition of variables integer(pInt) ipc,ip,el integer(pInt) matID,i -real(pReal) Tp,tau_slip,gdot_slip,lock,recovery +real(pReal) Tp,tau_slip,gdot_slip real(pReal), dimension(6) :: Tstar_v real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: constitutive_dotState,state !* Get the material-ID from the triplet(ipc,ip,el) matID = constitutive_matID(ipc,ip,el) +!* Recompute arrays from the microstructure (may be not needed) +call constitutive_Microstructure(state,Tp,ipc,ip,el) + !* Hardening of each system do i=1,material_Nslip(matID) tau_slip = dot_product(Tstar_v,crystal_Sslip_v(:,i,material_CrystalStructure(matID))) gdot_slip = constitutive_g0_slip(i)*sinh((abs(tau_slip)*constitutive_activation_volume(i))/(Kb*Tp))*& sign(1.0_pReal,tau_slip) - lock=(material_c4(matID)*sqrt(constitutive_rho_f(i))*abs(gdot_slip))/material_bg(matID) - recovery=material_c5(matID)*state(i)*abs(gdot_slip) - constitutive_dotState(i)=lock-recovery + constitutive_locks(i)=(sqrt(constitutive_rho_f(i))*abs(gdot_slip))/(material_c4(matID)*material_bg(matID)) + constitutive_grainboundaries(i)=(abs(gdot_slip))/(material_c5(matID)*material_bg(matID)*material_GrainSize(matID)) + constitutive_twinboundaries(i)=(abs(gdot_slip)*constitutive_inv_intertwin_len(i))/(material_c6(matID)*material_bg(matID)) + constitutive_recovery(i)=material_c7(matID)*state(i)*abs(gdot_slip) + constitutive_dotState(i)=constitutive_locks(i)+constitutive_grainboundaries(i)+constitutive_twinboundaries(i)-& + constitutive_recovery(i) enddo return @@ -989,6 +1093,7 @@ function constitutive_post_results(Tstar_v,state,dt,Tp,ipc,ip,el) !* - ipc : component-ID of current integration point * !* - ip : current integration point * !* - el : current element * +!* constitutive_Nresults has to be set accordingly in _Assignment * !********************************************************************* use prec, only: pReal,pInt use crystal, only: crystal_Sslip_v diff --git a/trunk/constitutive_pheno.f90 b/trunk/constitutive_pheno.f90 index 90ddb66e3..e33d5bf4a 100644 --- a/trunk/constitutive_pheno.f90 +++ b/trunk/constitutive_pheno.f90 @@ -525,6 +525,7 @@ do i=1,material_maxN material_Cslip_66(6,6,i)=0.5_pReal*(material_C11(i)-material_C12(i)) end select material_Cslip_66(:,:,i) = math_Mandel3333to66(math_Voigt66to3333(material_Cslip_66(:,:,i))) + ! Check enddo @@ -766,7 +767,8 @@ real(pReal) Temperature real(pReal), dimension(6) :: Tstar_v real(pReal), dimension(3,3) :: Lp real(pReal), dimension(3,3,3,3) :: dLp_dTstar -real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: state,gdot_slip,dgdot_dtauslip,tau_slip +real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: state +real(pReal), dimension(material_Nslip(constitutive_matID(ipc,ip,el))) :: gdot_slip,dgdot_dtauslip,tau_slip !* Get the material-ID from the triplet(ipc,ip,el) matID = constitutive_matID(ipc,ip,el) diff --git a/trunk/crystal.f90 b/trunk/crystal.f90 index 640158644..992372724 100644 --- a/trunk/crystal.f90 +++ b/trunk/crystal.f90 @@ -44,10 +44,14 @@ real(pReal), dimension(3,crystal_MaxMaxNtwinOfStructure,crystal_MaxCrystalStruct real(pReal), dimension(3,crystal_MaxMaxNtwinOfStructure,crystal_MaxCrystalStructure) :: crystal_td real(pReal), dimension(3,crystal_MaxMaxNtwinOfStructure,crystal_MaxCrystalStructure) :: crystal_tt real(pReal), dimension(3,3,crystal_MaxMaxNtwinOfStructure,crystal_MaxCrystalStructure) :: crystal_Qtwin - +real(pReal), dimension(crystal_MaxCrystalStructure), parameter :: crystal_TwinShear = & +reshape((/0.7071067812,0.7071067812,0.7071067812/),(/crystal_MaxCrystalStructure/)) ! Depends surely on c/a ratio for HCP !* Slip_slip interaction matrices integer(pInt), dimension(crystal_MaxMaxNslipOfStructure,crystal_MaxMaxNslipOfStructure,crystal_MaxCrystalStructure) :: & crystal_SlipIntType +!* Twin-twin interaction matrices +integer(pInt), dimension(crystal_MaxMaxNtwinOfStructure,crystal_MaxMaxNtwinOfStructure,crystal_MaxCrystalStructure) :: & +crystal_TwinIntType !*** Slip systems for FCC structures (1) *** !* System {111}<110> Sort according Eisenlohr&Hantcherli @@ -93,6 +97,20 @@ data crystal_SlipIntType(10,1:crystal_MaxNslipOfStructure(1),1)/4,5,6,3,5,5,4,6, data crystal_SlipIntType(11,1:crystal_MaxNslipOfStructure(1),1)/5,3,5,5,4,6,6,4,5,2,1,2/ data crystal_SlipIntType(12,1:crystal_MaxNslipOfStructure(1),1)/6,5,4,5,6,4,5,5,3,2,2,1/ +!*** Twin-Twin interactions for FCC structures (1) *** +data crystal_TwinIntType( 1,1:crystal_MaxNtwinOfStructure(1),1)/0,0,0,1,1,1,1,1,1,1,1,1/ +data crystal_TwinIntType( 2,1:crystal_MaxNtwinOfStructure(1),1)/0,0,0,1,1,1,1,1,1,1,1,1/ +data crystal_TwinIntType( 3,1:crystal_MaxNtwinOfStructure(1),1)/0,0,0,1,1,1,1,1,1,1,1,1/ +data crystal_TwinIntType( 4,1:crystal_MaxNtwinOfStructure(1),1)/1,1,1,0,0,0,1,1,1,1,1,1/ +data crystal_TwinIntType( 5,1:crystal_MaxNtwinOfStructure(1),1)/1,1,1,0,0,0,1,1,1,1,1,1/ +data crystal_TwinIntType( 6,1:crystal_MaxNtwinOfStructure(1),1)/1,1,1,0,0,0,1,1,1,1,1,1/ +data crystal_TwinIntType( 7,1:crystal_MaxNtwinOfStructure(1),1)/1,1,1,1,1,1,0,0,0,1,1,1/ +data crystal_TwinIntType( 8,1:crystal_MaxNtwinOfStructure(1),1)/1,1,1,1,1,1,0,0,0,1,1,1/ +data crystal_TwinIntType( 9,1:crystal_MaxNtwinOfStructure(1),1)/1,1,1,1,1,1,0,0,0,1,1,1/ +data crystal_TwinIntType(10,1:crystal_MaxNtwinOfStructure(1),1)/1,1,1,1,1,1,1,1,1,0,0,0/ +data crystal_TwinIntType(11,1:crystal_MaxNtwinOfStructure(1),1)/1,1,1,1,1,1,1,1,1,0,0,0/ +data crystal_TwinIntType(12,1:crystal_MaxNtwinOfStructure(1),1)/1,1,1,1,1,1,1,1,1,0,0,0/ + !*** Slip systems for BCC structures (2) *** !* System {110}<111> !* Sort? @@ -152,7 +170,7 @@ data crystal_sd(:,48,2)/ 1,-1, 1/ ; data crystal_sn(:,48,2)/ 3, 2,-1/ !*** Twin systems for BCC structures (2) *** !* System {112}<111> !* Sort? -!* MISSING +!* MISSING: not implemented yet !*** Slip-Slip interactions for BCC structures (2) *** data crystal_SlipIntType( 1,:,2)/1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/ @@ -204,6 +222,9 @@ data crystal_SlipIntType(46,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 data crystal_SlipIntType(47,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2/ data crystal_SlipIntType(48,:,2)/2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1/ +!*** Twin-twin interactions for BCC structures (2) *** +! MISSING: not implemented yet + !*** Slip systems for HCP structures (3) *** !* Basal systems {0001}<1120> (independent of c/a-ratio) !* 1- (0 0 0 1)[-2 1 1 0] @@ -241,10 +262,10 @@ data crystal_sd(:,10,3)/-1, 0, 0/ ; data crystal_sn(:,10,3)/ 1, 0, 1/ data crystal_sd(:,11,3)/ 0,-1, 0/ ; data crystal_sn(:,11,3)/-1, 1, 1/ data crystal_sd(:,12,3)/ 1, 1, 0/ ; data crystal_sn(:,12,3)/ 1,-1, 1/ -!*** Twin systems for HCP structures (2) *** +!*** Twin systems for HCP structures (3) *** !* System {1012}<1011> !* Sort? -!* MISSING +!* MISSING: not implemented yet !*** Slip-Slip interactions for HCP structures (3) *** data crystal_SlipIntType( 1,1:crystal_MaxNslipOfStructure(3),3)/1,2,2,2,2,2,2,2,2,2,2,2/ @@ -260,6 +281,9 @@ data crystal_SlipIntType(10,1:crystal_MaxNslipOfStructure(3),3)/2,2,2,2,2,2,2,2, data crystal_SlipIntType(11,1:crystal_MaxNslipOfStructure(3),3)/2,2,2,2,2,2,2,2,2,2,1,2/ data crystal_SlipIntType(12,1:crystal_MaxNslipOfStructure(3),3)/2,2,2,2,2,2,2,2,2,2,2,1/ +!*** Twin-twin interactions for HCP structures (3) *** +! MISSING: not implemented yet + CONTAINS !**************************************** @@ -281,7 +305,7 @@ subroutine crystal_SchmidMatrices() !* Calculation of Schmid matrices * !************************************** use prec, only: pReal,pInt -use math, only: math_identity2nd +use math, only: math_I3 implicit none !* Definition of variables @@ -315,13 +339,13 @@ do l=1,crystal_MaxCrystalStructure enddo !* Iteration over the twin systems - do k=1,crystal_MaxNslipOfStructure(l) + do k=1,crystal_MaxNtwinOfStructure(l) !* Definition of transverse direction tt for the frame (td,tt,tn) crystal_tt(1,k,l)=crystal_tn(2,k,l)*crystal_td(3,k,l)-crystal_tn(3,k,l)*crystal_td(2,k,l) crystal_tt(2,k,l)=crystal_tn(3,k,l)*crystal_td(1,k,l)-crystal_tn(1,k,l)*crystal_td(3,k,l) crystal_tt(3,k,l)=crystal_tn(1,k,l)*crystal_td(2,k,l)-crystal_tn(2,k,l)*crystal_td(1,k,l) !* Defintion of Schmid matrix and transformation matrices - crystal_Qtwin(:,:,k,l)=-math_identity2nd(3) + crystal_Qtwin(:,:,k,l)=-math_I3 forall (i=1:3,j=1:3) crystal_Stwin(i,j,k,l)=crystal_td(i,k,l)*crystal_tn(j,k,l) crystal_Qtwin(i,j,k,l)=crystal_Qtwin(i,j,k,l)+2*crystal_tn(i,k,l)*crystal_tn(j,k,l) diff --git a/trunk/mattex.mpie b/trunk/mattex.mpie index 4caa6fa7a..d16c6d8a5 100644 --- a/trunk/mattex.mpie +++ b/trunk/mattex.mpie @@ -36,14 +36,26 @@ c2 2.0 # Activation volume adjustment c3 0.4 # Dislocation storage adjustment -c4 0.05 +c4 20.0 +# Grain boundaries storage adjustment +c5 1.0e100 +# Twin boundaries storage adjustment +c6 1.0e100 # Athermal annihilation adjustment -c5 10.0 +c7 10.0 # Dislocation interaction coefficients interaction_coefficients 1.0 2.2 3.0 1.6 3.8 4.5 -# Twin parameters: grain size, average size of stacks of twins [m] +# Twin parameters +# grain size, average size of stacks of twins [m] grain_size 1.5e-5 -stack_size 5.0e-8 +stack_size 5.0e-8 +# stacking fault energy +stacking_fault_energy 2.0e-2 +# Twin reference [?], twin resistance [Pa], twin sensitivity +twin_ref 1.0e-15 +twin_res 150.0e6 +twin_sens 10.0 + [cube SX]