avoiding numerical errors (if quaternion norm is > 1.)
use consistently "self" instead of "this" function for misorientation
This commit is contained in:
parent
878331e5e9
commit
08009079ff
|
@ -65,17 +65,9 @@ module rotations
|
|||
!------------------------------------------
|
||||
procedure, public :: rotVector
|
||||
procedure, public :: rotTensor
|
||||
procedure, public :: misorientation
|
||||
end type rotation
|
||||
public :: &
|
||||
asQuaternion, &
|
||||
asEulerAngles, &
|
||||
asAxisAnglePair, &
|
||||
asRotationMatrix, &
|
||||
asRodriguesFrankVector, &
|
||||
asHomochoric, &
|
||||
fromRotationMatrix, &
|
||||
rotVector, &
|
||||
rotTensor
|
||||
|
||||
|
||||
contains
|
||||
|
||||
|
@ -83,76 +75,76 @@ contains
|
|||
!---------------------------------------------------------------------------------------------------
|
||||
! Return rotation in different represenations
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
function asQuaternion(this)
|
||||
function asQuaternion(self)
|
||||
|
||||
implicit none
|
||||
class(rotation), intent(in) :: this
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), dimension(4) :: asQuaternion
|
||||
|
||||
asQuaternion = [this%q%w, this%q%x, this%q%y, this%q%z]
|
||||
asQuaternion = [self%q%w, self%q%x, self%q%y, self%q%z]
|
||||
|
||||
end function asQuaternion
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
function asEulerAngles(this)
|
||||
function asEulerAngles(self)
|
||||
|
||||
implicit none
|
||||
class(rotation), intent(in) :: this
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), dimension(3) :: asEulerAngles
|
||||
|
||||
asEulerAngles = qu2eu(this%q)
|
||||
asEulerAngles = qu2eu(self%q)
|
||||
|
||||
end function asEulerAngles
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
function asAxisAnglePair(this)
|
||||
function asAxisAnglePair(self)
|
||||
|
||||
implicit none
|
||||
class(rotation), intent(in) :: this
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), dimension(4) :: asAxisAnglePair
|
||||
|
||||
asAxisAnglePair = qu2ax(this%q)
|
||||
asAxisAnglePair = qu2ax(self%q)
|
||||
|
||||
end function asAxisAnglePair
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
function asRotationMatrix(this)
|
||||
function asRotationMatrix(self)
|
||||
|
||||
implicit none
|
||||
class(rotation), intent(in) :: this
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), dimension(3,3) :: asRotationMatrix
|
||||
|
||||
asRotationMatrix = qu2om(this%q)
|
||||
asRotationMatrix = qu2om(self%q)
|
||||
|
||||
end function asRotationMatrix
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
function asRodriguesFrankVector(this)
|
||||
function asRodriguesFrankVector(self)
|
||||
|
||||
implicit none
|
||||
class(rotation), intent(in) :: this
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), dimension(4) :: asRodriguesFrankVector
|
||||
|
||||
asRodriguesFrankVector = qu2ro(this%q)
|
||||
asRodriguesFrankVector = qu2ro(self%q)
|
||||
|
||||
end function asRodriguesFrankVector
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
function asHomochoric(this)
|
||||
function asHomochoric(self)
|
||||
|
||||
implicit none
|
||||
class(rotation), intent(in) :: this
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), dimension(3) :: asHomochoric
|
||||
|
||||
asHomochoric = qu2ho(this%q)
|
||||
asHomochoric = qu2ho(self%q)
|
||||
|
||||
end function asHomochoric
|
||||
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
! Initialize rotation from different representations
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
subroutine fromRotationMatrix(this,om)
|
||||
subroutine fromRotationMatrix(self,om)
|
||||
|
||||
implicit none
|
||||
class(rotation), intent(out) :: this
|
||||
class(rotation), intent(out) :: self
|
||||
real(pReal), dimension(3,3), intent(in) :: om
|
||||
|
||||
this%q = om2qu(om)
|
||||
self%q = om2qu(om)
|
||||
|
||||
end subroutine
|
||||
|
||||
|
@ -162,13 +154,13 @@ end subroutine
|
|||
!> @brief rotate a vector passively (default) or actively
|
||||
!> @details: rotation is based on unit quaternion or rotation matrix (fallback)
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
function rotVector(this,v,active)
|
||||
function rotVector(self,v,active)
|
||||
use prec, only: &
|
||||
dEq
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(3) :: rotVector
|
||||
class(rotation), intent(in) :: this
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), intent(in), dimension(3) :: v
|
||||
logical, intent(in), optional :: active
|
||||
|
||||
|
@ -176,16 +168,16 @@ function rotVector(this,v,active)
|
|||
|
||||
if (dEq(norm2(v),1.0_pReal,tol=1.0e-15_pReal)) then
|
||||
passive: if (merge(.not. active, .true., present(active))) then ! ToDo: not save (PGI)
|
||||
q = this%q * (quaternion([0.0_pReal, v(1), v(2), v(3)]) * conjg(this%q) )
|
||||
q = self%q * (quaternion([0.0_pReal, v(1), v(2), v(3)]) * conjg(self%q) )
|
||||
else passive
|
||||
q = conjg(this%q) * (quaternion([0.0_pReal, v(1), v(2), v(3)]) * this%q )
|
||||
q = conjg(self%q) * (quaternion([0.0_pReal, v(1), v(2), v(3)]) * self%q )
|
||||
endif passive
|
||||
rotVector = [q%x,q%y,q%z]
|
||||
else
|
||||
passive2: if (merge(.not. active, .true., present(active))) then ! ToDo: not save (PGI)
|
||||
rotVector = matmul(this%asRotationMatrix(),v)
|
||||
rotVector = matmul(self%asRotationMatrix(),v)
|
||||
else passive2
|
||||
rotVector = matmul(transpose(this%asRotationMatrix()),v)
|
||||
rotVector = matmul(transpose(self%asRotationMatrix()),v)
|
||||
endif passive2
|
||||
endif
|
||||
|
||||
|
@ -197,24 +189,37 @@ end function rotVector
|
|||
!> @brief rotate a second rank tensor passively (default) or actively
|
||||
!> @details: rotation is based on rotation matrix
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
function rotTensor(this,m,active)
|
||||
function rotTensor(self,m,active)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(3,3) :: rotTensor
|
||||
class(rotation), intent(in) :: this
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), intent(in), dimension(3,3) :: m
|
||||
logical, intent(in), optional :: active
|
||||
|
||||
|
||||
passive: if (merge(.not. active, .true., present(active))) then
|
||||
rotTensor = matmul(matmul(this%asRotationMatrix(),m),transpose(this%asRotationMatrix()))
|
||||
rotTensor = matmul(matmul(self%asRotationMatrix(),m),transpose(self%asRotationMatrix()))
|
||||
else passive
|
||||
rotTensor = matmul(matmul(transpose(this%asRotationMatrix()),m),this%asRotationMatrix())
|
||||
rotTensor = matmul(matmul(transpose(self%asRotationMatrix()),m),self%asRotationMatrix())
|
||||
endif passive
|
||||
|
||||
end function rotTensor
|
||||
|
||||
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
!> @brief misorientation
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
function misorientation(self,other)
|
||||
|
||||
implicit none
|
||||
type(rotation) :: misorientation
|
||||
class(rotation), intent(in) :: self, other
|
||||
|
||||
misorientation%q = conjg(self%q) * other%q !ToDo: this is the convention used in math
|
||||
|
||||
end function misorientation
|
||||
|
||||
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
! The following routines convert between different representations
|
||||
|
@ -760,7 +765,8 @@ pure function qu2ax(qu) result(ax)
|
|||
dEq0, &
|
||||
dNeq0
|
||||
use math, only: &
|
||||
PI
|
||||
PI, &
|
||||
math_clip
|
||||
|
||||
implicit none
|
||||
type(quaternion), intent(in) :: qu
|
||||
|
@ -768,7 +774,7 @@ pure function qu2ax(qu) result(ax)
|
|||
|
||||
real(pReal) :: omega, s
|
||||
|
||||
omega = 2.0 * acos(qu%w)
|
||||
omega = 2.0 * acos(math_clip(qu%w,0.0_pReal,1.0_pReal))
|
||||
! if the angle equals zero, then we return the rotation axis as [001]
|
||||
if (dEq0(omega)) then
|
||||
ax = [ 0.0, 0.0, 1.0, 0.0 ]
|
||||
|
@ -818,6 +824,8 @@ end function qu2ro
|
|||
pure function qu2ho(qu) result(ho)
|
||||
use prec, only: &
|
||||
dEq0
|
||||
use math, only: &
|
||||
math_clip
|
||||
|
||||
implicit none
|
||||
type(quaternion), intent(in) :: qu
|
||||
|
@ -825,7 +833,7 @@ pure function qu2ho(qu) result(ho)
|
|||
|
||||
real(pReal) :: omega, f
|
||||
|
||||
omega = 2.0 * acos(qu%w)
|
||||
omega = 2.0 * acos(math_clip(qu%w,0.0_pReal,1.0_pReal))
|
||||
|
||||
if (dEq0(omega)) then
|
||||
ho = [ 0.0, 0.0, 0.0 ]
|
||||
|
|
Loading…
Reference in New Issue