diff --git a/processing/post/addStrainTensors.py b/processing/post/addStrainTensors.py index 2d62c31ae..5022c1d34 100755 --- a/processing/post/addStrainTensors.py +++ b/processing/post/addStrainTensors.py @@ -13,7 +13,7 @@ scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptID = ' '.join([scriptName,damask.version]) def operator(stretch,strain,eigenvalues): - """Albrecht Bertram: Elasticity and Plasticity of Large Deformations An Introduction (3rd Edition, 2012), p. 102""" + """Albrecht Bertram: Elasticity and Plasticity of Large Deformations An Introduction (3rd Edition, 2012), p. 102.""" return { 'V#ln': np.log(eigenvalues) , 'U#ln': np.log(eigenvalues) , @@ -88,7 +88,7 @@ for name in filenames: try: table = damask.ASCIItable(name = name, buffered = False) - except: continue + except IOError: continue damask.util.report(scriptName,name) # ------------------------------------------ read header ------------------------------------------ @@ -136,23 +136,19 @@ for name in filenames: for column in items['tensor']['column']: # loop over all requested defgrads F = np.array(list(map(float,table.data[column:column+items['tensor']['dim']])),'d').reshape(items['tensor']['shape']) (U,S,Vh) = np.linalg.svd(F) # singular value decomposition - R = np.dot(U,Vh) # rotation of polar decomposition - stretch['U'] = np.dot(np.linalg.inv(R),F) # F = RU - stretch['V'] = np.dot(F,np.linalg.inv(R)) # F = VR + R_inv = np.dot(U,Vh).T # rotation of polar decomposition + stretch['U'] = np.dot(R_inv,F) # F = RU + stretch['V'] = np.dot(F,R_inv) # F = VR for theStretch in stretches: stretch[theStretch] = np.where(abs(stretch[theStretch]) < 1e-12, 0, stretch[theStretch]) # kill nasty noisy data - (D,V) = np.linalg.eig(stretch[theStretch]) # eigen decomposition (of symmetric matrix) + (D,V) = np.linalg.eigh((stretch[theStretch]+stretch[theStretch].T)*0.5) # eigen decomposition (of symmetric(ed) matrix) neg = np.where(D < 0.0) # find negative eigenvalues ... D[neg] *= -1. # ... flip value ... V[:,neg] *= -1. # ... and vector - for i,eigval in enumerate(D): - if np.dot(V[:,i],V[:,(i+1)%3]) != 0.0: # check each vector for orthogonality - V[:,(i+1)%3] = np.cross(V[:,(i+2)%3],V[:,i]) # correct next vector - V[:,(i+1)%3] /= np.sqrt(np.dot(V[:,(i+1)%3],V[:,(i+1)%3].conj())) # and renormalize (hyperphobic?) for theStrain in strains: d = operator(theStretch,theStrain,D) # operate on eigenvalues of U or V - eps = (np.dot(V,np.dot(np.diag(d),V.T)).real).reshape(9) # build tensor back from eigenvalue/vector basis + eps = np.dot(V,np.dot(np.diag(d),V.T)).reshape(9) # build tensor back from eigenvalue/vector basis table.data_append(list(eps))