changed interfacing to marc due to Mandel notation
set relative convergence limits
This commit is contained in:
parent
2be98a39ac
commit
05db614589
|
@ -1,4 +1,4 @@
|
|||
! last modified 26.03.07
|
||||
! last modified 28.03.07
|
||||
! ---------------------------
|
||||
MODULE CPFEM
|
||||
! ---------------------------
|
||||
|
@ -399,7 +399,7 @@
|
|||
!********************************************************************
|
||||
use prec, only: pReal,pInt
|
||||
use constitutive, only: constitutive_Nstatevars
|
||||
use math, only: math_6to33
|
||||
use math, only: math_Mandel6to33
|
||||
implicit none
|
||||
!
|
||||
! *** Definition of variables ***
|
||||
|
@ -447,7 +447,7 @@
|
|||
dev=0
|
||||
if(ic<=3) dev(ic) = pert_ct
|
||||
if(ic>3) dev(ic) = pert_ct/2
|
||||
dF=matmul(math_6to33(dev),Fg_old)
|
||||
dF=matmul(math_Mandel6to33(dev),Fg_old)
|
||||
Fg2=Fg_new+dF
|
||||
sgm2=Tstar_v
|
||||
state2=state_new
|
||||
|
@ -493,17 +493,18 @@
|
|||
real(pReal) state_old(constitutive_Nstatevars(iori, CPFEM_in, cp_en)), state_new(constitutive_Nstatevars(iori, CPFEM_in, cp_en))
|
||||
real(pReal) Tstar_v(6), cs(6)
|
||||
! *** Local variables ***
|
||||
real(pReal) crite, tol_in, tol_out, invFp_old(3,3), det, A(3,3), C_66(6,6), Lp(3,3), dLp(3,3,6)
|
||||
real(pReal) I3tLp(3,3), help(3,3), help1(6), Tstar0_v(6), R1(6), norm1, tdLp(3,3)
|
||||
real(pReal) dstate(constitutive_Nstatevars(iori, CPFEM_in, cp_en)), R2(6), norm2, invFp_new(3,3), Estar(3,3)
|
||||
real(pReal) Estar_v(6), Jacobi(6,6), invJacobi(6,6), dTstar_v(6)
|
||||
integer(pInt) iouter, iinner , dummy, err, i, j, k
|
||||
real(pReal) tol_in, tol_out, invFp_old(3,3), det, A(3,3), C_66(6,6), Lp(3,3), dLp(3,3,3,3)
|
||||
real(pReal) I3tLp(3,3), help(3,3), help1(3,3,3,3), Tstar0_v(6), R1(6), R1s(6), norm1, tdLp(3,3)
|
||||
real(pReal) dstate(constitutive_Nstatevars(iori, CPFEM_in, cp_en)), R2(constitutive_Nstatevars(iori, CPFEM_in, cp_en))
|
||||
real(pReal) R2s(constitutive_Nstatevars(iori, CPFEM_in, cp_en)), norm2, invFp_new(3,3), Estar(3,3)
|
||||
real(pReal) Estar_v(6), Jacobi(6,6), invJacobi(6,6), dTstar_v(6), help2(6,6)
|
||||
integer(pInt) iouter, iinner , dummy, err, i, j, k, l, m
|
||||
! *** Numerical parameters ***
|
||||
integer(pInt), parameter :: nouter = 50_pInt
|
||||
real(pReal), parameter :: tol_outer = 1.0e-4_pReal
|
||||
integer(pInt), parameter :: ninner = 2000_pInt
|
||||
real(pReal), parameter :: tol_inner = 1.0e-3_pReal
|
||||
real(pReal), parameter :: eta = 13.7_pReal
|
||||
real(pReal), parameter :: crite = 0.3_pReal
|
||||
|
||||
! crite=eta*constitutive_s0_slip/constitutive_n_slip !ÄÄÄ
|
||||
!
|
||||
|
@ -528,6 +529,7 @@
|
|||
A = matmul(Fg_new,invFp_old)
|
||||
A = matmul(transpose(A), A)
|
||||
C_66=constitutive_HomogenizedC(iori, CPFEM_in, cp_en) !ÄÄÄ
|
||||
Tstar_v=matmul(C_66, math_Mandel33to6(A-math_I3))
|
||||
!
|
||||
! *** Second level of iterative procedure: Resistences ***
|
||||
do iouter=1,nouter
|
||||
|
@ -535,26 +537,24 @@
|
|||
do iinner=1,ninner
|
||||
!
|
||||
! *** Calculation of gdot_slip ***
|
||||
call constitutive_LpAndItsTangent(Lp, dLp, iori, CPFEM_in, cp_en)
|
||||
call constitutive_LpAndItsTangent(Tstar_v, iori, CPFEM_in, cp_en, Lp, dLp)
|
||||
I3tLp = math_I3-dt*Lp
|
||||
help=matmul(transpose(I3tLp),matmul(A, I3tLp))-math_I3
|
||||
Tstar0_v = 0.5_pReal * matmul(C_66, math_33to6(help))
|
||||
R1=Tstar_v-Tstar0_v
|
||||
norm1=maxval(abs(R1))
|
||||
if (norm1<tol_in) goto 100
|
||||
Tstar0_v = 0.5_pReal * matmul(C_66, math_Mandel33to6(help))
|
||||
R1=Tstar_v-Tstar0_v
|
||||
R1s=0
|
||||
forall(i=1:6, Tstar_v(i)/=0) R1s(i)=R1(i)/Tstar_v(i)
|
||||
norm1=maxval(abs(R1s))
|
||||
if (norm1<tol_inner) goto 100
|
||||
!
|
||||
! *** Jacobi Calculation ***
|
||||
help=matmul(A, I3tLp)
|
||||
! MISSING 1..6 outer loop, inner sum required
|
||||
help1=0
|
||||
do k=1,6
|
||||
do j=1,3
|
||||
do i=1,6
|
||||
help1(k)=help1(k)+dLp(j,i,k)*help(i,j)+dLp(i,j,k)*help(j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
! Jacobi= matmul(C_66, help1) + math_identity(6)
|
||||
forall(i=1:3, j=1:3, k=1:3, l=1:3,m=1:3)&
|
||||
help1(i,j,k,l)=help1(i,j,k,l)+help(i,m)*dLp(m,j,k,l)+help(j,m)*dLp(m,i,l,k)
|
||||
help2=math_Mandel3333to66(help1)
|
||||
Jacobi= 0.5_pReal*matmul(C_66, help2) + math_identity2nd(6)
|
||||
call math_invert6x6(Jacobi, invJacobi, dummy, err) !ÄÄÄ
|
||||
if (err==1_pInt) then
|
||||
forall (i=1:6) Jacobi(i,i)=1.05d0*maxval(Jacobi(i,:)) ! regularization
|
||||
|
@ -566,12 +566,13 @@
|
|||
endif
|
||||
dTstar_v=matmul(invJacobi,R1) ! correction to Tstar
|
||||
|
||||
! *** Correction (see Kalidindi) ***
|
||||
do i=1,6
|
||||
if (abs(dTstar_v(i))>crite) then
|
||||
dTstar_v(i)=sign(crite,dTstar_v(i))
|
||||
endif
|
||||
enddo
|
||||
! *** Correction (see Kalidindi) ***
|
||||
forall(i=1:6, abs(dTstar_v(i)) > crite*Tstar_v(i).AND. Tstar_v(i)/=0)&
|
||||
! do i=1,6
|
||||
! if (abs(dTstar_v(i))> crite*Tstar_v(i)) then
|
||||
dTstar_v(i)=sign(crite*Tstar_v(i),dTstar_v(i))
|
||||
! endif
|
||||
! enddo
|
||||
Tstar_v=Tstar_v-dTstar_v
|
||||
!
|
||||
enddo
|
||||
|
@ -582,8 +583,10 @@
|
|||
100 dstate=dt*constitutive_dotState(Tstar_v, iori, CPFEM_in, cp_en)
|
||||
! *** Arrays of residuals ***
|
||||
R2=state_new-state_old-dstate
|
||||
norm2=maxval(abs(R2))
|
||||
if (norm2<tol_out) goto 200
|
||||
R2s=0
|
||||
forall(i=1:constitutive_Nstatevars(iori, CPFEM_in, cp_en), state_new(i)/=0) R2s(i)=R2(i)/state_new(i)
|
||||
norm2=maxval(abs(R2s))
|
||||
if (norm2<tol_outer) goto 200
|
||||
state_new=state_old+dstate
|
||||
enddo
|
||||
iconv=2
|
||||
|
@ -624,8 +627,8 @@
|
|||
real(pReal), dimension(3,3) :: cs_33
|
||||
! *** Calculation of Estar ***
|
||||
det = math_det3x3(Fe)
|
||||
PK = math_6to33(PK_v)
|
||||
PK = math_Mandel6to33(PK_v)
|
||||
cs_33 = matmul(matmul(Fe,PK),transpose(Fe))/det
|
||||
CPFEM_cauchy_stress = math_33to6(cs_33)
|
||||
CPFEM_cauchy_stress = math_Mandel33to6(cs_33)
|
||||
end function
|
||||
end module
|
|
@ -119,7 +119,8 @@
|
|||
!
|
||||
!
|
||||
use prec, only: pReal,pInt
|
||||
use CPFEM, only : CPFEM_stress_all, CPFEM_jaco_old
|
||||
use CPFEM, only: CPFEM_stress_all, CPFEM_jaco_old
|
||||
use math, only: invnrmMandel, nrmMandel
|
||||
implicit real(pReal) (a-h,o-z)
|
||||
!
|
||||
! Marc common blocks are in fixed format so they have to be pasted in here beware of changes in newer Marc versions
|
||||
|
@ -156,10 +157,7 @@
|
|||
!
|
||||
! call general material routine only in increment 0 and for lovl==6 (stress recovery)
|
||||
|
||||
! subroutine cpfem_general(mpie_s, mpie_d, mpie_ndi,
|
||||
! 1 mpie_ffn, mpie_ffn1, mpie_cn, mpie_tinc,
|
||||
! 2 mpie_timefactor, mpie_numel, mpie_nip, mpie_en,
|
||||
! 3 mpie_in, mpie_mn, mpie_dimension, state_var)
|
||||
! subroutine cpfem_general(mpie_ffn, mpie_ffn1, mpie_cn, mpie_tinc, mpie_enp, mpie_in)
|
||||
!********************************************************************
|
||||
! This routine calculates the material behaviour
|
||||
!********************************************************************
|
||||
|
@ -169,15 +167,20 @@
|
|||
! mpie_tinc time increment
|
||||
! mpie_en element number
|
||||
! mpie_in intergration point number
|
||||
! mpie_dimension dimension of stress/strain vector
|
||||
!********************************************************************
|
||||
cp_en=mesh_FEasCP('elem', n(1))
|
||||
if ((lovl==6).or.(inc==0)) then
|
||||
call cpfem_general(ffn, ffn1, inc, incsub, ncycle, timinc, cp_en, nn)
|
||||
endif
|
||||
! return stress and jacobi
|
||||
s(1:ngens)=CPFEM_stress_all(1:ngens, nn, cp_en)
|
||||
d(1:ngens,1:ngens)=CPFEM_jaco_old(1:ngens,1:ngens, nn, cp_en)
|
||||
! return stress and jacobi
|
||||
! Mandel: 11, 22, 33, 12, 23, 13
|
||||
! Marc: 11, 22, 33, 12, 23, 13
|
||||
s(1:ngens)=invnrmMandel(1:ngens)*CPFEM_stress_all(1:ngens, nn, cp_en)
|
||||
d(1:ngens,1:ngens)=CPFEM_jaco_old(1:ngens,1:ngens, nn, cp_en)
|
||||
forall(i=1:ngens) d(1:ngens,i)=d(1:ngens,i)*invnrmMandel(1:ngens)
|
||||
d(1:ngens,1:ngens)=transpose(d(1:ngens,1:ngens))
|
||||
forall(i=1:ngens) d(1:ngens,i)=d(1:ngens,i)*nrmMandel(1:ngens)
|
||||
d(1:ngens,1:ngens)=transpose(d(1:ngens,1:ngens))
|
||||
|
||||
return
|
||||
end
|
||||
|
|
Loading…
Reference in New Issue