documentation improvments + acceptance of lists
example code at respective function, no space in 'or' variable names (sphinx cannot handle this)
This commit is contained in:
parent
1eb9d494c7
commit
05c1007add
|
@ -69,18 +69,6 @@ class Orientation(Rotation):
|
|||
An array of 3 x 5 random orientations reduced to the fundamental zone of tetragonal symmetry:
|
||||
>>> damask.Orientation.from_random(shape=(3,5),lattice='tetragonal').reduced
|
||||
|
||||
Disorientation between two specific orientations of hexagonal symmetry:
|
||||
>>> a = damask.Orientation.from_Eulers(phi=[123,32,21],degrees=True,lattice='hexagonal')
|
||||
>>> b = damask.Orientation.from_Eulers(phi=[104,11,87],degrees=True,lattice='hexagonal')
|
||||
>>> a.disorientation(b)
|
||||
|
||||
Inverse pole figure color of the e_3 direction for a crystal in "Cube" orientation with cubic symmetry:
|
||||
>>> o = damask.Orientation(lattice='cubic')
|
||||
>>> o.IPF_color(o.to_SST(np.array([0,0,1])))
|
||||
|
||||
Schmid matrix (in lab frame) of slip systems of a face-centered cubic crystal in "Goss" orientation:
|
||||
>>> damask.Orientation.from_Eulers(phi=[0,45,0],degrees=True,lattice='cF').Schmid('slip')
|
||||
|
||||
"""
|
||||
|
||||
crystal_families = ['triclinic',
|
||||
|
@ -831,6 +819,14 @@ class Orientation(Rotation):
|
|||
rgb : numpy.ndarray of shape (...,3)
|
||||
RGB array of IPF colors.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Inverse pole figure color of the e_3 direction for a crystal in "Cube" orientation with cubic symmetry:
|
||||
|
||||
>>> o = damask.Orientation(lattice='cubic')
|
||||
>>> o.IPF_color(o.to_SST([0,0,1]))
|
||||
array([1., 0., 0.])
|
||||
|
||||
References
|
||||
----------
|
||||
Bases are computed from
|
||||
|
@ -851,7 +847,8 @@ class Orientation(Rotation):
|
|||
... }
|
||||
|
||||
"""
|
||||
if vector.shape[-1] != 3:
|
||||
vector_ = np.array(vector)
|
||||
if vector_.shape[-1] != 3:
|
||||
raise ValueError('Input is not a field of three-dimensional vectors.')
|
||||
|
||||
if self.family == 'cubic':
|
||||
|
@ -887,23 +884,23 @@ class Orientation(Rotation):
|
|||
[ 0., 1., 0.] ]),
|
||||
}
|
||||
else: # direct exit for unspecified symmetry
|
||||
return np.zeros_like(vector)
|
||||
return np.zeros_like(vector_)
|
||||
|
||||
if proper:
|
||||
components_proper = np.around(np.einsum('...ji,...i',
|
||||
np.broadcast_to(basis['proper'], vector.shape+(3,)),
|
||||
vector), 12)
|
||||
np.broadcast_to(basis['proper'], vector_.shape+(3,)),
|
||||
vector_), 12)
|
||||
components_improper = np.around(np.einsum('...ji,...i',
|
||||
np.broadcast_to(basis['improper'], vector.shape+(3,)),
|
||||
vector), 12)
|
||||
np.broadcast_to(basis['improper'], vector_.shape+(3,)),
|
||||
vector_), 12)
|
||||
in_SST = np.all(components_proper >= 0.0,axis=-1) \
|
||||
| np.all(components_improper >= 0.0,axis=-1)
|
||||
components = np.where((in_SST & np.all(components_proper >= 0.0,axis=-1))[...,np.newaxis],
|
||||
components_proper,components_improper)
|
||||
else:
|
||||
components = np.around(np.einsum('...ji,...i',
|
||||
np.broadcast_to(basis['improper'], vector.shape+(3,)),
|
||||
np.block([vector[...,:2],np.abs(vector[...,2:3])])), 12)
|
||||
np.broadcast_to(basis['improper'], vector_.shape+(3,)),
|
||||
np.block([vector_[...,:2],np.abs(vector_[...,2:3])])), 12)
|
||||
|
||||
in_SST = np.all(components >= 0.0,axis=-1)
|
||||
|
||||
|
@ -941,6 +938,22 @@ class Orientation(Rotation):
|
|||
Currently requires same crystal family for both orientations.
|
||||
For extension to cases with differing symmetry see A. Heinz and P. Neumann 1991 and 10.1107/S0021889808016373.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Disorientation between two specific orientations of hexagonal symmetry:
|
||||
|
||||
>>> import damask
|
||||
>>> a = damask.Orientation.from_Eulers(phi=[123,32,21],degrees=True,lattice='hexagonal')
|
||||
>>> b = damask.Orientation.from_Eulers(phi=[104,11,87],degrees=True,lattice='hexagonal')
|
||||
>>> a.disorientation(b)
|
||||
Crystal family hexagonal
|
||||
Quaternion: (real=0.976, imag=<+0.189, +0.018, +0.103>)
|
||||
Matrix:
|
||||
[[ 0.97831006 0.20710935 0.00389135]
|
||||
[-0.19363288 0.90765544 0.37238141]
|
||||
[ 0.07359167 -0.36505797 0.92807163]]
|
||||
Bunge Eulers / deg: (11.40, 21.86, 0.60)
|
||||
|
||||
"""
|
||||
if self.family is None or other.family is None:
|
||||
raise ValueError('Missing crystal symmetry')
|
||||
|
@ -1049,8 +1062,8 @@ class Orientation(Rotation):
|
|||
raise ValueError('Missing crystal symmetry')
|
||||
|
||||
eq = self.equivalent
|
||||
blend = util.shapeblender(eq.shape,vector.shape[:-1])
|
||||
poles = eq.broadcast_to(blend,mode='right') @ np.broadcast_to(vector,blend+(3,))
|
||||
blend = util.shapeblender(eq.shape,np.array(vector).shape[:-1])
|
||||
poles = eq.broadcast_to(blend,mode='right') @ np.broadcast_to(np.array(vector),blend+(3,))
|
||||
ok = self.in_SST(poles,proper=proper)
|
||||
ok &= np.cumsum(ok,axis=0) == 1
|
||||
loc = np.where(ok)
|
||||
|
@ -1201,13 +1214,25 @@ class Orientation(Rotation):
|
|||
Parameters
|
||||
----------
|
||||
mode : str
|
||||
Type of kinematics, e.g. 'slip' or 'twin'.
|
||||
Type of kinematics, i.e. 'slip' or 'twin'.
|
||||
|
||||
Returns
|
||||
-------
|
||||
P : numpy.ndarray of shape (...,N,3,3)
|
||||
Schmid matrix for each of the N deformation systems.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Schmid matrix (in lab frame) of slip systems of a face-centered
|
||||
cubic crystal in "Goss" orientation.
|
||||
|
||||
>>> import damask
|
||||
>>> import numpy as np
|
||||
>>> np.set_printoptions(3,suppress=True,floatmode='fixed')
|
||||
>>> damask.Orientation.from_Eulers(phi=[0,45,0],degrees=True,lattice='cF').Schmid('slip')[0]
|
||||
array([[ 0.000, 0.000, 0.000],
|
||||
[ 0.577, -0.000, 0.816],
|
||||
[ 0.000, 0.000, 0.000]])
|
||||
"""
|
||||
d = self.to_frame(uvw=self.kinematics[mode]['direction'],with_symmetry=False)
|
||||
p = self.to_frame(hkl=self.kinematics[mode]['plane'] ,with_symmetry=False)
|
||||
|
|
|
@ -404,7 +404,7 @@ class Rotation:
|
|||
Returns
|
||||
-------
|
||||
h : numpy.ndarray of shape (...,3)
|
||||
Homochoric vector: (h_1, h_2, h_3), ǀhǀ < 1/2*π^(2/3).
|
||||
Homochoric vector: (h_1, h_2, h_3), ǀhǀ < (3/4*π)^(1/3).
|
||||
|
||||
"""
|
||||
return Rotation._qu2ho(self.quaternion)
|
||||
|
|
Loading…
Reference in New Issue