documentation improvments + acceptance of lists

example code at respective function, no space in 'or' variable names
(sphinx cannot handle this)
This commit is contained in:
Martin Diehl 2020-11-15 10:22:01 +01:00
parent 1eb9d494c7
commit 05c1007add
2 changed files with 56 additions and 31 deletions

View File

@ -69,18 +69,6 @@ class Orientation(Rotation):
An array of 3 x 5 random orientations reduced to the fundamental zone of tetragonal symmetry:
>>> damask.Orientation.from_random(shape=(3,5),lattice='tetragonal').reduced
Disorientation between two specific orientations of hexagonal symmetry:
>>> a = damask.Orientation.from_Eulers(phi=[123,32,21],degrees=True,lattice='hexagonal')
>>> b = damask.Orientation.from_Eulers(phi=[104,11,87],degrees=True,lattice='hexagonal')
>>> a.disorientation(b)
Inverse pole figure color of the e_3 direction for a crystal in "Cube" orientation with cubic symmetry:
>>> o = damask.Orientation(lattice='cubic')
>>> o.IPF_color(o.to_SST(np.array([0,0,1])))
Schmid matrix (in lab frame) of slip systems of a face-centered cubic crystal in "Goss" orientation:
>>> damask.Orientation.from_Eulers(phi=[0,45,0],degrees=True,lattice='cF').Schmid('slip')
"""
crystal_families = ['triclinic',
@ -831,6 +819,14 @@ class Orientation(Rotation):
rgb : numpy.ndarray of shape (...,3)
RGB array of IPF colors.
Examples
--------
Inverse pole figure color of the e_3 direction for a crystal in "Cube" orientation with cubic symmetry:
>>> o = damask.Orientation(lattice='cubic')
>>> o.IPF_color(o.to_SST([0,0,1]))
array([1., 0., 0.])
References
----------
Bases are computed from
@ -851,7 +847,8 @@ class Orientation(Rotation):
... }
"""
if vector.shape[-1] != 3:
vector_ = np.array(vector)
if vector_.shape[-1] != 3:
raise ValueError('Input is not a field of three-dimensional vectors.')
if self.family == 'cubic':
@ -887,23 +884,23 @@ class Orientation(Rotation):
[ 0., 1., 0.] ]),
}
else: # direct exit for unspecified symmetry
return np.zeros_like(vector)
return np.zeros_like(vector_)
if proper:
components_proper = np.around(np.einsum('...ji,...i',
np.broadcast_to(basis['proper'], vector.shape+(3,)),
vector), 12)
np.broadcast_to(basis['proper'], vector_.shape+(3,)),
vector_), 12)
components_improper = np.around(np.einsum('...ji,...i',
np.broadcast_to(basis['improper'], vector.shape+(3,)),
vector), 12)
np.broadcast_to(basis['improper'], vector_.shape+(3,)),
vector_), 12)
in_SST = np.all(components_proper >= 0.0,axis=-1) \
| np.all(components_improper >= 0.0,axis=-1)
components = np.where((in_SST & np.all(components_proper >= 0.0,axis=-1))[...,np.newaxis],
components_proper,components_improper)
else:
components = np.around(np.einsum('...ji,...i',
np.broadcast_to(basis['improper'], vector.shape+(3,)),
np.block([vector[...,:2],np.abs(vector[...,2:3])])), 12)
np.broadcast_to(basis['improper'], vector_.shape+(3,)),
np.block([vector_[...,:2],np.abs(vector_[...,2:3])])), 12)
in_SST = np.all(components >= 0.0,axis=-1)
@ -941,6 +938,22 @@ class Orientation(Rotation):
Currently requires same crystal family for both orientations.
For extension to cases with differing symmetry see A. Heinz and P. Neumann 1991 and 10.1107/S0021889808016373.
Examples
--------
Disorientation between two specific orientations of hexagonal symmetry:
>>> import damask
>>> a = damask.Orientation.from_Eulers(phi=[123,32,21],degrees=True,lattice='hexagonal')
>>> b = damask.Orientation.from_Eulers(phi=[104,11,87],degrees=True,lattice='hexagonal')
>>> a.disorientation(b)
Crystal family hexagonal
Quaternion: (real=0.976, imag=<+0.189, +0.018, +0.103>)
Matrix:
[[ 0.97831006 0.20710935 0.00389135]
[-0.19363288 0.90765544 0.37238141]
[ 0.07359167 -0.36505797 0.92807163]]
Bunge Eulers / deg: (11.40, 21.86, 0.60)
"""
if self.family is None or other.family is None:
raise ValueError('Missing crystal symmetry')
@ -1049,8 +1062,8 @@ class Orientation(Rotation):
raise ValueError('Missing crystal symmetry')
eq = self.equivalent
blend = util.shapeblender(eq.shape,vector.shape[:-1])
poles = eq.broadcast_to(blend,mode='right') @ np.broadcast_to(vector,blend+(3,))
blend = util.shapeblender(eq.shape,np.array(vector).shape[:-1])
poles = eq.broadcast_to(blend,mode='right') @ np.broadcast_to(np.array(vector),blend+(3,))
ok = self.in_SST(poles,proper=proper)
ok &= np.cumsum(ok,axis=0) == 1
loc = np.where(ok)
@ -1201,13 +1214,25 @@ class Orientation(Rotation):
Parameters
----------
mode : str
Type of kinematics, e.g. 'slip' or 'twin'.
Type of kinematics, i.e. 'slip' or 'twin'.
Returns
-------
P : numpy.ndarray of shape (...,N,3,3)
Schmid matrix for each of the N deformation systems.
Examples
--------
Schmid matrix (in lab frame) of slip systems of a face-centered
cubic crystal in "Goss" orientation.
>>> import damask
>>> import numpy as np
>>> np.set_printoptions(3,suppress=True,floatmode='fixed')
>>> damask.Orientation.from_Eulers(phi=[0,45,0],degrees=True,lattice='cF').Schmid('slip')[0]
array([[ 0.000, 0.000, 0.000],
[ 0.577, -0.000, 0.816],
[ 0.000, 0.000, 0.000]])
"""
d = self.to_frame(uvw=self.kinematics[mode]['direction'],with_symmetry=False)
p = self.to_frame(hkl=self.kinematics[mode]['plane'] ,with_symmetry=False)

View File

@ -404,7 +404,7 @@ class Rotation:
Returns
-------
h : numpy.ndarray of shape (...,3)
Homochoric vector: (h_1, h_2, h_3), ǀhǀ < 1/2*π^(2/3).
Homochoric vector: (h_1, h_2, h_3), ǀhǀ < (3/4*π)^(1/3).
"""
return Rotation._qu2ho(self.quaternion)