diff --git a/python/damask/dadf5.py b/python/damask/dadf5.py index 191b2203b..d27b0828f 100644 --- a/python/damask/dadf5.py +++ b/python/damask/dadf5.py @@ -1,7 +1,8 @@ -from queue import Queue +import multiprocessing import re import glob import os +from functools import partial import vtk from vtk.util import numpy_support @@ -443,6 +444,17 @@ class DADF5(): return f['geometry/x_c'][()] + @staticmethod + def _add_absolute(x): + return { + 'data': np.abs(x['data']), + 'label': '|{}|'.format(x['label']), + 'meta': { + 'Unit': x['meta']['Unit'], + 'Description': 'Absolute value of {} ({})'.format(x['label'],x['meta']['Description']), + 'Creator': 'dadf5.py:add_abs v{}'.format(version) + } + } def add_absolute(self,x): """ Add absolute value. @@ -453,21 +465,24 @@ class DADF5(): Label of scalar, vector, or tensor dataset to take absolute value of. """ - def _add_absolute(x): - - return { - 'data': np.abs(x['data']), - 'label': '|{}|'.format(x['label']), - 'meta': { - 'Unit': x['meta']['Unit'], - 'Description': 'Absolute value of {} ({})'.format(x['label'],x['meta']['Description']), - 'Creator': 'dadf5.py:add_abs v{}'.format(version) - } - } - - self.__add_generic_pointwise(_add_absolute,{'x':x}) + self.__add_generic_pointwise(self._add_absolute,{'x':x}) + @staticmethod + def _add_calculation(**kwargs): + formula = kwargs['formula'] + for d in re.findall(r'#(.*?)#',formula): + formula = formula.replace('#{}#'.format(d),"kwargs['{}']['data']".format(d)) + + return { + 'data': eval(formula), + 'label': kwargs['label'], + 'meta': { + 'Unit': kwargs['unit'], + 'Description': '{} (formula: {})'.format(kwargs['description'],kwargs['formula']), + 'Creator': 'dadf5.py:add_calculation v{}'.format(version) + } + } def add_calculation(self,label,formula,unit='n/a',description=None,vectorized=True): """ Add result of a general formula. @@ -489,28 +504,24 @@ class DADF5(): if not vectorized: raise NotImplementedError - def _add_calculation(**kwargs): - - formula = kwargs['formula'] - for d in re.findall(r'#(.*?)#',formula): - formula = formula.replace('#{}#'.format(d),"kwargs['{}']['data']".format(d)) - - return { - 'data': eval(formula), - 'label': kwargs['label'], - 'meta': { - 'Unit': kwargs['unit'], - 'Description': '{} (formula: {})'.format(kwargs['description'],kwargs['formula']), - 'Creator': 'dadf5.py:add_calculation v{}'.format(version) - } - } - - dataset_mapping = {d:d for d in set(re.findall(r'#(.*?)#',formula))} # datasets used in the formula + dataset_mapping = {d:d for d in set(re.findall(r'#(.*?)#',formula))} # datasets used in the formula args = {'formula':formula,'label':label,'unit':unit,'description':description} - - self.__add_generic_pointwise(_add_calculation,dataset_mapping,args) + self.__add_generic_pointwise(self._add_calculation,dataset_mapping,args) + @staticmethod + def _add_Cauchy(P,F): + return { + 'data': mechanics.Cauchy(P['data'],F['data']), + 'label': 'sigma', + 'meta': { + 'Unit': P['meta']['Unit'], + 'Description': 'Cauchy stress calculated from {} ({}) '.format(P['label'], + P['meta']['Description'])+\ + 'and {} ({})'.format(F['label'],F['meta']['Description']), + 'Creator': 'dadf5.py:add_Cauchy v{}'.format(version) + } + } def add_Cauchy(self,P='P',F='F'): """ Add Cauchy stress calculated from first Piola-Kirchhoff stress and deformation gradient. @@ -523,23 +534,20 @@ class DADF5(): Label of the dataset containing the deformation gradient. Defaults to ‘F’. """ - def _add_Cauchy(P,F): - - return { - 'data': mechanics.Cauchy(P['data'],F['data']), - 'label': 'sigma', - 'meta': { - 'Unit': P['meta']['Unit'], - 'Description': 'Cauchy stress calculated from {} ({}) '.format(P['label'], - P['meta']['Description'])+\ - 'and {} ({})'.format(F['label'],F['meta']['Description']), - 'Creator': 'dadf5.py:add_Cauchy v{}'.format(version) - } - } - - self.__add_generic_pointwise(_add_Cauchy,{'P':P,'F':F}) + self.__add_generic_pointwise(self._add_Cauchy,{'P':P,'F':F}) + @staticmethod + def _add_determinant(T): + return { + 'data': np.linalg.det(T['data']), + 'label': 'det({})'.format(T['label']), + 'meta': { + 'Unit': T['meta']['Unit'], + 'Description': 'Determinant of tensor {} ({})'.format(T['label'],T['meta']['Description']), + 'Creator': 'dadf5.py:add_determinant v{}'.format(version) + } + } def add_determinant(self,T): """ Add the determinant of a tensor. @@ -550,21 +558,23 @@ class DADF5(): Label of tensor dataset. """ - def _add_determinant(T): - - return { - 'data': np.linalg.det(T['data']), - 'label': 'det({})'.format(T['label']), - 'meta': { - 'Unit': T['meta']['Unit'], - 'Description': 'Determinant of tensor {} ({})'.format(T['label'],T['meta']['Description']), - 'Creator': 'dadf5.py:add_determinant v{}'.format(version) - } - } - - self.__add_generic_pointwise(_add_determinant,{'T':T}) + self.__add_generic_pointwise(self._add_determinant,{'T':T}) + @staticmethod + def _add_deviator(T): + if not np.all(np.array(T['data'].shape[1:]) == np.array([3,3])): + raise ValueError + + return { + 'data': mechanics.deviatoric_part(T['data']), + 'label': 's_{}'.format(T['label']), + 'meta': { + 'Unit': T['meta']['Unit'], + 'Description': 'Deviator of tensor {} ({})'.format(T['label'],T['meta']['Description']), + 'Creator': 'dadf5.py:add_deviator v{}'.format(version) + } + } def add_deviator(self,T): """ Add the deviatoric part of a tensor. @@ -575,24 +585,20 @@ class DADF5(): Label of tensor dataset. """ - def _add_deviator(T): - - if not np.all(np.array(T['data'].shape[1:]) == np.array([3,3])): - raise ValueError - - return { - 'data': mechanics.deviatoric_part(T['data']), - 'label': 's_{}'.format(T['label']), - 'meta': { - 'Unit': T['meta']['Unit'], - 'Description': 'Deviator of tensor {} ({})'.format(T['label'],T['meta']['Description']), - 'Creator': 'dadf5.py:add_deviator v{}'.format(version) - } - } - - self.__add_generic_pointwise(_add_deviator,{'T':T}) + self.__add_generic_pointwise(self._add_deviator,{'T':T}) + @staticmethod + def _add_eigenvalue(S): + return { + 'data': mechanics.eigenvalues(S['data']), + 'label': 'lambda({})'.format(S['label']), + 'meta' : { + 'Unit': S['meta']['Unit'], + 'Description': 'Eigenvalues of {} ({})'.format(S['label'],S['meta']['Description']), + 'Creator': 'dadf5.py:add_eigenvalues v{}'.format(version) + } + } def add_eigenvalues(self,S): """ Add eigenvalues of symmetric tensor. @@ -603,21 +609,20 @@ class DADF5(): Label of symmetric tensor dataset. """ - def _add_eigenvalue(S): - - return { - 'data': mechanics.eigenvalues(S['data']), - 'label': 'lambda({})'.format(S['label']), - 'meta' : { - 'Unit': S['meta']['Unit'], - 'Description': 'Eigenvalues of {} ({})'.format(S['label'],S['meta']['Description']), - 'Creator': 'dadf5.py:add_eigenvalues v{}'.format(version) - } - } - - self.__add_generic_pointwise(_add_eigenvalue,{'S':S}) + self.__add_generic_pointwise(self._add_eigenvalue,{'S':S}) + @staticmethod + def _add_eigenvector(S): + return { + 'data': mechanics.eigenvectors(S['data']), + 'label': 'v({})'.format(S['label']), + 'meta' : { + 'Unit': '1', + 'Description': 'Eigenvectors of {} ({})'.format(S['label'],S['meta']['Description']), + 'Creator': 'dadf5.py:add_eigenvectors v{}'.format(version) + } + } def add_eigenvectors(self,S): """ Add eigenvectors of symmetric tensor. @@ -628,21 +633,32 @@ class DADF5(): Label of symmetric tensor dataset. """ - def _add_eigenvector(S): - - return { - 'data': mechanics.eigenvectors(S['data']), - 'label': 'v({})'.format(S['label']), - 'meta' : { - 'Unit': '1', - 'Description': 'Eigenvectors of {} ({})'.format(S['label'],S['meta']['Description']), - 'Creator': 'dadf5.py:add_eigenvectors v{}'.format(version) - } - } - - self.__add_generic_pointwise(_add_eigenvector,{'S':S}) + self.__add_generic_pointwise(self._add_eigenvector,{'S':S}) + @staticmethod + def _add_IPFcolor(q,l): + d = np.array(l) + d_unit = d/np.linalg.norm(d) + m = util.scale_to_coprime(d) + colors = np.empty((len(q['data']),3),np.uint8) + + lattice = q['meta']['Lattice'] + + for i,q in enumerate(q['data']): + o = Orientation(np.array([q['w'],q['x'],q['y'],q['z']]),lattice).reduced() + colors[i] = np.uint8(o.IPFcolor(d_unit)*255) + + return { + 'data': colors, + 'label': 'IPFcolor_[{} {} {}]'.format(*m), + 'meta' : { + 'Unit': 'RGB (8bit)', + 'Lattice': lattice, + 'Description': 'Inverse Pole Figure (IPF) colors for direction/plane [{} {} {})'.format(*m), + 'Creator': 'dadf5.py:add_IPFcolor v{}'.format(version) + } + } def add_IPFcolor(self,q,l): """ Add RGB color tuple of inverse pole figure (IPF) color. @@ -655,33 +671,20 @@ class DADF5(): Lab frame direction for inverse pole figure. """ - def _add_IPFcolor(q,l): + self.__add_generic_pointwise(self._add_IPFcolor,{'q':q},{'l':l}) - d = np.array(l) - d_unit = d/np.linalg.norm(d) - m = util.scale_to_coprime(d) - colors = np.empty((len(q['data']),3),np.uint8) - lattice = q['meta']['Lattice'] - - for i,q in enumerate(q['data']): - o = Orientation(np.array([q['w'],q['x'],q['y'],q['z']]),lattice).reduced() - colors[i] = np.uint8(o.IPFcolor(d_unit)*255) - - return { - 'data': colors, - 'label': 'IPFcolor_[{} {} {}]'.format(*m), - 'meta' : { - 'Unit': 'RGB (8bit)', - 'Lattice': lattice, - 'Description': 'Inverse Pole Figure (IPF) colors for direction/plane [{} {} {})'.format(*m), - 'Creator': 'dadf5.py:add_IPFcolor v{}'.format(version) - } + @staticmethod + def _add_maximum_shear(S): + return { + 'data': mechanics.maximum_shear(S['data']), + 'label': 'max_shear({})'.format(S['label']), + 'meta': { + 'Unit': S['meta']['Unit'], + 'Description': 'Maximum shear component of {} ({})'.format(S['label'],S['meta']['Description']), + 'Creator': 'dadf5.py:add_maximum_shear v{}'.format(version) + } } - - self.__add_generic_pointwise(_add_IPFcolor,{'q':q},{'l':l}) - - def add_maximum_shear(self,S): """ Add maximum shear components of symmetric tensor. @@ -692,21 +695,23 @@ class DADF5(): Label of symmetric tensor dataset. """ - def _add_maximum_shear(S): - - return { - 'data': mechanics.maximum_shear(S['data']), - 'label': 'max_shear({})'.format(S['label']), - 'meta': { - 'Unit': S['meta']['Unit'], - 'Description': 'Maximum shear component of {} ({})'.format(S['label'],S['meta']['Description']), - 'Creator': 'dadf5.py:add_maximum_shear v{}'.format(version) - } - } - - self.__add_generic_pointwise(_add_maximum_shear,{'S':S}) + self.__add_generic_pointwise(self._add_maximum_shear,{'S':S}) + @staticmethod + def _add_Mises(S): + t = 'strain' if S['meta']['Unit'] == '1' else \ + 'stress' + + return { + 'data': mechanics.Mises_strain(S['data']) if t=='strain' else mechanics.Mises_stress(S['data']), + 'label': '{}_vM'.format(S['label']), + 'meta': { + 'Unit': S['meta']['Unit'], + 'Description': 'Mises equivalent {} of {} ({})'.format(t,S['label'],S['meta']['Description']), + 'Creator': 'dadf5.py:add_Mises v{}'.format(version) + } + } def add_Mises(self,S): """ Add the equivalent Mises stress or strain of a symmetric tensor. @@ -717,23 +722,32 @@ class DADF5(): Label of symmetric tensorial stress or strain dataset. """ - def _add_Mises(S): - - t = 'strain' if S['meta']['Unit'] == '1' else \ - 'stress' - return { - 'data': mechanics.Mises_strain(S['data']) if t=='strain' else mechanics.Mises_stress(S['data']), - 'label': '{}_vM'.format(S['label']), - 'meta': { - 'Unit': S['meta']['Unit'], - 'Description': 'Mises equivalent {} of {} ({})'.format(t,S['label'],S['meta']['Description']), - 'Creator': 'dadf5.py:add_Mises v{}'.format(version) - } - } - - self.__add_generic_pointwise(_add_Mises,{'S':S}) + self.__add_generic_pointwise(self._add_Mises,{'S':S}) + @staticmethod + def _add_norm(x,ord): + o = ord + if len(x['data'].shape) == 2: + axis = 1 + t = 'vector' + if o is None: o = 2 + elif len(x['data'].shape) == 3: + axis = (1,2) + t = 'tensor' + if o is None: o = 'fro' + else: + raise ValueError + + return { + 'data': np.linalg.norm(x['data'],ord=o,axis=axis,keepdims=True), + 'label': '|{}|_{}'.format(x['label'],o), + 'meta': { + 'Unit': x['meta']['Unit'], + 'Description': '{}-norm of {} {} ({})'.format(ord,t,x['label'],x['meta']['Description']), + 'Creator': 'dadf5.py:add_norm v{}'.format(version) + } + } def add_norm(self,x,ord=None): """ Add the norm of vector or tensor. @@ -746,36 +760,25 @@ class DADF5(): Order of the norm. inf means NumPy’s inf object. For details refer to numpy.linalg.norm. """ - def _add_norm(x,ord): - - o = ord - if len(x['data'].shape) == 2: - axis = 1 - t = 'vector' - if o is None: o = 2 - elif len(x['data'].shape) == 3: - axis = (1,2) - t = 'tensor' - if o is None: o = 'fro' - else: - raise ValueError - - return { - 'data': np.linalg.norm(x['data'],ord=o,axis=axis,keepdims=True), - 'label': '|{}|_{}'.format(x['label'],o), - 'meta': { - 'Unit': x['meta']['Unit'], - 'Description': '{}-norm of {} {} ({})'.format(ord,t,x['label'],x['meta']['Description']), - 'Creator': 'dadf5.py:add_norm v{}'.format(version) - } - } - - self.__add_generic_pointwise(_add_norm,{'x':x},{'ord':ord}) + self.__add_generic_pointwise(self._add_norm,{'x':x},{'ord':ord}) + @staticmethod + def _add_PK2(P,F): + return { + 'data': mechanics.PK2(P['data'],F['data']), + 'label': 'S', + 'meta': { + 'Unit': P['meta']['Unit'], + 'Description': '2. Kirchhoff stress calculated from {} ({}) '.format(P['label'], + P['meta']['Description'])+\ + 'and {} ({})'.format(F['label'],F['meta']['Description']), + 'Creator': 'dadf5.py:add_PK2 v{}'.format(version) + } + } def add_PK2(self,P='P',F='F'): """ - Add 2. Piola-Kirchhoff calculated from first Piola-Kirchhoff stress and deformation gradient. + Add second Piola-Kirchhoff calculated from first Piola-Kirchhoff stress and deformation gradient. Parameters ---------- @@ -785,23 +788,32 @@ class DADF5(): Label of deformation gradient dataset. Defaults to ‘F’. """ - def _add_PK2(P,F): - - return { - 'data': mechanics.PK2(P['data'],F['data']), - 'label': 'S', - 'meta': { - 'Unit': P['meta']['Unit'], - 'Description': '2. Kirchhoff stress calculated from {} ({}) '.format(P['label'], - P['meta']['Description'])+\ - 'and {} ({})'.format(F['label'],F['meta']['Description']), - 'Creator': 'dadf5.py:add_PK2 v{}'.format(version) - } - } - - self.__add_generic_pointwise(_add_PK2,{'P':P,'F':F}) + self.__add_generic_pointwise(self._add_PK2,{'P':P,'F':F}) + @staticmethod + def _add_pole(q,p,polar): + pole = np.array(p) + unit_pole = pole/np.linalg.norm(pole) + m = util.scale_to_coprime(pole) + coords = np.empty((len(q['data']),2)) + + for i,q in enumerate(q['data']): + o = Rotation(np.array([q['w'],q['x'],q['y'],q['z']])) + rotatedPole = o*unit_pole # rotate pole according to crystal orientation + (x,y) = rotatedPole[0:2]/(1.+abs(unit_pole[2])) # stereographic projection + coords[i] = [np.sqrt(x*x+y*y),np.arctan2(y,x)] if polar else [x,y] + + return { + 'data': coords, + 'label': 'p^{}_[{} {} {})'.format(u'rφ' if polar else 'xy',*m), + 'meta' : { + 'Unit': '1', + 'Description': '{} coordinates of stereographic projection of pole (direction/plane) in crystal frame'\ + .format('Polar' if polar else 'Cartesian'), + 'Creator' : 'dadf5.py:add_pole v{}'.format(version) + } + } def add_pole(self,q,p,polar=False): """ Add coordinates of stereographic projection of given pole in crystal frame. @@ -816,33 +828,22 @@ class DADF5(): Give pole in polar coordinates. Defaults to False. """ - def _add_pole(q,p,polar): + self.__add_generic_pointwise(self._add_pole,{'q':q},{'p':p,'polar':polar}) - pole = np.array(p) - unit_pole = pole/np.linalg.norm(pole) - m = util.scale_to_coprime(pole) - coords = np.empty((len(q['data']),2)) - for i,q in enumerate(q['data']): - o = Rotation(np.array([q['w'],q['x'],q['y'],q['z']])) - rotatedPole = o*unit_pole # rotate pole according to crystal orientation - (x,y) = rotatedPole[0:2]/(1.+abs(unit_pole[2])) # stereographic projection - coords[i] = [np.sqrt(x*x+y*y),np.arctan2(y,x)] if polar else [x,y] - - return { - 'data': coords, - 'label': 'p^{}_[{} {} {})'.format(u'rφ' if polar else 'xy',*m), - 'meta' : { - 'Unit': '1', - 'Description': '{} coordinates of stereographic projection of pole (direction/plane) in crystal frame'\ - .format('Polar' if polar else 'Cartesian'), - 'Creator' : 'dadf5.py:add_pole v{}'.format(version) - } + @staticmethod + def _add_rotational_part(F): + if not np.all(np.array(F['data'].shape[1:]) == np.array([3,3])): + raise ValueError + return { + 'data': mechanics.rotational_part(F['data']), + 'label': 'R({})'.format(F['label']), + 'meta': { + 'Unit': F['meta']['Unit'], + 'Description': 'Rotational part of {} ({})'.format(F['label'],F['meta']['Description']), + 'Creator': 'dadf5.py:add_rotational_part v{}'.format(version) + } } - - self.__add_generic_pointwise(_add_pole,{'q':q},{'p':p,'polar':polar}) - - def add_rotational_part(self,F): """ Add rotational part of a deformation gradient. @@ -853,21 +854,24 @@ class DADF5(): Label of deformation gradient dataset. """ - def _add_rotational_part(F): - return { - 'data': mechanics.rotational_part(F['data']), - 'label': 'R({})'.format(F['label']), - 'meta': { - 'Unit': F['meta']['Unit'], - 'Description': 'Rotational part of {} ({})'.format(F['label'],F['meta']['Description']), - 'Creator': 'dadf5.py:add_rotational_part v{}'.format(version) - } - } - - self.__add_generic_pointwise(_add_rotational_part,{'F':F}) + self.__add_generic_pointwise(self._add_rotational_part,{'F':F}) + @staticmethod + def _add_spherical(T): + if not np.all(np.array(T['data'].shape[1:]) == np.array([3,3])): + raise ValueError + + return { + 'data': mechanics.spherical_part(T['data']), + 'label': 'p_{}'.format(T['label']), + 'meta': { + 'Unit': T['meta']['Unit'], + 'Description': 'Spherical component of tensor {} ({})'.format(T['label'],T['meta']['Description']), + 'Creator': 'dadf5.py:add_spherical v{}'.format(version) + } + } def add_spherical(self,T): """ Add the spherical (hydrostatic) part of a tensor. @@ -878,24 +882,22 @@ class DADF5(): Label of tensor dataset. """ - def _add_spherical(T): + self.__add_generic_pointwise(self._add_spherical,{'T':T}) - if not np.all(np.array(T['data'].shape[1:]) == np.array([3,3])): + + @staticmethod + def _add_strain_tensor(F,t,m): + if not np.all(np.array(F['data'].shape[1:]) == np.array([3,3])): raise ValueError - - return { - 'data': mechanics.spherical_part(T['data']), - 'label': 'p_{}'.format(T['label']), - 'meta': { - 'Unit': T['meta']['Unit'], - 'Description': 'Spherical component of tensor {} ({})'.format(T['label'],T['meta']['Description']), - 'Creator': 'dadf5.py:add_spherical v{}'.format(version) - } - } - - self.__add_generic_pointwise(_add_spherical,{'T':T}) - - + return { + 'data': mechanics.strain_tensor(F['data'],t,m), + 'label': 'epsilon_{}^{}({})'.format(t,m,F['label']), + 'meta': { + 'Unit': F['meta']['Unit'], + 'Description': 'Strain tensor of {} ({})'.format(F['label'],F['meta']['Description']), + 'Creator': 'dadf5.py:add_strain_tensor v{}'.format(version) + } + } def add_strain_tensor(self,F='F',t='V',m=0.0): """ Add strain tensor of a deformation gradient. @@ -913,21 +915,24 @@ class DADF5(): Order of the strain calculation. Defaults to ‘0.0’. """ - def _add_strain_tensor(F,t,m): - - return { - 'data': mechanics.strain_tensor(F['data'],t,m), - 'label': 'epsilon_{}^{}({})'.format(t,m,F['label']), - 'meta': { - 'Unit': F['meta']['Unit'], - 'Description': 'Strain tensor of {} ({})'.format(F['label'],F['meta']['Description']), - 'Creator': 'dadf5.py:add_strain_tensor v{}'.format(version) - } - } - - self.__add_generic_pointwise(_add_strain_tensor,{'F':F},{'t':t,'m':m}) + self.__add_generic_pointwise(self._add_strain_tensor,{'F':F},{'t':t,'m':m}) + @staticmethod + def _add_stretch_tensor(F,t): + if not np.all(np.array(F['data'].shape[1:]) == np.array([3,3])): + raise ValueError + + return { + 'data': mechanics.left_stretch(F['data']) if t == 'V' else mechanics.right_stretch(F['data']), + 'label': '{}({})'.format(t,F['label']), + 'meta': { + 'Unit': F['meta']['Unit'], + 'Description': '{} stretch tensor of {} ({})'.format('Left' if t == 'V' else 'Right', + F['label'],F['meta']['Description']), + 'Creator': 'dadf5.py:add_stretch_tensor v{}'.format(version) + } + } def add_stretch_tensor(self,F='F',t='V'): """ Add stretch tensor of a deformation gradient. @@ -941,77 +946,54 @@ class DADF5(): Defaults to ‘V’. """ - def _add_stretch_tensor(F,t): - - return { - 'data': mechanics.left_stretch(F['data']) if t == 'V' else mechanics.right_stretch(F['data']), - 'label': '{}({})'.format(t,F['label']), - 'meta': { - 'Unit': F['meta']['Unit'], - 'Description': '{} stretch tensor of {} ({})'.format('Left' if t == 'V' else 'Right', - F['label'],F['meta']['Description']), - 'Creator': 'dadf5.py:add_stretch_tensor v{}'.format(version) - } - } - - self.__add_generic_pointwise(_add_stretch_tensor,{'F':F},{'t':t}) + self.__add_generic_pointwise(self._add_stretch_tensor,{'F':F},{'t':t}) - def __add_generic_pointwise(self,func,dataset_mapping,args={}): - """ - General function to add pointwise data. + def job(self,group,func,datasets,args,lock): + try: + d = self._read(group,datasets,lock) + r = func(**d,**args) + return [group,r] + except Exception as err: + print('Error during calculation: {}.'.format(err)) + return None - Parameters - ---------- - func : function - Function that calculates a new dataset from one or more datasets per HDF5 group. - dataset_mapping : dictionary - Mapping HDF5 data label to callback function argument - extra_args : dictionary, optional - Any extra arguments parsed to func. - """ - def job(args): - """Call function with input data + extra arguments, returns results + group.""" - args['results'].put({**args['func'](**args['in']),'group':args['group']}) + def _read(self,group,datasets,lock): + datasets_in = {} + lock.acquire() + with h5py.File(self.fname,'r') as f: + for k,v in datasets.items(): + loc = f[group+'/'+v] + datasets_in[k]={'data':loc[()], + 'label':v, + 'meta':{k2:v2.decode() for k2,v2 in loc.attrs.items()}} + lock.release() + return datasets_in - env = Environment() - N_threads = int(env.options['DAMASK_NUM_THREADS']) - N_threads //=N_threads # disable for the moment + def __add_generic_pointwise(self,func,datasets,args={}): - results = Queue(N_threads) - pool = util.ThreadPool(N_threads) - N_added = N_threads + 1 + env = Environment() + N_threads = int(env.options['DAMASK_NUM_THREADS']) + pool = multiprocessing.Pool(N_threads) + m = multiprocessing.Manager() + lock = m.Lock() - todo = [] - # ToDo: It would be more memory efficient to read only from file when required, i.e. do to it in pool.add_task - for group in self.groups_with_datasets(dataset_mapping.values()): - with h5py.File(self.fname,'r') as f: - datasets_in = {} - for arg,label in dataset_mapping.items(): - loc = f[group+'/'+label] - data = loc[()] - meta = {k:loc.attrs[k].decode() for k in loc.attrs.keys()} - datasets_in[arg] = {'data': data, 'meta': meta, 'label': label} - - todo.append({'in':{**datasets_in,**args},'func':func,'group':group,'results':results}) - - pool.map(job, todo[:N_added]) # initialize - - N_not_calculated = len(todo) - while N_not_calculated > 0: - result = results.get() - with h5py.File(self.fname,'a') as f: # write to file - dataset_out = f[result['group']].create_dataset(result['label'],data=result['data']) - for k in result['meta'].keys(): - dataset_out.attrs[k] = result['meta'][k].encode() - N_not_calculated-=1 - - if N_added < len(todo): # add more jobs - pool.add_task(job,todo[N_added]) - N_added +=1 - - pool.wait_completion() + groups = self.groups_with_datasets(datasets.values()) + default_arg = partial(self.job,func=func,datasets=datasets,args=args,lock=lock) + for result in pool.imap_unordered(default_arg,groups): + if not result: continue + lock.acquire() + with h5py.File(self.fname, 'a') as f: + try: + dataset = f[result[0]].create_dataset(result[1]['label'],data=result[1]['data']) + for l,v in result[1]['meta'].items(): + dataset.attrs[l]=v.encode() + except OSError as err: + print('Could not add dataset: {}.'.format(err)) + lock.release() + pool.close() + pool.join() def to_vtk(self,labels,mode='cell'): diff --git a/python/damask/util.py b/python/damask/util.py index 1cb7b8602..0abf6050e 100644 --- a/python/damask/util.py +++ b/python/damask/util.py @@ -201,57 +201,3 @@ class return_message(): def __repr__(self): """Return message suitable for interactive shells.""" return srepr(self.message) - - -class ThreadPool: - """Pool of threads consuming tasks from a queue.""" - - class Worker(Thread): - """Thread executing tasks from a given tasks queue.""" - - def __init__(self, tasks): - """Worker for tasks.""" - Thread.__init__(self) - self.tasks = tasks - self.daemon = True - self.start() - - def run(self): - while True: - func, args, kargs = self.tasks.get() - try: - func(*args, **kargs) - except Exception as e: - # An exception happened in this thread - print(e) - finally: - # Mark this task as done, whether an exception happened or not - self.tasks.task_done() - - - def __init__(self, num_threads): - """ - Thread pool. - - Parameters - ---------- - num_threads : int - number of threads - - """ - self.tasks = Queue(num_threads) - for _ in range(num_threads): - self.Worker(self.tasks) - - def add_task(self, func, *args, **kargs): - """Add a task to the queue.""" - self.tasks.put((func, args, kargs)) - - def map(self, func, args_list): - """Add a list of tasks to the queue.""" - for args in args_list: - self.add_task(func, args) - - def wait_completion(self): - """Wait for completion of all the tasks in the queue.""" - self.tasks.join()