Merge remote-tracking branch 'origin/development' into initial-eigenstrain
This commit is contained in:
commit
0514ca7a56
|
@ -81,7 +81,7 @@ checkout:
|
|||
- release
|
||||
|
||||
###################################################################################################
|
||||
processing:
|
||||
pytest:
|
||||
stage: python
|
||||
script:
|
||||
- cd $DAMASKROOT/python
|
||||
|
@ -91,6 +91,15 @@ processing:
|
|||
- master
|
||||
- release
|
||||
|
||||
mypy:
|
||||
stage: python
|
||||
script:
|
||||
- cd $DAMASKROOT/python
|
||||
- mypy -m damask
|
||||
except:
|
||||
- master
|
||||
- release
|
||||
|
||||
|
||||
###################################################################################################
|
||||
compile_grid_Intel:
|
||||
|
|
2
PRIVATE
2
PRIVATE
|
@ -1 +1 @@
|
|||
Subproject commit fabe69749425e8a7aceb3b7c2758b40d97d8b809
|
||||
Subproject commit 5a769ec759d9dacc1866c35c6663cd0001e198c5
|
|
@ -1,26 +0,0 @@
|
|||
type: dislotungsten
|
||||
|
||||
N_sl: [12]
|
||||
|
||||
rho_mob_0: [1.0e+9]
|
||||
rho_dip_0: [1.0]
|
||||
|
||||
nu_a: [9.1e+11]
|
||||
b_sl: [2.72e-10]
|
||||
Delta_H_kp,0: [2.61154e-19] # 1.63 eV, Delta_H0
|
||||
|
||||
tau_Peierls: [2.03e+9]
|
||||
p_sl: [0.86]
|
||||
q_sl: [1.69]
|
||||
h: [2.566e-10]
|
||||
w: [2.992e-09]
|
||||
B: [8.3e-5]
|
||||
D_a: 1.0 # d_edge
|
||||
|
||||
# climb (disabled)
|
||||
D_0: 0.0
|
||||
Q_cl: 0.0
|
||||
V_cl: [0.0]
|
||||
|
||||
h_sl-sl: [0.009, 0.72, 0.009, 0.05, 0.05, 0.06, 0.09]
|
||||
a_nonSchmid: [0.938, 0.71, 4.43]
|
|
@ -0,0 +1,35 @@
|
|||
type: dislotungsten
|
||||
references:
|
||||
- D. Cereceda et al.,
|
||||
International Journal of Plasticity 78:242-265, 2016,
|
||||
http://dx.doi.org/10.1016/j.ijplas.2015.09.002
|
||||
- R. Gröger et al.,
|
||||
Acta Materialia 56(19):5412-5425, 2008,
|
||||
https://doi.org/10.1016/j.actamat.2008.07.037
|
||||
output: [Lambda_sl]
|
||||
N_sl: [12]
|
||||
b_sl: [2.72e-10]
|
||||
rho_mob_0: [1.0e+9] # estimated from section 3.2
|
||||
rho_dip_0: [1.0] # not given
|
||||
Q_s: [2.61154e-19] # 1.63 eV, Delta_H0
|
||||
B: [8.3e-5]
|
||||
omega: [9.1e+11] # nu_0
|
||||
p_sl: [0.86]
|
||||
q_sl: [1.69]
|
||||
tau_Peierls: [2.03e+9]
|
||||
h: [2.566e-10]
|
||||
h_sl-sl: [0.009, 0.72, 0.009, 0.05, 0.05, 0.06, 0.09]
|
||||
w: [2.992e-09] # 11b
|
||||
|
||||
# values in Cereceda et al. are high, using parameters from Gröger et al.
|
||||
a_nonSchmid: [0.0, 0.56, 0.75] # Table 2
|
||||
|
||||
# (almost) no annhilation, adjustment needed for simulations beyond the yield point
|
||||
i_sl: [1] # c, eq. (25)
|
||||
D: 1.0e+20 # d_g, eq. (25)
|
||||
D_a: 1.0 # d_edge = D_a*b
|
||||
|
||||
# disable climb (not discussed in Cereceda et al.)
|
||||
D_0: 0.0
|
||||
f_at: 1
|
||||
Q_cl: 1.0
|
|
@ -1 +1 @@
|
|||
v3.0.0-alpha5-31-gddb25ad0e
|
||||
v3.0.0-alpha5-64-g8e08af31e
|
||||
|
|
|
@ -125,7 +125,7 @@ class Orientation(Rotation,Crystal):
|
|||
"""Create deep copy."""
|
||||
dup = copy.deepcopy(self)
|
||||
if rotation is not None:
|
||||
dup.quaternion = Orientation(rotation,family='cubic').quaternion
|
||||
dup.quaternion = Rotation(rotation).quaternion
|
||||
return dup
|
||||
|
||||
copy = __copy__
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
import copy
|
||||
|
||||
import numpy as np
|
||||
|
||||
from . import tensor
|
||||
|
@ -85,9 +87,12 @@ class Rotation:
|
|||
+ str(self.quaternion)
|
||||
|
||||
|
||||
def __copy__(self,**kwargs):
|
||||
def __copy__(self,rotation=None):
|
||||
"""Create deep copy."""
|
||||
return self.__class__(rotation=kwargs['rotation'] if 'rotation' in kwargs else self.quaternion)
|
||||
dup = copy.deepcopy(self)
|
||||
if rotation is not None:
|
||||
dup.quaternion = Rotation(rotation).quaternion
|
||||
return dup
|
||||
|
||||
copy = __copy__
|
||||
|
||||
|
|
|
@ -11,10 +11,14 @@ the following operations are required for tensorial data:
|
|||
- D1 = D3.reshape(cells+(-1,)).reshape(-1,9,order='F')
|
||||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Tuple, Union
|
||||
|
||||
from scipy import spatial as _spatial
|
||||
import numpy as _np
|
||||
|
||||
def _ks(size,cells,first_order=False):
|
||||
|
||||
def _ks(size: _np.ndarray, cells: Union[_np.ndarray,Sequence[int]], first_order: bool = False) -> _np.ndarray:
|
||||
"""
|
||||
Get wave numbers operator.
|
||||
|
||||
|
@ -41,7 +45,7 @@ def _ks(size,cells,first_order=False):
|
|||
return _np.stack(_np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij'), axis=-1)
|
||||
|
||||
|
||||
def curl(size,f):
|
||||
def curl(size: _np.ndarray, f: _np.ndarray) -> _np.ndarray:
|
||||
u"""
|
||||
Calculate curl of a vector or tensor field in Fourier space.
|
||||
|
||||
|
@ -72,7 +76,7 @@ def curl(size,f):
|
|||
return _np.fft.irfftn(curl_,axes=(0,1,2),s=f.shape[:3])
|
||||
|
||||
|
||||
def divergence(size,f):
|
||||
def divergence(size: _np.ndarray, f: _np.ndarray) -> _np.ndarray:
|
||||
u"""
|
||||
Calculate divergence of a vector or tensor field in Fourier space.
|
||||
|
||||
|
@ -99,7 +103,7 @@ def divergence(size,f):
|
|||
return _np.fft.irfftn(div_,axes=(0,1,2),s=f.shape[:3])
|
||||
|
||||
|
||||
def gradient(size,f):
|
||||
def gradient(size: _np.ndarray, f: _np.ndarray) -> _np.ndarray:
|
||||
u"""
|
||||
Calculate gradient of a scalar or vector fieldin Fourier space.
|
||||
|
||||
|
@ -126,7 +130,9 @@ def gradient(size,f):
|
|||
return _np.fft.irfftn(grad_,axes=(0,1,2),s=f.shape[:3])
|
||||
|
||||
|
||||
def coordinates0_point(cells,size,origin=_np.zeros(3)):
|
||||
def coordinates0_point(cells: Union[ _np.ndarray,Sequence[int]],
|
||||
size: _np.ndarray,
|
||||
origin: _np.ndarray = _np.zeros(3)) -> _np.ndarray:
|
||||
"""
|
||||
Cell center positions (undeformed).
|
||||
|
||||
|
@ -145,8 +151,8 @@ def coordinates0_point(cells,size,origin=_np.zeros(3)):
|
|||
Undeformed cell center coordinates.
|
||||
|
||||
"""
|
||||
start = origin + size/cells*.5
|
||||
end = origin + size - size/cells*.5
|
||||
start = origin + size/_np.array(cells)*.5
|
||||
end = origin + size - size/_np.array(cells)*.5
|
||||
|
||||
return _np.stack(_np.meshgrid(_np.linspace(start[0],end[0],cells[0]),
|
||||
_np.linspace(start[1],end[1],cells[1]),
|
||||
|
@ -154,7 +160,7 @@ def coordinates0_point(cells,size,origin=_np.zeros(3)):
|
|||
axis = -1)
|
||||
|
||||
|
||||
def displacement_fluct_point(size,F):
|
||||
def displacement_fluct_point(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Cell center displacement field from fluctuation part of the deformation gradient field.
|
||||
|
||||
|
@ -186,7 +192,7 @@ def displacement_fluct_point(size,F):
|
|||
return _np.fft.irfftn(displacement,axes=(0,1,2),s=F.shape[:3])
|
||||
|
||||
|
||||
def displacement_avg_point(size,F):
|
||||
def displacement_avg_point(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Cell center displacement field from average part of the deformation gradient field.
|
||||
|
||||
|
@ -207,7 +213,7 @@ def displacement_avg_point(size,F):
|
|||
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),coordinates0_point(F.shape[:3],size))
|
||||
|
||||
|
||||
def displacement_point(size,F):
|
||||
def displacement_point(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Cell center displacement field from deformation gradient field.
|
||||
|
||||
|
@ -227,7 +233,7 @@ def displacement_point(size,F):
|
|||
return displacement_avg_point(size,F) + displacement_fluct_point(size,F)
|
||||
|
||||
|
||||
def coordinates_point(size,F,origin=_np.zeros(3)):
|
||||
def coordinates_point(size: _np.ndarray, F: _np.ndarray, origin: _np.ndarray = _np.zeros(3)) -> _np.ndarray:
|
||||
"""
|
||||
Cell center positions.
|
||||
|
||||
|
@ -249,7 +255,8 @@ def coordinates_point(size,F,origin=_np.zeros(3)):
|
|||
return coordinates0_point(F.shape[:3],size,origin) + displacement_point(size,F)
|
||||
|
||||
|
||||
def cellsSizeOrigin_coordinates0_point(coordinates0,ordered=True):
|
||||
def cellsSizeOrigin_coordinates0_point(coordinates0: _np.ndarray,
|
||||
ordered: bool = True) -> Tuple[_np.ndarray,_np.ndarray,_np.ndarray]:
|
||||
"""
|
||||
Return grid 'DNA', i.e. cells, size, and origin from 1D array of point positions.
|
||||
|
||||
|
@ -292,13 +299,15 @@ def cellsSizeOrigin_coordinates0_point(coordinates0,ordered=True):
|
|||
raise ValueError('Regular cell spacing violated.')
|
||||
|
||||
if ordered and not _np.allclose(coordinates0.reshape(tuple(cells)+(3,),order='F'),
|
||||
coordinates0_point(cells,size,origin),atol=atol):
|
||||
coordinates0_point(list(cells),size,origin),atol=atol):
|
||||
raise ValueError('Input data is not ordered (x fast, z slow).')
|
||||
|
||||
return (cells,size,origin)
|
||||
|
||||
|
||||
def coordinates0_node(cells,size,origin=_np.zeros(3)):
|
||||
def coordinates0_node(cells: Union[_np.ndarray,Sequence[int]],
|
||||
size: _np.ndarray,
|
||||
origin: _np.ndarray = _np.zeros(3)) -> _np.ndarray:
|
||||
"""
|
||||
Nodal positions (undeformed).
|
||||
|
||||
|
@ -323,7 +332,7 @@ def coordinates0_node(cells,size,origin=_np.zeros(3)):
|
|||
axis = -1)
|
||||
|
||||
|
||||
def displacement_fluct_node(size,F):
|
||||
def displacement_fluct_node(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Nodal displacement field from fluctuation part of the deformation gradient field.
|
||||
|
||||
|
@ -343,7 +352,7 @@ def displacement_fluct_node(size,F):
|
|||
return point_to_node(displacement_fluct_point(size,F))
|
||||
|
||||
|
||||
def displacement_avg_node(size,F):
|
||||
def displacement_avg_node(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Nodal displacement field from average part of the deformation gradient field.
|
||||
|
||||
|
@ -364,7 +373,7 @@ def displacement_avg_node(size,F):
|
|||
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),coordinates0_node(F.shape[:3],size))
|
||||
|
||||
|
||||
def displacement_node(size,F):
|
||||
def displacement_node(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Nodal displacement field from deformation gradient field.
|
||||
|
||||
|
@ -384,7 +393,7 @@ def displacement_node(size,F):
|
|||
return displacement_avg_node(size,F) + displacement_fluct_node(size,F)
|
||||
|
||||
|
||||
def coordinates_node(size,F,origin=_np.zeros(3)):
|
||||
def coordinates_node(size: _np.ndarray, F: _np.ndarray, origin: _np.ndarray = _np.zeros(3)) -> _np.ndarray:
|
||||
"""
|
||||
Nodal positions.
|
||||
|
||||
|
@ -406,7 +415,8 @@ def coordinates_node(size,F,origin=_np.zeros(3)):
|
|||
return coordinates0_node(F.shape[:3],size,origin) + displacement_node(size,F)
|
||||
|
||||
|
||||
def cellsSizeOrigin_coordinates0_node(coordinates0,ordered=True):
|
||||
def cellsSizeOrigin_coordinates0_node(coordinates0: _np.ndarray,
|
||||
ordered: bool = True) -> Tuple[_np.ndarray,_np.ndarray,_np.ndarray]:
|
||||
"""
|
||||
Return grid 'DNA', i.e. cells, size, and origin from 1D array of nodal positions.
|
||||
|
||||
|
@ -441,13 +451,13 @@ def cellsSizeOrigin_coordinates0_node(coordinates0,ordered=True):
|
|||
raise ValueError('Regular cell spacing violated.')
|
||||
|
||||
if ordered and not _np.allclose(coordinates0.reshape(tuple(cells+1)+(3,),order='F'),
|
||||
coordinates0_node(cells,size,origin),atol=atol):
|
||||
coordinates0_node(list(cells),size,origin),atol=atol):
|
||||
raise ValueError('Input data is not ordered (x fast, z slow).')
|
||||
|
||||
return (cells,size,origin)
|
||||
|
||||
|
||||
def point_to_node(cell_data):
|
||||
def point_to_node(cell_data: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Interpolate periodic point data to nodal data.
|
||||
|
||||
|
@ -469,7 +479,7 @@ def point_to_node(cell_data):
|
|||
return _np.pad(n,((0,1),(0,1),(0,1))+((0,0),)*len(cell_data.shape[3:]),mode='wrap')
|
||||
|
||||
|
||||
def node_to_point(node_data):
|
||||
def node_to_point(node_data: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Interpolate periodic nodal data to point data.
|
||||
|
||||
|
@ -491,7 +501,7 @@ def node_to_point(node_data):
|
|||
return c[1:,1:,1:]
|
||||
|
||||
|
||||
def coordinates0_valid(coordinates0):
|
||||
def coordinates0_valid(coordinates0: _np.ndarray) -> bool:
|
||||
"""
|
||||
Check whether coordinates form a regular grid.
|
||||
|
||||
|
@ -513,7 +523,7 @@ def coordinates0_valid(coordinates0):
|
|||
return False
|
||||
|
||||
|
||||
def regrid(size,F,cells):
|
||||
def regrid(size: _np.ndarray, F: _np.ndarray, cells: Union[_np.ndarray,Sequence[int]]) -> _np.ndarray:
|
||||
"""
|
||||
Return mapping from coordinates in deformed configuration to a regular grid.
|
||||
|
||||
|
|
|
@ -5,13 +5,15 @@ All routines operate on numpy.ndarrays of shape (...,3,3).
|
|||
|
||||
"""
|
||||
|
||||
from . import tensor as _tensor
|
||||
from . import _rotation
|
||||
from typing import Sequence
|
||||
|
||||
import numpy as _np
|
||||
|
||||
from . import tensor as _tensor
|
||||
from . import _rotation
|
||||
|
||||
def deformation_Cauchy_Green_left(F):
|
||||
|
||||
def deformation_Cauchy_Green_left(F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Calculate left Cauchy-Green deformation tensor (Finger deformation tensor).
|
||||
|
||||
|
@ -29,7 +31,7 @@ def deformation_Cauchy_Green_left(F):
|
|||
return _np.matmul(F,_tensor.transpose(F))
|
||||
|
||||
|
||||
def deformation_Cauchy_Green_right(F):
|
||||
def deformation_Cauchy_Green_right(F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Calculate right Cauchy-Green deformation tensor.
|
||||
|
||||
|
@ -47,7 +49,7 @@ def deformation_Cauchy_Green_right(F):
|
|||
return _np.matmul(_tensor.transpose(F),F)
|
||||
|
||||
|
||||
def equivalent_strain_Mises(epsilon):
|
||||
def equivalent_strain_Mises(epsilon: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Calculate the Mises equivalent of a strain tensor.
|
||||
|
||||
|
@ -65,7 +67,7 @@ def equivalent_strain_Mises(epsilon):
|
|||
return _equivalent_Mises(epsilon,2.0/3.0)
|
||||
|
||||
|
||||
def equivalent_stress_Mises(sigma):
|
||||
def equivalent_stress_Mises(sigma: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Calculate the Mises equivalent of a stress tensor.
|
||||
|
||||
|
@ -83,7 +85,7 @@ def equivalent_stress_Mises(sigma):
|
|||
return _equivalent_Mises(sigma,3.0/2.0)
|
||||
|
||||
|
||||
def maximum_shear(T_sym):
|
||||
def maximum_shear(T_sym: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Calculate the maximum shear component of a symmetric tensor.
|
||||
|
||||
|
@ -102,7 +104,7 @@ def maximum_shear(T_sym):
|
|||
return (w[...,0] - w[...,2])*0.5
|
||||
|
||||
|
||||
def rotation(T):
|
||||
def rotation(T: _np.ndarray) -> _rotation.Rotation:
|
||||
"""
|
||||
Calculate the rotational part of a tensor.
|
||||
|
||||
|
@ -120,7 +122,7 @@ def rotation(T):
|
|||
return _rotation.Rotation.from_matrix(_polar_decomposition(T,'R')[0])
|
||||
|
||||
|
||||
def strain(F,t,m):
|
||||
def strain(F: _np.ndarray, t: str, m: float) -> _np.ndarray:
|
||||
"""
|
||||
Calculate strain tensor (Seth–Hill family).
|
||||
|
||||
|
@ -160,7 +162,7 @@ def strain(F,t,m):
|
|||
return eps
|
||||
|
||||
|
||||
def stress_Cauchy(P,F):
|
||||
def stress_Cauchy(P: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Calculate the Cauchy stress (true stress).
|
||||
|
||||
|
@ -182,7 +184,7 @@ def stress_Cauchy(P,F):
|
|||
return _tensor.symmetric(_np.einsum('...,...ij,...kj',1.0/_np.linalg.det(F),P,F))
|
||||
|
||||
|
||||
def stress_second_Piola_Kirchhoff(P,F):
|
||||
def stress_second_Piola_Kirchhoff(P: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Calculate the second Piola-Kirchhoff stress.
|
||||
|
||||
|
@ -205,7 +207,7 @@ def stress_second_Piola_Kirchhoff(P,F):
|
|||
return _tensor.symmetric(_np.einsum('...ij,...jk',_np.linalg.inv(F),P))
|
||||
|
||||
|
||||
def stretch_left(T):
|
||||
def stretch_left(T: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Calculate left stretch of a tensor.
|
||||
|
||||
|
@ -223,7 +225,7 @@ def stretch_left(T):
|
|||
return _polar_decomposition(T,'V')[0]
|
||||
|
||||
|
||||
def stretch_right(T):
|
||||
def stretch_right(T: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Calculate right stretch of a tensor.
|
||||
|
||||
|
@ -241,7 +243,7 @@ def stretch_right(T):
|
|||
return _polar_decomposition(T,'U')[0]
|
||||
|
||||
|
||||
def _polar_decomposition(T,requested):
|
||||
def _polar_decomposition(T: _np.ndarray, requested: Sequence[str]) -> tuple:
|
||||
"""
|
||||
Perform singular value decomposition.
|
||||
|
||||
|
@ -257,21 +259,21 @@ def _polar_decomposition(T,requested):
|
|||
u, _, vh = _np.linalg.svd(T)
|
||||
R = _np.einsum('...ij,...jk',u,vh)
|
||||
|
||||
output = ()
|
||||
output = []
|
||||
if 'R' in requested:
|
||||
output+=(R,)
|
||||
output+=[R]
|
||||
if 'V' in requested:
|
||||
output+=(_np.einsum('...ij,...kj',T,R),)
|
||||
output+=[_np.einsum('...ij,...kj',T,R)]
|
||||
if 'U' in requested:
|
||||
output+=(_np.einsum('...ji,...jk',R,T),)
|
||||
output+=[_np.einsum('...ji,...jk',R,T)]
|
||||
|
||||
if len(output) == 0:
|
||||
raise ValueError('output needs to be out of V, R, U')
|
||||
|
||||
return output
|
||||
return tuple(output)
|
||||
|
||||
|
||||
def _equivalent_Mises(T_sym,s):
|
||||
def _equivalent_Mises(T_sym: _np.ndarray, s: float) -> _np.ndarray:
|
||||
"""
|
||||
Base equation for Mises equivalent of a stress or strain tensor.
|
||||
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
"""Functionality for generation of seed points for Voronoi or Laguerre tessellation."""
|
||||
|
||||
from typing import Sequence,Tuple
|
||||
|
||||
from scipy import spatial as _spatial
|
||||
import numpy as _np
|
||||
|
||||
|
@ -7,7 +9,7 @@ from . import util as _util
|
|||
from . import grid_filters as _grid_filters
|
||||
|
||||
|
||||
def from_random(size,N_seeds,cells=None,rng_seed=None):
|
||||
def from_random(size: _np.ndarray, N_seeds: int, cells: _np.ndarray = None, rng_seed=None) -> _np.ndarray:
|
||||
"""
|
||||
Place seeds randomly in space.
|
||||
|
||||
|
@ -41,7 +43,8 @@ def from_random(size,N_seeds,cells=None,rng_seed=None):
|
|||
return coords
|
||||
|
||||
|
||||
def from_Poisson_disc(size,N_seeds,N_candidates,distance,periodic=True,rng_seed=None):
|
||||
def from_Poisson_disc(size: _np.ndarray, N_seeds: int, N_candidates: int, distance: float,
|
||||
periodic: bool = True, rng_seed=None) -> _np.ndarray:
|
||||
"""
|
||||
Place seeds according to a Poisson disc distribution.
|
||||
|
||||
|
@ -75,18 +78,17 @@ def from_Poisson_disc(size,N_seeds,N_candidates,distance,periodic=True,rng_seed=
|
|||
i = 0
|
||||
progress = _util._ProgressBar(N_seeds+1,'',50)
|
||||
while s < N_seeds:
|
||||
i += 1
|
||||
candidates = rng.random((N_candidates,3))*_np.broadcast_to(size,(N_candidates,3))
|
||||
tree = _spatial.cKDTree(coords[:s],boxsize=size) if periodic else \
|
||||
_spatial.cKDTree(coords[:s])
|
||||
distances = tree.query(candidates)[0]
|
||||
best = distances.argmax()
|
||||
if distances[best] > distance: # require minimum separation
|
||||
i = 0
|
||||
coords[s] = candidates[best] # maximum separation to existing point cloud
|
||||
s += 1
|
||||
progress.update(s)
|
||||
i = 0
|
||||
else:
|
||||
i += 1
|
||||
|
||||
if i == 100:
|
||||
raise ValueError('Seeding not possible')
|
||||
|
@ -94,22 +96,23 @@ def from_Poisson_disc(size,N_seeds,N_candidates,distance,periodic=True,rng_seed=
|
|||
return coords
|
||||
|
||||
|
||||
def from_grid(grid,selection=None,invert=False,average=False,periodic=True):
|
||||
def from_grid(grid, selection: Sequence[int] = None,
|
||||
invert: bool = False, average: bool = False, periodic: bool = True) -> Tuple[_np.ndarray, _np.ndarray]:
|
||||
"""
|
||||
Create seeds from grid description.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
grid : damask.Grid
|
||||
Grid, from which the material IDs are used as seeds.
|
||||
Grid from which the material IDs are used as seeds.
|
||||
selection : iterable of integers, optional
|
||||
Material IDs to consider.
|
||||
invert : boolean, false
|
||||
Do not consider the material IDs given in selection. Defaults to False.
|
||||
Consider all material IDs except those in selection. Defaults to False.
|
||||
average : boolean, optional
|
||||
Seed corresponds to center of gravity of material ID cloud.
|
||||
periodic : boolean, optional
|
||||
Center of gravity with periodic boundaries.
|
||||
Center of gravity accounts for periodic boundaries.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
|
|
@ -8,7 +8,7 @@ All routines operate on numpy.ndarrays of shape (...,3,3).
|
|||
import numpy as _np
|
||||
|
||||
|
||||
def deviatoric(T):
|
||||
def deviatoric(T: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Calculate deviatoric part of a tensor.
|
||||
|
||||
|
@ -26,7 +26,7 @@ def deviatoric(T):
|
|||
return T - spherical(T,tensor=True)
|
||||
|
||||
|
||||
def eigenvalues(T_sym):
|
||||
def eigenvalues(T_sym: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Eigenvalues, i.e. principal components, of a symmetric tensor.
|
||||
|
||||
|
@ -45,7 +45,7 @@ def eigenvalues(T_sym):
|
|||
return _np.linalg.eigvalsh(symmetric(T_sym))
|
||||
|
||||
|
||||
def eigenvectors(T_sym,RHS=False):
|
||||
def eigenvectors(T_sym: _np.ndarray, RHS: bool = False) -> _np.ndarray:
|
||||
"""
|
||||
Eigenvectors of a symmetric tensor.
|
||||
|
||||
|
@ -70,7 +70,7 @@ def eigenvectors(T_sym,RHS=False):
|
|||
return v
|
||||
|
||||
|
||||
def spherical(T,tensor=True):
|
||||
def spherical(T: _np.ndarray, tensor: bool = True) -> _np.ndarray:
|
||||
"""
|
||||
Calculate spherical part of a tensor.
|
||||
|
||||
|
@ -92,7 +92,7 @@ def spherical(T,tensor=True):
|
|||
return _np.einsum('...jk,...',_np.eye(3),sph) if tensor else sph
|
||||
|
||||
|
||||
def symmetric(T):
|
||||
def symmetric(T: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Symmetrize tensor.
|
||||
|
||||
|
@ -110,7 +110,7 @@ def symmetric(T):
|
|||
return (T+transpose(T))*0.5
|
||||
|
||||
|
||||
def transpose(T):
|
||||
def transpose(T: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Transpose tensor.
|
||||
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
[mypy-scipy.*]
|
||||
ignore_missing_imports = True
|
||||
[mypy-h5py.*]
|
||||
ignore_missing_imports = True
|
||||
[mypy-vtk.*]
|
||||
ignore_missing_imports = True
|
||||
[mypy-PIL.*]
|
||||
ignore_missing_imports = True
|
||||
[mypy-matplotlib.*]
|
||||
ignore_missing_imports = True
|
||||
[mypy-pandas.*]
|
||||
ignore_missing_imports = True
|
||||
[mypy-wx.*]
|
||||
ignore_missing_imports = True
|
|
@ -432,7 +432,7 @@ subroutine IO_error(error_ID,el,ip,g,instance,ext_msg)
|
|||
msg = 'Nconstituents mismatch between homogenization and material'
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! material error messages and related messages in mesh
|
||||
! material error messages and related messages in geometry
|
||||
case (150)
|
||||
msg = 'index out of bounds'
|
||||
case (153)
|
||||
|
@ -499,6 +499,11 @@ subroutine IO_error(error_ID,el,ip,g,instance,ext_msg)
|
|||
case (710)
|
||||
msg = 'Closing quotation mark missing in string'
|
||||
|
||||
!-------------------------------------------------------------------------------------------------
|
||||
! errors related to the mesh solver
|
||||
case (821)
|
||||
msg = 'order not supported'
|
||||
|
||||
!-------------------------------------------------------------------------------------------------
|
||||
! errors related to the grid solver
|
||||
case (831)
|
||||
|
|
|
@ -19,6 +19,7 @@ module FEM_utilities
|
|||
use IO
|
||||
use discretization_mesh
|
||||
use homogenization
|
||||
use FEM_quadrature
|
||||
|
||||
implicit none
|
||||
private
|
||||
|
@ -86,7 +87,9 @@ subroutine FEM_utilities_init
|
|||
class(tNode), pointer :: &
|
||||
num_mesh, &
|
||||
debug_mesh ! pointer to mesh debug options
|
||||
integer :: structOrder !< order of displacement shape functions
|
||||
integer :: &
|
||||
p_s, & !< order of shape functions
|
||||
p_i !< integration order (quadrature rule)
|
||||
character(len=*), parameter :: &
|
||||
PETSCDEBUG = ' -snes_view -snes_monitor '
|
||||
PetscErrorCode :: ierr
|
||||
|
@ -96,7 +99,14 @@ subroutine FEM_utilities_init
|
|||
print'(/,a)', ' <<<+- FEM_utilities init -+>>>'
|
||||
|
||||
num_mesh => config_numerics%get('mesh',defaultVal=emptyDict)
|
||||
structOrder = num_mesh%get_asInt('structOrder', defaultVal = 2)
|
||||
|
||||
p_s = num_mesh%get_asInt('p_s',defaultVal = 2)
|
||||
p_i = num_mesh%get_asInt('p_i',defaultVal = p_s)
|
||||
|
||||
if (p_s < 1_pInt .or. p_s > size(FEM_nQuadrature,2)) &
|
||||
call IO_error(821,ext_msg='shape function order (p_s) out of bounds')
|
||||
if (p_i < max(1_pInt,p_s-1_pInt) .or. p_i > p_s) &
|
||||
call IO_error(821,ext_msg='integration order (p_i) out of bounds')
|
||||
|
||||
debug_mesh => config_debug%get('mesh',defaultVal=emptyList)
|
||||
debugPETSc = debug_mesh%contains('PETSc')
|
||||
|
@ -119,7 +129,7 @@ subroutine FEM_utilities_init
|
|||
CHKERRQ(ierr)
|
||||
call PetscOptionsInsertString(PETSC_NULL_OPTIONS,num_mesh%get_asString('PETSc_options',defaultVal=''),ierr)
|
||||
CHKERRQ(ierr)
|
||||
write(petsc_optionsOrder,'(a,i0)') '-mechFE_petscspace_degree ', structOrder
|
||||
write(petsc_optionsOrder,'(a,i0)') '-mechFE_petscspace_degree ', p_s
|
||||
call PetscOptionsInsertString(PETSC_NULL_OPTIONS,trim(petsc_optionsOrder),ierr)
|
||||
CHKERRQ(ierr)
|
||||
|
||||
|
|
|
@ -85,7 +85,7 @@ subroutine discretization_mesh_init(restart)
|
|||
materialAt
|
||||
class(tNode), pointer :: &
|
||||
num_mesh
|
||||
integer :: integrationOrder !< order of quadrature rule required
|
||||
integer :: p_i !< integration order (quadrature rule)
|
||||
type(tvec) :: coords_node0
|
||||
|
||||
print'(/,a)', ' <<<+- discretization_mesh init -+>>>'
|
||||
|
@ -93,7 +93,7 @@ subroutine discretization_mesh_init(restart)
|
|||
!--------------------------------------------------------------------------------
|
||||
! read numerics parameter
|
||||
num_mesh => config_numerics%get('mesh',defaultVal=emptyDict)
|
||||
integrationOrder = num_mesh%get_asInt('integrationorder',defaultVal = 2)
|
||||
p_i = num_mesh%get_asInt('p_i',defaultVal = 2)
|
||||
|
||||
!---------------------------------------------------------------------------------
|
||||
! read debug parameters
|
||||
|
@ -150,9 +150,9 @@ subroutine discretization_mesh_init(restart)
|
|||
call VecGetArrayF90(coords_node0, mesh_node0_temp,ierr)
|
||||
CHKERRQ(ierr)
|
||||
|
||||
mesh_maxNips = FEM_nQuadrature(dimPlex,integrationOrder)
|
||||
mesh_maxNips = FEM_nQuadrature(dimPlex,p_i)
|
||||
|
||||
call mesh_FEM_build_ipCoordinates(dimPlex,FEM_quadrature_points(dimPlex,integrationOrder)%p)
|
||||
call mesh_FEM_build_ipCoordinates(dimPlex,FEM_quadrature_points(dimPlex,p_i)%p)
|
||||
call mesh_FEM_build_ipVolumes(dimPlex)
|
||||
|
||||
allocate(materialAt(mesh_NcpElems))
|
||||
|
|
|
@ -41,7 +41,7 @@ module mesh_mechanical_FEM
|
|||
|
||||
type, private :: tNumerics
|
||||
integer :: &
|
||||
integrationOrder, & !< order of quadrature rule required
|
||||
p_i, & !< integration order (quadrature rule)
|
||||
itmax
|
||||
logical :: &
|
||||
BBarStabilisation
|
||||
|
@ -118,7 +118,7 @@ subroutine FEM_mechanical_init(fieldBC)
|
|||
!-----------------------------------------------------------------------------
|
||||
! read numerical parametes and do sanity checks
|
||||
num_mesh => config_numerics%get('mesh',defaultVal=emptyDict)
|
||||
num%integrationOrder = num_mesh%get_asInt('integrationorder',defaultVal = 2)
|
||||
num%p_i = num_mesh%get_asInt('p_i',defaultVal = 2)
|
||||
num%itmax = num_mesh%get_asInt('itmax',defaultVal=250)
|
||||
num%BBarStabilisation = num_mesh%get_asBool('bbarstabilisation',defaultVal = .false.)
|
||||
num%eps_struct_atol = num_mesh%get_asFloat('eps_struct_atol', defaultVal = 1.0e-10_pReal)
|
||||
|
@ -135,9 +135,9 @@ subroutine FEM_mechanical_init(fieldBC)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Setup FEM mech discretization
|
||||
qPoints = FEM_quadrature_points( dimPlex,num%integrationOrder)%p
|
||||
qWeights = FEM_quadrature_weights(dimPlex,num%integrationOrder)%p
|
||||
nQuadrature = FEM_nQuadrature( dimPlex,num%integrationOrder)
|
||||
qPoints = FEM_quadrature_points( dimPlex,num%p_i)%p
|
||||
qWeights = FEM_quadrature_weights(dimPlex,num%p_i)%p
|
||||
nQuadrature = FEM_nQuadrature( dimPlex,num%p_i)
|
||||
qPointsP => qPoints
|
||||
qWeightsP => qWeights
|
||||
call PetscQuadratureCreate(PETSC_COMM_SELF,mechQuad,ierr); CHKERRQ(ierr)
|
||||
|
@ -146,7 +146,7 @@ subroutine FEM_mechanical_init(fieldBC)
|
|||
call PetscQuadratureSetData(mechQuad,dimPlex,nc,nQuadrature,qPointsP,qWeightsP,ierr)
|
||||
CHKERRQ(ierr)
|
||||
call PetscFECreateDefault(PETSC_COMM_SELF,dimPlex,nc,PETSC_TRUE,prefix, &
|
||||
num%integrationOrder,mechFE,ierr); CHKERRQ(ierr)
|
||||
num%p_i,mechFE,ierr); CHKERRQ(ierr)
|
||||
call PetscFESetQuadrature(mechFE,mechQuad,ierr); CHKERRQ(ierr)
|
||||
call PetscFEGetDimension(mechFE,nBasis,ierr); CHKERRQ(ierr)
|
||||
nBasis = nBasis/nc
|
||||
|
|
|
@ -24,7 +24,6 @@ submodule(phase:plastic) dislotungsten
|
|||
tau_Peierls, & !< Peierls stress
|
||||
!* mobility law parameters
|
||||
Q_s, & !< activation energy for glide [J]
|
||||
v_0, & !< dislocation velocity prefactor [m/s]
|
||||
p, & !< p-exponent in glide velocity
|
||||
q, & !< q-exponent in glide velocity
|
||||
B, & !< friction coefficient
|
||||
|
@ -158,7 +157,6 @@ module function plastic_dislotungsten_init() result(myPlasticity)
|
|||
|
||||
rho_mob_0 = pl%get_as1dFloat('rho_mob_0', requiredSize=size(N_sl))
|
||||
rho_dip_0 = pl%get_as1dFloat('rho_dip_0', requiredSize=size(N_sl))
|
||||
prm%v_0 = pl%get_as1dFloat('v_0', requiredSize=size(N_sl))
|
||||
prm%b_sl = pl%get_as1dFloat('b_sl', requiredSize=size(N_sl))
|
||||
prm%Q_s = pl%get_as1dFloat('Q_s', requiredSize=size(N_sl))
|
||||
|
||||
|
@ -189,18 +187,16 @@ module function plastic_dislotungsten_init() result(myPlasticity)
|
|||
prm%w = math_expand(prm%w, N_sl)
|
||||
prm%omega = math_expand(prm%omega, N_sl)
|
||||
prm%tau_Peierls = math_expand(prm%tau_Peierls, N_sl)
|
||||
prm%v_0 = math_expand(prm%v_0, N_sl)
|
||||
prm%B = math_expand(prm%B, N_sl)
|
||||
prm%i_sl = math_expand(prm%i_sl, N_sl)
|
||||
prm%f_at = math_expand(prm%f_at, N_sl)
|
||||
prm%d_caron = pl%get_asFloat('D_a') * prm%b_sl
|
||||
|
||||
! sanity checks
|
||||
if ( prm%D_0 <= 0.0_pReal) extmsg = trim(extmsg)//' D_0'
|
||||
if ( prm%D_0 < 0.0_pReal) extmsg = trim(extmsg)//' D_0'
|
||||
if ( prm%Q_cl <= 0.0_pReal) extmsg = trim(extmsg)//' Q_cl'
|
||||
if (any(rho_mob_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_mob_0'
|
||||
if (any(rho_dip_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_dip_0'
|
||||
if (any(prm%v_0 < 0.0_pReal)) extmsg = trim(extmsg)//' v_0'
|
||||
if (any(prm%b_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' b_sl'
|
||||
if (any(prm%Q_s <= 0.0_pReal)) extmsg = trim(extmsg)//' Q_s'
|
||||
if (any(prm%tau_Peierls < 0.0_pReal)) extmsg = trim(extmsg)//' tau_Peierls'
|
||||
|
@ -211,7 +207,7 @@ module function plastic_dislotungsten_init() result(myPlasticity)
|
|||
else slipActive
|
||||
rho_mob_0 = emptyRealArray; rho_dip_0 = emptyRealArray
|
||||
allocate(prm%b_sl,prm%d_caron,prm%i_sl,prm%f_at,prm%tau_Peierls, &
|
||||
prm%Q_s,prm%v_0,prm%p,prm%q,prm%B,prm%h,prm%w,prm%omega, &
|
||||
prm%Q_s,prm%p,prm%q,prm%B,prm%h,prm%w,prm%omega, &
|
||||
source = emptyRealArray)
|
||||
allocate(prm%forestProjection(0,0))
|
||||
allocate(prm%h_sl_sl (0,0))
|
||||
|
@ -287,6 +283,7 @@ pure module subroutine dislotungsten_LpAndItsTangent(Lp,dLp_dMp, &
|
|||
dot_gamma_pos,dot_gamma_neg, &
|
||||
ddot_gamma_dtau_pos,ddot_gamma_dtau_neg
|
||||
|
||||
|
||||
Lp = 0.0_pReal
|
||||
dLp_dMp = 0.0_pReal
|
||||
|
||||
|
@ -328,6 +325,7 @@ module subroutine dislotungsten_dotState(Mp,T,ph,en)
|
|||
dot_rho_dip_climb, &
|
||||
d_hat
|
||||
|
||||
|
||||
associate(prm => param(ph), stt => state(ph), dot => dotState(ph), dst => dependentState(ph))
|
||||
|
||||
call kinetics(Mp,T,ph,en,&
|
||||
|
@ -336,11 +334,11 @@ module subroutine dislotungsten_dotState(Mp,T,ph,en)
|
|||
|
||||
dot%gamma_sl(:,en) = abs(dot_gamma_pos+dot_gamma_neg)
|
||||
|
||||
where(dEq0(tau_pos)) ! ToDo: use avg of +/-
|
||||
where(dEq0((tau_pos+tau_neg)*0.5_pReal))
|
||||
dot_rho_dip_formation = 0.0_pReal
|
||||
dot_rho_dip_climb = 0.0_pReal
|
||||
else where
|
||||
d_hat = math_clip(3.0_pReal*prm%mu*prm%b_sl/(16.0_pReal*PI*abs(tau_pos)), & ! ToDo: use avg of +/-
|
||||
d_hat = math_clip(3.0_pReal*prm%mu*prm%b_sl/(16.0_pReal*PI*abs(tau_pos+tau_neg)*0.5_pReal), &
|
||||
prm%d_caron, & ! lower limit
|
||||
dst%Lambda_sl(:,en)) ! upper limit
|
||||
dot_rho_dip_formation = merge(2.0_pReal*(d_hat-prm%d_caron)*stt%rho_mob(:,en)*dot%gamma_sl(:,en)/prm%b_sl, &
|
||||
|
@ -373,16 +371,17 @@ module subroutine dislotungsten_dependentState(ph,en)
|
|||
en
|
||||
|
||||
real(pReal), dimension(param(ph)%sum_N_sl) :: &
|
||||
dislocationSpacing
|
||||
Lambda_sl_inv
|
||||
|
||||
|
||||
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
||||
|
||||
dislocationSpacing = sqrt(matmul(prm%forestProjection,stt%rho_mob(:,en)+stt%rho_dip(:,en)))
|
||||
dst%tau_pass(:,en) = prm%mu*prm%b_sl &
|
||||
* sqrt(matmul(prm%h_sl_sl,stt%rho_mob(:,en)+stt%rho_dip(:,en)))
|
||||
|
||||
dst%Lambda_sl(:,en) = prm%D/(1.0_pReal+prm%D*dislocationSpacing/prm%i_sl)
|
||||
Lambda_sl_inv = 1.0_pReal/prm%D &
|
||||
+ sqrt(matmul(prm%forestProjection,stt%rho_mob(:,en)+stt%rho_dip(:,en)))/prm%i_sl
|
||||
dst%Lambda_sl(:,en) = Lambda_sl_inv**(-1.0_pReal)
|
||||
|
||||
end associate
|
||||
|
||||
|
@ -456,14 +455,16 @@ pure subroutine kinetics(Mp,T,ph,en, &
|
|||
ddot_gamma_dtau_neg, &
|
||||
tau_pos_out, &
|
||||
tau_neg_out
|
||||
|
||||
real(pReal), dimension(param(ph)%sum_N_sl) :: &
|
||||
StressRatio, &
|
||||
StressRatio_p,StressRatio_pminus1, &
|
||||
dvel, vel, &
|
||||
tau_pos,tau_neg, &
|
||||
dvel, &
|
||||
tau_pos, tau_neg, tau_eff, &
|
||||
t_n, t_k, dtk,dtn
|
||||
integer :: j
|
||||
|
||||
|
||||
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
||||
|
||||
do j = 1, prm%sum_N_sl
|
||||
|
@ -471,25 +472,25 @@ pure subroutine kinetics(Mp,T,ph,en, &
|
|||
tau_neg(j) = math_tensordot(Mp,prm%P_nS_neg(1:3,1:3,j))
|
||||
end do
|
||||
|
||||
|
||||
if (present(tau_pos_out)) tau_pos_out = tau_pos
|
||||
if (present(tau_neg_out)) tau_neg_out = tau_neg
|
||||
|
||||
associate(BoltzmannRatio => prm%Q_s/(kB*T), &
|
||||
dot_gamma_0 => stt%rho_mob(:,en)*prm%b_sl*prm%v_0, &
|
||||
b_rho_half => stt%rho_mob(:,en) * prm%b_sl * 0.5_pReal, &
|
||||
effectiveLength => dst%Lambda_sl(:,en) - prm%w)
|
||||
|
||||
significantPositiveTau: where(abs(tau_pos)-dst%tau_pass(:,en) > tol_math_check)
|
||||
StressRatio = (abs(tau_pos)-dst%tau_pass(:,en))/prm%tau_Peierls
|
||||
tau_eff = abs(tau_pos)-dst%tau_pass(:,en)
|
||||
|
||||
significantPositiveTau: where(tau_eff > tol_math_check)
|
||||
StressRatio = tau_eff/prm%tau_Peierls
|
||||
StressRatio_p = StressRatio** prm%p
|
||||
StressRatio_pminus1 = StressRatio**(prm%p-1.0_pReal)
|
||||
|
||||
t_n = prm%b_sl/(exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q)*prm%omega*effectiveLength)
|
||||
t_k = effectiveLength * prm%B /(2.0_pReal*prm%b_sl*tau_pos)
|
||||
t_n = prm%b_sl*exp(BoltzmannRatio*(1.0_pReal-StressRatio_p) ** prm%q) &
|
||||
/ (prm%omega*effectiveLength)
|
||||
t_k = effectiveLength * prm%B /(2.0_pReal*prm%b_sl*tau_eff) ! corrected eq. (14)
|
||||
|
||||
vel = prm%h/(t_n + t_k)
|
||||
|
||||
dot_gamma_pos = dot_gamma_0 * sign(vel,tau_pos) * 0.5_pReal
|
||||
dot_gamma_pos = b_rho_half * sign(prm%h/(t_n + t_k),tau_pos)
|
||||
else where significantPositiveTau
|
||||
dot_gamma_pos = 0.0_pReal
|
||||
end where significantPositiveTau
|
||||
|
@ -497,28 +498,29 @@ pure subroutine kinetics(Mp,T,ph,en, &
|
|||
if (present(ddot_gamma_dtau_pos)) then
|
||||
significantPositiveTau2: where(abs(tau_pos)-dst%tau_pass(:,en) > tol_math_check)
|
||||
dtn = -1.0_pReal * t_n * BoltzmannRatio * prm%p * prm%q * (1.0_pReal-StressRatio_p)**(prm%q - 1.0_pReal) &
|
||||
* (StressRatio)**(prm%p - 1.0_pReal) / prm%tau_Peierls
|
||||
* StressRatio_pminus1 / prm%tau_Peierls
|
||||
dtk = -1.0_pReal * t_k / tau_pos
|
||||
|
||||
dvel = -1.0_pReal * prm%h * (dtk + dtn) / (t_n + t_k)**2.0_pReal
|
||||
|
||||
ddot_gamma_dtau_pos = dot_gamma_0 * dvel* 0.5_pReal
|
||||
ddot_gamma_dtau_pos = b_rho_half * dvel
|
||||
else where significantPositiveTau2
|
||||
ddot_gamma_dtau_pos = 0.0_pReal
|
||||
end where significantPositiveTau2
|
||||
end if
|
||||
|
||||
significantNegativeTau: where(abs(tau_neg)-dst%tau_pass(:,en) > tol_math_check)
|
||||
StressRatio = (abs(tau_neg)-dst%tau_pass(:,en))/prm%tau_Peierls
|
||||
tau_eff = abs(tau_neg)-dst%tau_pass(:,en)
|
||||
|
||||
significantNegativeTau: where(tau_eff > tol_math_check)
|
||||
StressRatio = tau_eff/prm%tau_Peierls
|
||||
StressRatio_p = StressRatio** prm%p
|
||||
StressRatio_pminus1 = StressRatio**(prm%p-1.0_pReal)
|
||||
|
||||
t_n = prm%b_sl/(exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q)*prm%omega*effectiveLength)
|
||||
t_k = effectiveLength * prm%B /(2.0_pReal*prm%b_sl*tau_pos)
|
||||
t_n = prm%b_sl*exp(BoltzmannRatio*(1.0_pReal-StressRatio_p) ** prm%q) &
|
||||
/ (prm%omega*effectiveLength)
|
||||
t_k = effectiveLength * prm%B /(2.0_pReal*prm%b_sl*tau_eff) ! corrected eq. (14)
|
||||
|
||||
vel = prm%h/(t_n + t_k)
|
||||
|
||||
dot_gamma_neg = dot_gamma_0 * sign(vel,tau_neg) * 0.5_pReal
|
||||
dot_gamma_neg = b_rho_half * sign(prm%h/(t_n + t_k),tau_neg)
|
||||
else where significantNegativeTau
|
||||
dot_gamma_neg = 0.0_pReal
|
||||
end where significantNegativeTau
|
||||
|
@ -526,12 +528,12 @@ pure subroutine kinetics(Mp,T,ph,en, &
|
|||
if (present(ddot_gamma_dtau_neg)) then
|
||||
significantNegativeTau2: where(abs(tau_neg)-dst%tau_pass(:,en) > tol_math_check)
|
||||
dtn = -1.0_pReal * t_n * BoltzmannRatio * prm%p * prm%q * (1.0_pReal-StressRatio_p)**(prm%q - 1.0_pReal) &
|
||||
* (StressRatio)**(prm%p - 1.0_pReal) / prm%tau_Peierls
|
||||
* StressRatio_pminus1 / prm%tau_Peierls
|
||||
dtk = -1.0_pReal * t_k / tau_neg
|
||||
|
||||
dvel = -1.0_pReal * prm%h * (dtk + dtn) / (t_n + t_k)**2.0_pReal
|
||||
|
||||
ddot_gamma_dtau_neg = dot_gamma_0 * dvel * 0.5_pReal
|
||||
ddot_gamma_dtau_neg = b_rho_half * dvel
|
||||
else where significantNegativeTau2
|
||||
ddot_gamma_dtau_neg = 0.0_pReal
|
||||
end where significantNegativeTau2
|
||||
|
|
|
@ -890,7 +890,8 @@ pure subroutine kinetics_sl(Mp,T,ph,en, &
|
|||
stressRatio = tau_eff/prm%tau_0
|
||||
StressRatio_p = stressRatio** prm%p
|
||||
Q_kB_T = prm%Q_sl/(kB*T)
|
||||
v_wait_inverse = prm%v_0**(-1.0_pReal) * exp(Q_kB_T*(1.0_pReal-StressRatio_p)** prm%q)
|
||||
v_wait_inverse = exp(Q_kB_T*(1.0_pReal-StressRatio_p)** prm%q) &
|
||||
/ prm%v_0
|
||||
v_run_inverse = prm%B/(tau_eff*prm%b_sl)
|
||||
|
||||
dot_gamma_sl = sign(stt%rho_mob(:,en)*prm%b_sl/(v_wait_inverse+v_run_inverse),tau)
|
||||
|
|
Loading…
Reference in New Issue