Merge branch 'development' of magit1.mpie.de:damask/DAMASK into development
This commit is contained in:
commit
04af989dbf
|
@ -712,6 +712,7 @@ C_routines.o: C_routines.c
|
|||
tidy:
|
||||
@rm -rf *.o
|
||||
@rm -rf *.mod
|
||||
@rm -rf *.optrpt
|
||||
@rm -rf *.inst.f90 # for instrumentation
|
||||
@rm -rf *.pomp.f90 # for instrumentation
|
||||
@rm -rf *.pp.f90 # for instrumentation
|
||||
|
@ -724,6 +725,7 @@ cleanDAMASK:
|
|||
@rm -rf *.marc
|
||||
@rm -rf *.o
|
||||
@rm -rf *.mod
|
||||
@rm -rf *.optrpt
|
||||
@rm -rf *.inst.f90 # for instrumentation
|
||||
@rm -rf *.pomp.f90 # for instrumentation
|
||||
@rm -rf *.pp.f90 # for instrumentation
|
||||
|
|
|
@ -1051,6 +1051,8 @@ end subroutine material_parsePhase
|
|||
!> @brief parses the texture part in the material configuration file
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine material_parseTexture(fileUnit,myPart)
|
||||
use prec, only: &
|
||||
dNeq
|
||||
use IO, only: &
|
||||
IO_read, &
|
||||
IO_globalTagInPart, &
|
||||
|
@ -1069,6 +1071,7 @@ subroutine material_parseTexture(fileUnit,myPart)
|
|||
inRad, &
|
||||
math_sampleRandomOri, &
|
||||
math_I3, &
|
||||
math_det33, &
|
||||
math_inv33
|
||||
|
||||
implicit none
|
||||
|
@ -1154,6 +1157,9 @@ subroutine material_parseTexture(fileUnit,myPart)
|
|||
end select
|
||||
enddo
|
||||
|
||||
if(dNeq(math_det33(texture_transformation(1:3,1:3,section)),1.0_pReal)) &
|
||||
call IO_error(157_pInt,section)
|
||||
|
||||
case ('hybridia') textureType
|
||||
texture_ODFfile(section) = IO_stringValue(line,chunkPos,2_pInt)
|
||||
|
||||
|
@ -1586,13 +1592,8 @@ subroutine material_populateGrains
|
|||
deallocate(phaseOfGrain)
|
||||
deallocate(textureOfGrain)
|
||||
deallocate(orientationOfGrain)
|
||||
deallocate(texture_transformation)
|
||||
deallocate(Nelems)
|
||||
!> @todo - causing segmentation fault: needs looking into
|
||||
!do homog = 1,material_Nhomogenization
|
||||
! do micro = 1,material_Nmicrostructure
|
||||
! if (Nelems(homog,micro) > 0_pInt) deallocate(elemsOfHomogMicro(homog,micro)%p)
|
||||
! enddo
|
||||
!enddo
|
||||
deallocate(elemsOfHomogMicro)
|
||||
|
||||
end subroutine material_populateGrains
|
||||
|
|
|
@ -0,0 +1,17 @@
|
|||
# DAMASK patching
|
||||
|
||||
This folder contains patches that modify the functionality of the current version of DAMASK prior to the corresponding inclusion in the official release.
|
||||
|
||||
## Usage
|
||||
|
||||
```bash
|
||||
cd DAMASK_ROOT
|
||||
patch -p1 < installation/patch/nameOfPatch
|
||||
```
|
||||
|
||||
## Available patches
|
||||
|
||||
* **fwbw_derivative** switches the default spatial derivative from continuous to forward/backward difference.
|
||||
This generally reduces spurious oscillations in the result as the spatial accuracy of the derivative is then compatible with the underlying solution grid.
|
||||
* **petsc3.7** adapts to API changes introduced between PETSc 3.6.x and 3.7.x for setting PETSc options.
|
||||
Use this patch if your system runs PETSc 3.7.x.
|
|
@ -0,0 +1,13 @@
|
|||
diff --git a/code/numerics.f90 b/code/numerics.f90
|
||||
index 24bd190..c968c70 100644
|
||||
--- a/code/numerics.f90
|
||||
+++ b/code/numerics.f90
|
||||
@@ -110,7 +110,7 @@ module numerics
|
||||
fftw_plan_mode = 'FFTW_PATIENT' !< reads the planing-rigor flag, see manual on www.fftw.org, Default FFTW_PATIENT: use patient planner flag
|
||||
character(len=64), protected, public :: &
|
||||
spectral_solver = 'basicpetsc' , & !< spectral solution method
|
||||
- spectral_derivative = 'continuous' !< spectral spatial derivative method
|
||||
+ spectral_derivative = 'fwbw_difference' !< spectral spatial derivative method
|
||||
character(len=1024), protected, public :: &
|
||||
petsc_defaultOptions = '-mech_snes_type ngmres &
|
||||
&-damage_snes_type ngmres &
|
|
@ -0,0 +1,22 @@
|
|||
diff --git a/code/spectral_utilities.f90 b/code/spectral_utilities.f90
|
||||
index 34eb0ea..a33c7a9 100644
|
||||
--- a/code/spectral_utilities.f90
|
||||
+++ b/code/spectral_utilities.f90
|
||||
@@ -227,12 +227,13 @@ subroutine utilities_init()
|
||||
trim(PETScDebug), &
|
||||
' add more using the PETSc_Options keyword in numerics.config '; flush(6)
|
||||
|
||||
- call PetscOptionsClear(ierr); CHKERRQ(ierr)
|
||||
- if(debugPETSc) call PetscOptionsInsertString(trim(PETSCDEBUG),ierr)
|
||||
+ call PetscOptionsClear(PETSC_NULL_OBJECT,ierr)
|
||||
CHKERRQ(ierr)
|
||||
- call PetscOptionsInsertString(trim(petsc_defaultOptions),ierr)
|
||||
+ if(debugPETSc) call PetscOptionsInsertString(PETSC_NULL_OBJECT,trim(PETSCDEBUG),ierr)
|
||||
CHKERRQ(ierr)
|
||||
- call PetscOptionsInsertString(trim(petsc_options),ierr)
|
||||
+ call PetscOptionsInsertString(PETSC_NULL_OBJECT,trim(petsc_defaultOptions),ierr)
|
||||
+ CHKERRQ(ierr)
|
||||
+ call PetscOptionsInsertString(PETSC_NULL_OBJECT,trim(petsc_options),ierr)
|
||||
CHKERRQ(ierr)
|
||||
|
||||
grid1Red = grid(1)/2_pInt + 1_pInt
|
|
@ -427,7 +427,7 @@ class ASCIItable():
|
|||
start = self.label_index(labels)
|
||||
dim = self.label_dimension(labels)
|
||||
|
||||
return np.hstack([range(c[0],c[0]+c[1]) for c in zip(start,dim)]) \
|
||||
return np.hstack([range(s,s+d) for s,d in zip(start,dim)]).astype(int) \
|
||||
if isinstance(labels, Iterable) and not isinstance(labels, str) \
|
||||
else range(start,start+dim)
|
||||
|
||||
|
@ -513,14 +513,15 @@ class ASCIItable():
|
|||
columns = []
|
||||
for i,(c,d) in enumerate(zip(indices[present],dimensions[present])): # for all valid labels ...
|
||||
# ... transparently add all components unless column referenced by number or with explicit dimension
|
||||
columns += list(range(c,c + \
|
||||
(d if str(c) != str(labels[present[i]]) else \
|
||||
columns += list(range(c,c +
|
||||
(d if str(c) != str(labels[present[i]]) else
|
||||
1)))
|
||||
use = np.array(columns) if len(columns) > 0 else None
|
||||
|
||||
self.tags = list(np.array(self.tags)[use]) # update labels with valid subset
|
||||
|
||||
self.data = np.loadtxt(self.__IO__['in'],usecols=use,ndmin=2)
|
||||
# self.data = np.genfromtxt(self.__IO__['in'],dtype=None,names=self.tags,usecols=use)
|
||||
|
||||
return labels_missing
|
||||
|
||||
|
|
|
@ -137,18 +137,18 @@ class Quaternion:
|
|||
def __imul__(self, other):
|
||||
"""In-place multiplication"""
|
||||
try: # Quaternion
|
||||
Aw = self.w
|
||||
Ax = self.x
|
||||
Ay = self.y
|
||||
Az = self.z
|
||||
Aw = self.w
|
||||
Bw = other.w
|
||||
Bx = other.x
|
||||
By = other.y
|
||||
Bz = other.z
|
||||
Bw = other.w
|
||||
self.x = Ax * Bw + Ay * Bz - Az * By + Aw * Bx
|
||||
self.y = -Ax * Bz + Ay * Bw + Az * Bx + Aw * By
|
||||
self.z = Ax * By - Ay * Bx + Az * Bw + Aw * Bz
|
||||
self.w = -Ax * Bx - Ay * By - Az * Bz + Aw * Bw
|
||||
self.w = - Ax * Bx - Ay * By - Az * Bz + Aw * Bw
|
||||
self.x = + Ax * Bw + Ay * Bz - Az * By + Aw * Bx
|
||||
self.y = - Ax * Bz + Ay * Bw + Az * Bx + Aw * By
|
||||
self.z = + Ax * By - Ay * Bx + Az * Bw + Aw * Bz
|
||||
except: pass
|
||||
return self
|
||||
|
||||
|
@ -748,7 +748,7 @@ class Symmetry:
|
|||
[ 0. , np.sqrt(3.) , 0. ] ]),
|
||||
'proper':np.array([ [ 0. , -1. , 1. ],
|
||||
[-np.sqrt(2.) , np.sqrt(2.) , 0. ],
|
||||
[ np.sqrt(3. ) , 0. , 0. ] ]),
|
||||
[ np.sqrt(3.) , 0. , 0. ] ]),
|
||||
}
|
||||
elif self.lattice == 'hexagonal':
|
||||
basis = {'improper':np.array([ [ 0. , 0. , 1. ],
|
||||
|
@ -756,7 +756,7 @@ class Symmetry:
|
|||
[ 0. , 2. , 0. ] ]),
|
||||
'proper':np.array([ [ 0. , 0. , 1. ],
|
||||
[-1. , np.sqrt(3.) , 0. ],
|
||||
[ np.sqrt(3) , -1. , 0. ] ]),
|
||||
[ np.sqrt(3.) , -1. , 0. ] ]),
|
||||
}
|
||||
elif self.lattice == 'tetragonal':
|
||||
basis = {'improper':np.array([ [ 0. , 0. , 1. ],
|
||||
|
@ -774,15 +774,12 @@ class Symmetry:
|
|||
[-1., 0., 0.],
|
||||
[ 0., 1., 0.] ]),
|
||||
}
|
||||
else: # direct exit for unspecified symmetry
|
||||
if color:
|
||||
return (True,np.zeros(3,'d'))
|
||||
else:
|
||||
basis = {'improper': np.zeros((3,3),dtype=float),
|
||||
'proper': np.zeros((3,3),dtype=float),
|
||||
}
|
||||
return True
|
||||
|
||||
if np.all(basis == 0.0):
|
||||
theComponents = -np.ones(3,'d')
|
||||
inSST = np.all(theComponents >= 0.0)
|
||||
else:
|
||||
v = np.array(vector,dtype = float)
|
||||
if proper: # check both improper ...
|
||||
theComponents = np.dot(basis['improper'],v)
|
||||
|
@ -806,7 +803,7 @@ class Symmetry:
|
|||
else:
|
||||
return inSST
|
||||
|
||||
# code derived from http://pyeuclid.googlecode.com/svn/trunk/euclid.py
|
||||
# code derived from https://github.com/ezag/pyeuclid
|
||||
# suggested reading: http://web.mit.edu/2.998/www/QuaternionReport1.pdf
|
||||
|
||||
|
||||
|
@ -996,7 +993,7 @@ class Orientation:
|
|||
def related(self,
|
||||
relationModel,
|
||||
direction,
|
||||
targetSymmetry = None):
|
||||
targetSymmetry = 'cubic'):
|
||||
"""
|
||||
Orientation relationship
|
||||
|
||||
|
@ -1244,4 +1241,4 @@ class Orientation:
|
|||
|
||||
rot=np.dot(otherMatrix,myMatrix.T)
|
||||
|
||||
return Orientation(matrix=np.dot(rot,self.asMatrix())) # no symmetry information ??
|
||||
return Orientation(matrix=np.dot(rot,self.asMatrix()),symmetry=targetSymmetry)
|
||||
|
|
|
@ -58,11 +58,11 @@ class Test():
|
|||
self.parser.add_option("--ok", "--accept",
|
||||
action = "store_true",
|
||||
dest = "accept",
|
||||
help = "calculate results but always consider test as successfull")
|
||||
help = "calculate results but always consider test as successful")
|
||||
self.parser.add_option("-l", "--list",
|
||||
action = "store_true",
|
||||
dest = "show",
|
||||
help = "show all test variants and do no calculation")
|
||||
help = "show all test variants without actual calculation")
|
||||
self.parser.add_option("-s", "--select",
|
||||
dest = "select",
|
||||
help = "run test of given name only")
|
||||
|
@ -83,8 +83,9 @@ class Test():
|
|||
|
||||
for variant,name in enumerate(self.variants):
|
||||
if self.options.show:
|
||||
logging.critical('{}: {}'.format(variant,name))
|
||||
elif self.options.select is not None and name != self.options.select:
|
||||
logging.critical('{}: {}'.format(variant+1,name))
|
||||
elif self.options.select is not None \
|
||||
and not (name == self.options.select or str(variant+1) == self.options.select):
|
||||
pass
|
||||
else:
|
||||
try:
|
||||
|
@ -93,14 +94,15 @@ class Test():
|
|||
self.run(variant)
|
||||
|
||||
self.postprocess(variant)
|
||||
self.compare(variant)
|
||||
|
||||
if self.options.update:
|
||||
if self.update(variant) != 0: logging.critical('update for "{}" failed.'.format(name))
|
||||
elif not (self.options.accept or self.compare(variant)): # no update, do comparison
|
||||
return variant+1 # return culprit
|
||||
|
||||
except Exception as e :
|
||||
logging.critical('exception during variant execution: {}'.format(e))
|
||||
except Exception as e:
|
||||
logging.critical('exception during variant execution: "{}"'.format(e.message))
|
||||
return variant+1 # return culprit
|
||||
return 0
|
||||
|
||||
|
@ -514,7 +516,7 @@ class Test():
|
|||
table.close() # ... close
|
||||
|
||||
for j,label in enumerate(labels): # iterate over object labels
|
||||
maximum[j] = np.maximum(\
|
||||
maximum[j] = np.maximum(
|
||||
maximum[j],
|
||||
np.amax(np.linalg.norm(table.data[:,table.label_indexrange(label)],
|
||||
axis=1))
|
||||
|
@ -525,12 +527,21 @@ class Test():
|
|||
|
||||
for i in range(len(data)):
|
||||
data[i] /= maximum # normalize each table
|
||||
logging.info('shape of data {}: {}'.format(i,data[i].shape))
|
||||
|
||||
if debug:
|
||||
logging.debug(str(maximum))
|
||||
allclose = np.absolute(data[0]-data[1]) <= (atol + rtol*np.absolute(data[1]))
|
||||
for ok,valA,valB in zip(allclose,data[0],data[1]):
|
||||
logging.debug('{}:\n{}\n{}'.format(ok,valA,valB))
|
||||
violators = np.absolute(data[0]-data[1]) > atol + rtol*np.absolute(data[1])
|
||||
logging.info('shape of violators: {}'.format(violators.shape))
|
||||
for j,culprits in enumerate(violators):
|
||||
goodguys = np.logical_not(culprits)
|
||||
if culprits.any():
|
||||
logging.info('{} has {}'.format(j,np.sum(culprits)))
|
||||
logging.info('deviation: {}'.format(np.absolute(data[0][j]-data[1][j])[culprits]))
|
||||
logging.info('data : {}'.format(np.absolute(data[1][j])[culprits]))
|
||||
logging.info('deviation: {}'.format(np.absolute(data[0][j]-data[1][j])[goodguys]))
|
||||
logging.info('data : {}'.format(np.absolute(data[1][j])[goodguys]))
|
||||
# for ok,valA,valB in zip(allclose,data[0],data[1]):
|
||||
# logging.debug('{}:\n{}\n{}'.format(ok,valA,valB))
|
||||
|
||||
allclose = True # start optimistic
|
||||
for i in range(1,len(data)):
|
||||
|
@ -565,7 +576,7 @@ class Test():
|
|||
ret = culprit
|
||||
|
||||
if culprit == 0:
|
||||
msg = 'The test passed' if len(self.variants) == 1 \
|
||||
msg = 'The test passed.' if (self.options.select is not None or len(self.variants) == 1) \
|
||||
else 'All {} tests passed.'.format(len(self.variants))
|
||||
elif culprit == -1:
|
||||
msg = 'Warning: Could not start test...'
|
||||
|
|
Before Width: | Height: | Size: 34 KiB After Width: | Height: | Size: 34 KiB |
Binary file not shown.
After Width: | Height: | Size: 5.5 KiB |
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 9.0 KiB |
|
@ -14,26 +14,27 @@ scriptID = ' '.join([scriptName,damask.version])
|
|||
# --------------------------------------------------------------------
|
||||
|
||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||
Add data in column(s) of second ASCIItable selected from row that is given by the value in a mapping column.
|
||||
Add data in column(s) of mapped ASCIItable selected from the row indexed by the value in a mapping column.
|
||||
Row numbers start at 1.
|
||||
|
||||
""", version = scriptID)
|
||||
|
||||
parser.add_option('-c','--map',
|
||||
dest = 'map',
|
||||
parser.add_option('--index',
|
||||
dest = 'index',
|
||||
type = 'string', metavar = 'string',
|
||||
help = 'heading of column containing row mapping')
|
||||
help = 'column label containing row index')
|
||||
parser.add_option('-o','--offset',
|
||||
dest = 'offset',
|
||||
type = 'int', metavar = 'int',
|
||||
help = 'offset between mapping column value and actual row in mapped table [%default]')
|
||||
help = 'constant offset for index column value [%default]')
|
||||
parser.add_option('-l','--label',
|
||||
dest = 'label',
|
||||
action = 'extend', metavar = '<string LIST>',
|
||||
help='column label(s) to be mapped')
|
||||
help = 'column label(s) to be appended')
|
||||
parser.add_option('-a','--asciitable',
|
||||
dest = 'asciitable',
|
||||
type = 'string', metavar = 'string',
|
||||
help = 'mapped ASCIItable')
|
||||
help = 'indexed ASCIItable')
|
||||
|
||||
parser.set_defaults(offset = 0,
|
||||
)
|
||||
|
@ -42,24 +43,25 @@ parser.set_defaults(offset = 0,
|
|||
|
||||
if options.label is None:
|
||||
parser.error('no data columns specified.')
|
||||
if options.map is None:
|
||||
parser.error('no mapping column given.')
|
||||
if options.index is None:
|
||||
parser.error('no index column given.')
|
||||
|
||||
# ------------------------------------------ process mapping ASCIItable ---------------------------
|
||||
# ------------------------------------------ process indexed ASCIItable ---------------------------
|
||||
|
||||
if options.asciitable is not None and os.path.isfile(options.asciitable):
|
||||
|
||||
mappedTable = damask.ASCIItable(name = options.asciitable,
|
||||
indexedTable = damask.ASCIItable(name = options.asciitable,
|
||||
buffered = False,
|
||||
readonly = True)
|
||||
mappedTable.head_read() # read ASCII header info of mapped table
|
||||
missing_labels = mappedTable.data_readArray(options.label)
|
||||
indexedTable.head_read() # read ASCII header info of indexed table
|
||||
missing_labels = indexedTable.data_readArray(options.label)
|
||||
indexedTable.close() # close input ASCII table
|
||||
|
||||
if len(missing_labels) > 0:
|
||||
damask.util.croak('column{} {} not found...'.format('s' if len(missing_labels) > 1 else '',', '.join(missing_labels)))
|
||||
|
||||
else:
|
||||
parser.error('no mapped ASCIItable given.')
|
||||
parser.error('no indexed ASCIItable given.')
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
|
||||
|
@ -79,8 +81,8 @@ for name in filenames:
|
|||
|
||||
errors = []
|
||||
|
||||
mappedColumn = table.label_index(options.map)
|
||||
if mappedColumn < 0: errors.append('mapping column {} not found.'.format(options.map))
|
||||
indexColumn = table.label_index(options.index)
|
||||
if indexColumn < 0: errors.append('index column {} not found.'.format(options.index))
|
||||
|
||||
if errors != []:
|
||||
damask.util.croak(errors)
|
||||
|
@ -90,7 +92,7 @@ for name in filenames:
|
|||
# ------------------------------------------ assemble header --------------------------------------
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.labels_append(mappedTable.labels(raw = True)) # extend ASCII header with new labels
|
||||
table.labels_append(indexedTable.labels(raw = True)) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
@ -98,13 +100,11 @@ for name in filenames:
|
|||
outputAlive = True
|
||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||
try:
|
||||
table.data_append(mappedTable.data[int(round(float(table.data[mappedColumn])))+options.offset-1]) # add all mapped data types
|
||||
table.data_append(indexedTable.data[int(round(float(table.data[indexColumn])))+options.offset-1]) # add all mapped data types
|
||||
except IndexError:
|
||||
table.data_append(np.nan*np.ones_like(mappedTable.data[0]))
|
||||
table.data_append(np.nan*np.ones_like(indexedTable.data[0]))
|
||||
outputAlive = table.data_write() # output processed line
|
||||
|
||||
# ------------------------------------------ output finalization -----------------------------------
|
||||
|
||||
table.close() # close ASCII tables
|
||||
|
||||
mappedTable.close() # close mapped input ASCII table
|
|
@ -0,0 +1,110 @@
|
|||
#!/usr/bin/env python2.7
|
||||
# -*- coding: UTF-8 no BOM -*-
|
||||
|
||||
import os,sys
|
||||
import numpy as np
|
||||
from optparse import OptionParser
|
||||
import damask
|
||||
|
||||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||
scriptID = ' '.join([scriptName,damask.version])
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
|
||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||
Add data of selected column(s) from (first) row of second ASCIItable that shares the linking column value.
|
||||
|
||||
""", version = scriptID)
|
||||
|
||||
parser.add_option('--link',
|
||||
dest = 'link', nargs = 2,
|
||||
type = 'string', metavar = 'string string',
|
||||
help = 'column labels containing linked values')
|
||||
parser.add_option('-l','--label',
|
||||
dest = 'label',
|
||||
action = 'extend', metavar = '<string LIST>',
|
||||
help = 'column label(s) to be appended')
|
||||
parser.add_option('-a','--asciitable',
|
||||
dest = 'asciitable',
|
||||
type = 'string', metavar = 'string',
|
||||
help = 'linked ASCIItable')
|
||||
|
||||
parser.set_defaults()
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
if options.label is None:
|
||||
parser.error('no data columns specified.')
|
||||
if options.link is None:
|
||||
parser.error('no linking columns given.')
|
||||
|
||||
# -------------------------------------- process linked ASCIItable --------------------------------
|
||||
|
||||
if options.asciitable is not None and os.path.isfile(options.asciitable):
|
||||
|
||||
linkedTable = damask.ASCIItable(name = options.asciitable,
|
||||
buffered = False,
|
||||
readonly = True)
|
||||
linkedTable.head_read() # read ASCII header info of linked table
|
||||
if linkedTable.label_dimension(options.link[1]) != 1:
|
||||
parser.error('linking column {} needs to be scalar valued.'.format(options.link[1]))
|
||||
|
||||
missing_labels = linkedTable.data_readArray([options.link[1]]+options.label)
|
||||
linkedTable.close() # close linked ASCII table
|
||||
|
||||
if len(missing_labels) > 0:
|
||||
damask.util.croak('column{} {} not found...'.format('s' if len(missing_labels) > 1 else '',', '.join(missing_labels)))
|
||||
|
||||
index = linkedTable.data[:,0]
|
||||
data = linkedTable.data[:,1:]
|
||||
else:
|
||||
parser.error('no linked ASCIItable given.')
|
||||
|
||||
# --- loop over input files -----------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try: table = damask.ASCIItable(name = name,
|
||||
buffered = False)
|
||||
except: continue
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
# ------------------------------------------ read header ------------------------------------------
|
||||
|
||||
table.head_read()
|
||||
|
||||
# ------------------------------------------ sanity checks ----------------------------------------
|
||||
|
||||
errors = []
|
||||
|
||||
linkColumn = table.label_index(options.link[0])
|
||||
if linkColumn < 0: errors.append('linking column {} not found.'.format(options.link[0]))
|
||||
|
||||
if errors != []:
|
||||
damask.util.croak(errors)
|
||||
table.close(dismiss = True)
|
||||
continue
|
||||
|
||||
# ------------------------------------------ assemble header --------------------------------------
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.labels_append(linkedTable.labels(raw = True)[1:]) # extend with new labels (except for linked column)
|
||||
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
||||
outputAlive = True
|
||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||
try:
|
||||
table.data_append(data[np.argwhere(index == float(table.data[linkColumn]))[0]]) # add data from first matching line
|
||||
except IndexError:
|
||||
table.data_append(np.nan*np.ones_like(data[0])) # or add NaNs
|
||||
outputAlive = table.data_write() # output processed line
|
||||
|
||||
# ------------------------------------------ output finalization -----------------------------------
|
||||
|
||||
table.close() # close ASCII tables
|
|
@ -61,8 +61,7 @@ parser.set_defaults(condition = '',
|
|||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try:
|
||||
table = damask.ASCIItable(name = name,
|
||||
try: table = damask.ASCIItable(name = name,
|
||||
buffered = False)
|
||||
except: continue
|
||||
damask.util.report(scriptName,name)
|
||||
|
|
|
@ -7,14 +7,11 @@ import numpy as np
|
|||
from optparse import OptionParser, OptionGroup
|
||||
import damask
|
||||
|
||||
#"https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions"
|
||||
def periodicAverage(Points, Box):
|
||||
theta = (Points/Box[1]) * (2.0*np.pi)
|
||||
xi = np.cos(theta)
|
||||
zeta = np.sin(theta)
|
||||
theta_avg = np.arctan2(-1.0*zeta.mean(), -1.0*xi.mean()) + np.pi
|
||||
Pmean = Box[1] * theta_avg/(2.0*np.pi)
|
||||
return Pmean
|
||||
def periodicAverage(coords, limits):
|
||||
"""Centroid in periodic domain, see https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions"""
|
||||
theta = 2.0*np.pi * (coords - limits[0])/(limits[1] - limits[0])
|
||||
theta_avg = np.pi + np.arctan2(-np.sin(theta).mean(axis=0), -np.cos(theta).mean(axis=0))
|
||||
return limits[0] + theta_avg * (limits[1] - limits[0])/2.0/np.pi
|
||||
|
||||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||
scriptID = ' '.join([scriptName,damask.version])
|
||||
|
@ -26,6 +23,7 @@ scriptID = ' '.join([scriptName,damask.version])
|
|||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||
Apply a user-specified function to condense all rows for which column 'label' has identical values into a single row.
|
||||
Output table will contain as many rows as there are different (unique) values in the grouping column.
|
||||
Periodic domain averaging of coordinate values is supported.
|
||||
|
||||
Examples:
|
||||
For grain averaged values, replace all rows of particular 'texture' with a single row containing their average.
|
||||
|
@ -46,20 +44,19 @@ parser.add_option('-a','--all',
|
|||
|
||||
group = OptionGroup(parser, "periodic averaging", "")
|
||||
|
||||
group.add_option('-p','--periodic',
|
||||
group.add_option ('-p','--periodic',
|
||||
dest = 'periodic',
|
||||
action = 'store_true',
|
||||
help = 'calculate average in periodic space defined by periodic length [%default]')
|
||||
group.add_option('--boundary',
|
||||
dest = 'boundary', metavar = 'MIN MAX',
|
||||
type = 'float', nargs = 2,
|
||||
help = 'define periodic box end points %default')
|
||||
action = 'extend', metavar = '<string LIST>',
|
||||
help = 'coordinate label(s) to average across periodic domain')
|
||||
group.add_option ('--limits',
|
||||
dest = 'boundary',
|
||||
type = 'float', metavar = 'float float', nargs = 2,
|
||||
help = 'min and max of periodic domain %default')
|
||||
|
||||
parser.add_option_group(group)
|
||||
|
||||
parser.set_defaults(function = 'np.average',
|
||||
all = False,
|
||||
periodic = False,
|
||||
boundary = [0.0, 1.0])
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
@ -108,6 +105,7 @@ for name in filenames:
|
|||
# ------------------------------------------ process data --------------------------------
|
||||
|
||||
table.data_readArray()
|
||||
indexrange = table.label_indexrange(options.periodic) if options.periodic is not None else []
|
||||
rows,cols = table.data.shape
|
||||
|
||||
table.data = table.data[np.lexsort([table.data[:,grpColumn]])] # sort data by grpColumn
|
||||
|
@ -117,10 +115,10 @@ for name in filenames:
|
|||
grpTable = np.empty((len(values), cols)) # initialize output
|
||||
|
||||
for i in range(len(values)): # iterate over groups (unique values in grpColumn)
|
||||
if options.periodic :
|
||||
grpTable[i] = periodicAverage(table.data[index[i]:index[i+1]],options.boundary) # apply periodicAverage mapping function
|
||||
else :
|
||||
grpTable[i] = np.apply_along_axis(mapFunction,0,table.data[index[i]:index[i+1]]) # apply mapping function
|
||||
grpTable[i] = np.apply_along_axis(mapFunction,0,table.data[index[i]:index[i+1]]) # apply (general) mapping function
|
||||
grpTable[i,indexrange] = \
|
||||
periodicAverage(table.data[index[i]:index[i+1],indexrange],options.boundary) # apply periodicAverage mapping function
|
||||
|
||||
if not options.all: grpTable[i,grpColumn] = table.data[index[i],grpColumn] # restore grouping column value
|
||||
|
||||
table.data = grpTable
|
||||
|
|
|
@ -34,8 +34,7 @@ parser.set_defaults(pos = 'pos',
|
|||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try:
|
||||
table = damask.ASCIItable(name = name,
|
||||
try: table = damask.ASCIItable(name = name,
|
||||
buffered = False,
|
||||
readonly = True)
|
||||
except: continue
|
||||
|
|
|
@ -1,13 +1,20 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
if [[ "$1" == "-f" || "$1" == "--float" ]]; then
|
||||
shift
|
||||
arg='--float'
|
||||
else
|
||||
arg=''
|
||||
fi
|
||||
|
||||
for geom in "$@"
|
||||
do
|
||||
geom_toTable \
|
||||
geom_toTable $arg \
|
||||
< $geom \
|
||||
| \
|
||||
vtk_rectilinearGrid > ${geom%.*}.vtk
|
||||
|
||||
geom_toTable \
|
||||
geom_toTable $arg \
|
||||
< $geom \
|
||||
| \
|
||||
vtk_addRectilinearGridData \
|
||||
|
|
|
@ -178,6 +178,10 @@ parser.add_option_group(group)
|
|||
|
||||
group = OptionGroup(parser, "Configuration","")
|
||||
|
||||
group.add_option('--no-config',
|
||||
dest = 'config',
|
||||
action = 'store_false',
|
||||
help = 'omit material configuration header')
|
||||
group.add_option('--homogenization',
|
||||
dest = 'homogenization',
|
||||
type = 'int', metavar = 'int',
|
||||
|
@ -203,6 +207,7 @@ parser.set_defaults(pos = 'pos',
|
|||
cpus = 2,
|
||||
laguerre = False,
|
||||
nonperiodic = False,
|
||||
config = True,
|
||||
)
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
|
@ -303,6 +308,7 @@ for name in filenames:
|
|||
config_header = []
|
||||
formatwidth = 1+int(math.log10(NgrainIDs))
|
||||
|
||||
if options.config:
|
||||
config_header += ['<microstructure>']
|
||||
for i,ID in enumerate(grainIDs):
|
||||
config_header += ['[Grain{}]'.format(str(ID).zfill(formatwidth)),
|
||||
|
|
|
@ -22,32 +22,46 @@ The final geometry is assembled by selecting at each voxel that grain index for
|
|||
|
||||
""", version = scriptID)
|
||||
|
||||
parser.add_option('-d', '--distance', dest='d', type='int', metavar='int',
|
||||
help='diffusion distance in voxels [%default]')
|
||||
parser.add_option('-N', '--smooth', dest='N', type='int', metavar='int',
|
||||
help='N for curvature flow [%default]')
|
||||
parser.add_option('-r', '--renumber', dest='renumber', action='store_true',
|
||||
help='renumber microstructure indices from 1...N [%default]')
|
||||
parser.add_option('-i', '--immutable', action='extend', dest='immutable', metavar = '<int LIST>',
|
||||
help='list of immutable microstructures')
|
||||
parser.add_option('-d', '--distance',
|
||||
dest = 'd',
|
||||
type = 'float', metavar = 'float',
|
||||
help = 'diffusion distance in voxels [%default]')
|
||||
parser.add_option('-N', '--iterations',
|
||||
dest = 'N',
|
||||
type = 'int', metavar = 'int',
|
||||
help = 'curvature flow iterations [%default]')
|
||||
parser.add_option('-i', '--immutable',
|
||||
action = 'extend', dest = 'immutable', metavar = '<int LIST>',
|
||||
help = 'list of immutable microstructure indices')
|
||||
parser.add_option('-r', '--renumber',
|
||||
dest = 'renumber', action='store_true',
|
||||
help = 'output consecutive microstructure indices')
|
||||
parser.add_option('--ndimage',
|
||||
dest = 'ndimage', action='store_true',
|
||||
help = 'use ndimage.gaussian_filter in lieu of explicit FFT')
|
||||
|
||||
parser.set_defaults(d = 1)
|
||||
parser.set_defaults(N = 1)
|
||||
parser.set_defaults(renumber = False)
|
||||
parser.set_defaults(immutable = [])
|
||||
parser.set_defaults(d = 1,
|
||||
N = 1,
|
||||
immutable = [],
|
||||
renumber = False,
|
||||
ndimage = False,
|
||||
)
|
||||
|
||||
(options, filenames) = parser.parse_args()
|
||||
|
||||
options.immutable = map(int,options.immutable)
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
getInterfaceEnergy = lambda A,B: np.float32((A*B != 0)*(A != B)*1.0) # 1.0 if A & B are distinct & nonzero, 0.0 otherwise
|
||||
struc = ndimage.generate_binary_structure(3,1) # 3D von Neumann neighborhood
|
||||
|
||||
# --- loop over input files -----------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try:
|
||||
table = damask.ASCIItable(name = name,
|
||||
buffered = False, labeled = False)
|
||||
try: table = damask.ASCIItable(name = name,
|
||||
buffered = False,
|
||||
labeled = False)
|
||||
except: continue
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
|
@ -56,11 +70,11 @@ for name in filenames:
|
|||
table.head_read()
|
||||
info,extra_header = table.head_getGeom()
|
||||
|
||||
damask.util.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
|
||||
'size x y z: %s'%(' x '.join(map(str,info['size']))),
|
||||
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
|
||||
'homogenization: %i'%info['homogenization'],
|
||||
'microstructures: %i'%info['microstructures'],
|
||||
damask.util.croak(['grid a b c: {}'.format(' x '.join(map(str,info['grid']))),
|
||||
'size x y z: {}'.format(' x '.join(map(str,info['size']))),
|
||||
'origin x y z: {}'.format(' : '.join(map(str,info['origin']))),
|
||||
'homogenization: {}'.format(info['homogenization']),
|
||||
'microstructures: {}'.format(info['microstructures']),
|
||||
])
|
||||
|
||||
errors = []
|
||||
|
@ -71,35 +85,39 @@ for name in filenames:
|
|||
table.close(dismiss = True)
|
||||
continue
|
||||
|
||||
# --- read data ------------------------------------------------------------------------------------
|
||||
microstructure = np.tile(np.array(table.microstructure_read(info['grid']),'i').reshape(info['grid'],order='F'),
|
||||
# --- read data -----------------------------------------------------------------------------------
|
||||
microstructure = np.tile(table.microstructure_read(info['grid']).reshape(info['grid'],order='F'),
|
||||
np.where(info['grid'] == 1, 2,1)) # make one copy along dimensions with grid == 1
|
||||
grid = np.array(microstructure.shape)
|
||||
|
||||
#--- initialize support data -----------------------------------------------------------------------
|
||||
|
||||
# --- initialize support data ---------------------------------------------------------------------
|
||||
|
||||
# store a copy the initial microstructure to find locations of immutable indices
|
||||
microstructure_original = np.copy(microstructure)
|
||||
|
||||
if not options.ndimage:
|
||||
X,Y,Z = np.mgrid[0:grid[0],0:grid[1],0:grid[2]]
|
||||
|
||||
# Calculates gaussian weights for simulating 3d diffusion
|
||||
gauss = np.exp(-(X*X + Y*Y + Z*Z)/(2.0*options.d*options.d))/math.pow(2.0*np.pi*options.d*options.d,1.5)
|
||||
gauss[:,:,grid[2]/2::] = gauss[:,:,int(round(grid[2]/2.))-1::-1] # trying to cope with uneven (odd) grid size
|
||||
gauss[:,grid[1]/2::,:] = gauss[:,int(round(grid[1]/2.))-1::-1,:]
|
||||
gauss[grid[0]/2::,:,:] = gauss[int(round(grid[0]/2.))-1::-1,:,:]
|
||||
gauss = np.fft.rfftn(gauss)
|
||||
|
||||
getInterfaceEnergy = lambda A,B: (A*B != 0)*(A != B)*1.0 # 1.0 if A & B are distinct & nonzero, 0.0 otherwise
|
||||
struc = ndimage.generate_binary_structure(3,1) # 3D von Neumann neighborhood
|
||||
gauss = np.exp(-(X*X + Y*Y + Z*Z)/(2.0*options.d*options.d),dtype=np.float32) \
|
||||
/np.power(2.0*np.pi*options.d*options.d,(3.0 - np.count_nonzero(info['grid'] == 1))/2.,dtype=np.float32)
|
||||
|
||||
gauss[:,:,:grid[2]/2:-1] = gauss[:,:,1:(grid[2]+1)/2] # trying to cope with uneven (odd) grid size
|
||||
gauss[:,:grid[1]/2:-1,:] = gauss[:,1:(grid[1]+1)/2,:]
|
||||
gauss[:grid[0]/2:-1,:,:] = gauss[1:(grid[0]+1)/2,:,:]
|
||||
gauss = np.fft.rfftn(gauss).astype(np.complex64)
|
||||
|
||||
for smoothIter in range(options.N):
|
||||
periodic_microstructure = np.tile(microstructure,(3,3,3))[grid[0]/2:-grid[0]/2,
|
||||
grid[1]/2:-grid[1]/2,
|
||||
grid[2]/2:-grid[2]/2] # periodically extend the microstructure
|
||||
interfaceEnergy = np.zeros(microstructure.shape)
|
||||
|
||||
# replace immutable microstructures with closest mutable ones
|
||||
index = ndimage.morphology.distance_transform_edt(np.in1d(microstructure,options.immutable).reshape(grid),
|
||||
return_distances = False,
|
||||
return_indices = True)
|
||||
microstructure = microstructure[index[0],
|
||||
index[1],
|
||||
index[2]]
|
||||
|
||||
interfaceEnergy = np.zeros(microstructure.shape,dtype=np.float32)
|
||||
for i in (-1,0,1):
|
||||
for j in (-1,0,1):
|
||||
for k in (-1,0,1):
|
||||
|
@ -112,44 +130,67 @@ for name in filenames:
|
|||
periodic_interfaceEnergy = np.tile(interfaceEnergy,(3,3,3))[grid[0]/2:-grid[0]/2,
|
||||
grid[1]/2:-grid[1]/2,
|
||||
grid[2]/2:-grid[2]/2]
|
||||
# transform bulk volume (i.e. where interfacial energy is zero)
|
||||
|
||||
# transform bulk volume (i.e. where interfacial energy remained zero), store index of closest boundary voxel
|
||||
index = ndimage.morphology.distance_transform_edt(periodic_interfaceEnergy == 0.,
|
||||
return_distances = False,
|
||||
return_indices = True)
|
||||
|
||||
# want array index of nearest voxel on periodically extended boundary
|
||||
periodic_bulkEnergy = periodic_interfaceEnergy[index[0],
|
||||
index[1],
|
||||
index[2]].reshape(2*grid) # fill bulk with energy of nearest interface
|
||||
|
||||
if options.ndimage:
|
||||
periodic_diffusedEnergy = ndimage.gaussian_filter(
|
||||
np.where(ndimage.morphology.binary_dilation(periodic_interfaceEnergy > 0.,
|
||||
structure = struc,
|
||||
iterations = int(round(options.d*2.))-1, # fat boundary
|
||||
),
|
||||
periodic_bulkEnergy, # ...and zero everywhere else
|
||||
0.),
|
||||
sigma = options.d)
|
||||
else:
|
||||
diffusedEnergy = np.fft.irfftn(np.fft.rfftn(
|
||||
np.where(
|
||||
ndimage.morphology.binary_dilation(interfaceEnergy > 0.,
|
||||
structure = struc,
|
||||
iterations = options.d/2 + 1), # fat boundary | PE: why 2d-1? I would argue for d/2 + 1
|
||||
iterations = int(round(options.d*2.))-1),# fat boundary
|
||||
periodic_bulkEnergy[grid[0]/2:-grid[0]/2, # retain filled energy on fat boundary...
|
||||
grid[1]/2:-grid[1]/2,
|
||||
grid[2]/2:-grid[2]/2], # ...and zero everywhere else
|
||||
0.))*gauss)
|
||||
0.)).astype(np.complex64) *
|
||||
gauss).astype(np.float32)
|
||||
|
||||
periodic_diffusedEnergy = np.tile(diffusedEnergy,(3,3,3))[grid[0]/2:-grid[0]/2,
|
||||
grid[1]/2:-grid[1]/2,
|
||||
grid[2]/2:-grid[2]/2] # periodically extend the smoothed bulk energy
|
||||
# transform voxels close to interface region | question PE: what motivates 1/2 (could be any small number, or)?
|
||||
index = ndimage.morphology.distance_transform_edt(periodic_diffusedEnergy >= 0.5,
|
||||
|
||||
|
||||
# transform voxels close to interface region
|
||||
index = ndimage.morphology.distance_transform_edt(periodic_diffusedEnergy >= 0.95*np.amax(periodic_diffusedEnergy),
|
||||
return_distances = False,
|
||||
return_indices = True) # want index of closest bulk grain
|
||||
|
||||
periodic_microstructure = np.tile(microstructure,(3,3,3))[grid[0]/2:-grid[0]/2,
|
||||
grid[1]/2:-grid[1]/2,
|
||||
grid[2]/2:-grid[2]/2] # periodically extend the microstructure
|
||||
|
||||
microstructure = periodic_microstructure[index[0],
|
||||
index[1],
|
||||
index[2]].reshape(2*grid)[grid[0]/2:-grid[0]/2,
|
||||
grid[1]/2:-grid[1]/2,
|
||||
grid[2]/2:-grid[2]/2] # extent grains into interface region
|
||||
|
||||
immutable = np.zeros(microstructure.shape, dtype=bool)
|
||||
# find locations where immutable microstructures have been or are now
|
||||
immutable = np.zeros(microstructure.shape, dtype=np.bool)
|
||||
# find locations where immutable microstructures have been (or are now)
|
||||
for micro in options.immutable:
|
||||
immutable += np.logical_or(microstructure == micro, microstructure_original == micro)
|
||||
immutable += microstructure_original == micro
|
||||
|
||||
# undo any changes involving immutable microstructures
|
||||
microstructure = np.where(immutable, microstructure_original,microstructure)
|
||||
|
||||
# --- renumber to sequence 1...Ngrains if requested ------------------------------------------------
|
||||
# --- renumber to sequence 1...Ngrains if requested -----------------------------------------------
|
||||
# http://stackoverflow.com/questions/10741346/np-frequency-counts-for-unique-values-in-an-array
|
||||
|
||||
if options.renumber:
|
||||
|
@ -162,13 +203,14 @@ for name in filenames:
|
|||
newInfo = {'microstructures': 0,}
|
||||
newInfo['microstructures'] = microstructure.max()
|
||||
|
||||
# --- report ---------------------------------------------------------------------------------------
|
||||
# --- report --------------------------------------------------------------------------------------
|
||||
|
||||
remarks = []
|
||||
if (newInfo['microstructures'] != info['microstructures']): remarks.append('--> microstructures: %i'%newInfo['microstructures'])
|
||||
if newInfo['microstructures'] != info['microstructures']:
|
||||
remarks.append('--> microstructures: {}'.format(newInfo['microstructures']))
|
||||
if remarks != []: damask.util.croak(remarks)
|
||||
|
||||
# --- write header ---------------------------------------------------------------------------------
|
||||
# --- write header --------------------------------------------------------------------------------
|
||||
|
||||
table.labels_clear()
|
||||
table.info_clear()
|
||||
|
@ -185,8 +227,11 @@ for name in filenames:
|
|||
# --- write microstructure information ------------------------------------------------------------
|
||||
|
||||
formatwidth = int(math.floor(math.log10(microstructure.max())+1))
|
||||
table.data = microstructure.reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
|
||||
table.data_writeArray('%%%ii'%(formatwidth),delimiter = ' ')
|
||||
table.data = microstructure[::1 if info['grid'][0]>1 else 2,
|
||||
::1 if info['grid'][1]>1 else 2,
|
||||
::1 if info['grid'][2]>1 else 2,].\
|
||||
reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
|
||||
table.data_writeArray('%{}i'.format(formatwidth),delimiter = ' ')
|
||||
|
||||
# --- output finalization --------------------------------------------------------------------------
|
||||
|
||||
|
|
|
@ -19,8 +19,17 @@ Translate geom description into ASCIItable containing position and microstructur
|
|||
|
||||
""", version = scriptID)
|
||||
|
||||
parser.add_option('--float',
|
||||
dest = 'real',
|
||||
action = 'store_true',
|
||||
help = 'use float input')
|
||||
|
||||
parser.set_defaults(real = False,
|
||||
)
|
||||
(options, filenames) = parser.parse_args()
|
||||
|
||||
datatype = 'f' if options.real else 'i'
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
@ -56,7 +65,7 @@ for name in filenames:
|
|||
|
||||
# --- read data ------------------------------------------------------------------------------------
|
||||
|
||||
microstructure = table.microstructure_read(info['grid'])
|
||||
microstructure = table.microstructure_read(info['grid'],datatype)
|
||||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
|
||||
|
|
|
@ -109,7 +109,6 @@ for name in filenames:
|
|||
for j in range(Ny):
|
||||
grid[0] = round((i+0.5)*box[0]*info['grid'][0]/Nx-0.5)+offset[0]
|
||||
grid[1] = round((j+0.5)*box[1]*info['grid'][1]/Ny-0.5)+offset[1]
|
||||
damask.util.croak('x,y coord on surface: {},{}...'.format(*grid[:2]))
|
||||
for k in range(Nz):
|
||||
grid[2] = k + offset[2]
|
||||
grid %= info['grid']
|
||||
|
|
Loading…
Reference in New Issue