Merge branch 'development' of magit1.mpie.de:damask/DAMASK into development

This commit is contained in:
Martin Diehl 2016-12-20 17:57:27 +01:00
commit 04af989dbf
22 changed files with 472 additions and 205 deletions

View File

@ -1 +1 @@
v2.0.1-306-g2d0193e v2.0.1-339-gd67be0e

View File

@ -712,6 +712,7 @@ C_routines.o: C_routines.c
tidy: tidy:
@rm -rf *.o @rm -rf *.o
@rm -rf *.mod @rm -rf *.mod
@rm -rf *.optrpt
@rm -rf *.inst.f90 # for instrumentation @rm -rf *.inst.f90 # for instrumentation
@rm -rf *.pomp.f90 # for instrumentation @rm -rf *.pomp.f90 # for instrumentation
@rm -rf *.pp.f90 # for instrumentation @rm -rf *.pp.f90 # for instrumentation
@ -724,6 +725,7 @@ cleanDAMASK:
@rm -rf *.marc @rm -rf *.marc
@rm -rf *.o @rm -rf *.o
@rm -rf *.mod @rm -rf *.mod
@rm -rf *.optrpt
@rm -rf *.inst.f90 # for instrumentation @rm -rf *.inst.f90 # for instrumentation
@rm -rf *.pomp.f90 # for instrumentation @rm -rf *.pomp.f90 # for instrumentation
@rm -rf *.pp.f90 # for instrumentation @rm -rf *.pp.f90 # for instrumentation

View File

@ -1051,6 +1051,8 @@ end subroutine material_parsePhase
!> @brief parses the texture part in the material configuration file !> @brief parses the texture part in the material configuration file
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine material_parseTexture(fileUnit,myPart) subroutine material_parseTexture(fileUnit,myPart)
use prec, only: &
dNeq
use IO, only: & use IO, only: &
IO_read, & IO_read, &
IO_globalTagInPart, & IO_globalTagInPart, &
@ -1069,6 +1071,7 @@ subroutine material_parseTexture(fileUnit,myPart)
inRad, & inRad, &
math_sampleRandomOri, & math_sampleRandomOri, &
math_I3, & math_I3, &
math_det33, &
math_inv33 math_inv33
implicit none implicit none
@ -1154,6 +1157,9 @@ subroutine material_parseTexture(fileUnit,myPart)
end select end select
enddo enddo
if(dNeq(math_det33(texture_transformation(1:3,1:3,section)),1.0_pReal)) &
call IO_error(157_pInt,section)
case ('hybridia') textureType case ('hybridia') textureType
texture_ODFfile(section) = IO_stringValue(line,chunkPos,2_pInt) texture_ODFfile(section) = IO_stringValue(line,chunkPos,2_pInt)
@ -1586,13 +1592,8 @@ subroutine material_populateGrains
deallocate(phaseOfGrain) deallocate(phaseOfGrain)
deallocate(textureOfGrain) deallocate(textureOfGrain)
deallocate(orientationOfGrain) deallocate(orientationOfGrain)
deallocate(texture_transformation)
deallocate(Nelems) deallocate(Nelems)
!> @todo - causing segmentation fault: needs looking into
!do homog = 1,material_Nhomogenization
! do micro = 1,material_Nmicrostructure
! if (Nelems(homog,micro) > 0_pInt) deallocate(elemsOfHomogMicro(homog,micro)%p)
! enddo
!enddo
deallocate(elemsOfHomogMicro) deallocate(elemsOfHomogMicro)
end subroutine material_populateGrains end subroutine material_populateGrains

View File

@ -0,0 +1,17 @@
# DAMASK patching
This folder contains patches that modify the functionality of the current version of DAMASK prior to the corresponding inclusion in the official release.
## Usage
```bash
cd DAMASK_ROOT
patch -p1 < installation/patch/nameOfPatch
```
## Available patches
* **fwbw_derivative** switches the default spatial derivative from continuous to forward/backward difference.
This generally reduces spurious oscillations in the result as the spatial accuracy of the derivative is then compatible with the underlying solution grid.
* **petsc3.7** adapts to API changes introduced between PETSc 3.6.x and 3.7.x for setting PETSc options.
Use this patch if your system runs PETSc 3.7.x.

View File

@ -0,0 +1,13 @@
diff --git a/code/numerics.f90 b/code/numerics.f90
index 24bd190..c968c70 100644
--- a/code/numerics.f90
+++ b/code/numerics.f90
@@ -110,7 +110,7 @@ module numerics
fftw_plan_mode = 'FFTW_PATIENT' !< reads the planing-rigor flag, see manual on www.fftw.org, Default FFTW_PATIENT: use patient planner flag
character(len=64), protected, public :: &
spectral_solver = 'basicpetsc' , & !< spectral solution method
- spectral_derivative = 'continuous' !< spectral spatial derivative method
+ spectral_derivative = 'fwbw_difference' !< spectral spatial derivative method
character(len=1024), protected, public :: &
petsc_defaultOptions = '-mech_snes_type ngmres &
&-damage_snes_type ngmres &

View File

@ -0,0 +1,22 @@
diff --git a/code/spectral_utilities.f90 b/code/spectral_utilities.f90
index 34eb0ea..a33c7a9 100644
--- a/code/spectral_utilities.f90
+++ b/code/spectral_utilities.f90
@@ -227,12 +227,13 @@ subroutine utilities_init()
trim(PETScDebug), &
' add more using the PETSc_Options keyword in numerics.config '; flush(6)
- call PetscOptionsClear(ierr); CHKERRQ(ierr)
- if(debugPETSc) call PetscOptionsInsertString(trim(PETSCDEBUG),ierr)
+ call PetscOptionsClear(PETSC_NULL_OBJECT,ierr)
CHKERRQ(ierr)
- call PetscOptionsInsertString(trim(petsc_defaultOptions),ierr)
+ if(debugPETSc) call PetscOptionsInsertString(PETSC_NULL_OBJECT,trim(PETSCDEBUG),ierr)
CHKERRQ(ierr)
- call PetscOptionsInsertString(trim(petsc_options),ierr)
+ call PetscOptionsInsertString(PETSC_NULL_OBJECT,trim(petsc_defaultOptions),ierr)
+ CHKERRQ(ierr)
+ call PetscOptionsInsertString(PETSC_NULL_OBJECT,trim(petsc_options),ierr)
CHKERRQ(ierr)
grid1Red = grid(1)/2_pInt + 1_pInt

View File

@ -427,8 +427,8 @@ class ASCIItable():
start = self.label_index(labels) start = self.label_index(labels)
dim = self.label_dimension(labels) dim = self.label_dimension(labels)
return np.hstack([range(c[0],c[0]+c[1]) for c in zip(start,dim)]) \ return np.hstack([range(s,s+d) for s,d in zip(start,dim)]).astype(int) \
if isinstance(labels, Iterable) and not isinstance(labels, str) \ if isinstance(labels, Iterable) and not isinstance(labels, str) \
else range(start,start+dim) else range(start,start+dim)
# ------------------------------------------------------------------ # ------------------------------------------------------------------
@ -513,14 +513,15 @@ class ASCIItable():
columns = [] columns = []
for i,(c,d) in enumerate(zip(indices[present],dimensions[present])): # for all valid labels ... for i,(c,d) in enumerate(zip(indices[present],dimensions[present])): # for all valid labels ...
# ... transparently add all components unless column referenced by number or with explicit dimension # ... transparently add all components unless column referenced by number or with explicit dimension
columns += list(range(c,c + \ columns += list(range(c,c +
(d if str(c) != str(labels[present[i]]) else \ (d if str(c) != str(labels[present[i]]) else
1))) 1)))
use = np.array(columns) if len(columns) > 0 else None use = np.array(columns) if len(columns) > 0 else None
self.tags = list(np.array(self.tags)[use]) # update labels with valid subset self.tags = list(np.array(self.tags)[use]) # update labels with valid subset
self.data = np.loadtxt(self.__IO__['in'],usecols=use,ndmin=2) self.data = np.loadtxt(self.__IO__['in'],usecols=use,ndmin=2)
# self.data = np.genfromtxt(self.__IO__['in'],dtype=None,names=self.tags,usecols=use)
return labels_missing return labels_missing

View File

@ -137,18 +137,18 @@ class Quaternion:
def __imul__(self, other): def __imul__(self, other):
"""In-place multiplication""" """In-place multiplication"""
try: # Quaternion try: # Quaternion
Aw = self.w
Ax = self.x Ax = self.x
Ay = self.y Ay = self.y
Az = self.z Az = self.z
Aw = self.w Bw = other.w
Bx = other.x Bx = other.x
By = other.y By = other.y
Bz = other.z Bz = other.z
Bw = other.w self.w = - Ax * Bx - Ay * By - Az * Bz + Aw * Bw
self.x = Ax * Bw + Ay * Bz - Az * By + Aw * Bx self.x = + Ax * Bw + Ay * Bz - Az * By + Aw * Bx
self.y = -Ax * Bz + Ay * Bw + Az * Bx + Aw * By self.y = - Ax * Bz + Ay * Bw + Az * Bx + Aw * By
self.z = Ax * By - Ay * Bx + Az * Bw + Aw * Bz self.z = + Ax * By - Ay * Bx + Az * Bw + Aw * Bz
self.w = -Ax * Bx - Ay * By - Az * Bz + Aw * Bw
except: pass except: pass
return self return self
@ -744,27 +744,27 @@ class Symmetry:
if self.lattice == 'cubic': if self.lattice == 'cubic':
basis = {'improper':np.array([ [-1. , 0. , 1. ], basis = {'improper':np.array([ [-1. , 0. , 1. ],
[ np.sqrt(2.) , -np.sqrt(2.) , 0. ], [ np.sqrt(2.) , -np.sqrt(2.) , 0. ],
[ 0. , np.sqrt(3.) , 0. ] ]), [ 0. , np.sqrt(3.) , 0. ] ]),
'proper':np.array([ [ 0. , -1. , 1. ], 'proper':np.array([ [ 0. , -1. , 1. ],
[-np.sqrt(2.) , np.sqrt(2.) , 0. ], [-np.sqrt(2.) , np.sqrt(2.) , 0. ],
[ np.sqrt(3. ) , 0. , 0. ] ]), [ np.sqrt(3.) , 0. , 0. ] ]),
} }
elif self.lattice == 'hexagonal': elif self.lattice == 'hexagonal':
basis = {'improper':np.array([ [ 0. , 0. , 1. ], basis = {'improper':np.array([ [ 0. , 0. , 1. ],
[ 1. , -np.sqrt(3.) , 0. ], [ 1. , -np.sqrt(3.) , 0. ],
[ 0. , 2. , 0. ] ]), [ 0. , 2. , 0. ] ]),
'proper':np.array([ [ 0. , 0. , 1. ], 'proper':np.array([ [ 0. , 0. , 1. ],
[-1. , np.sqrt(3.) , 0. ], [-1. , np.sqrt(3.) , 0. ],
[ np.sqrt(3) , -1. , 0. ] ]), [ np.sqrt(3.) , -1. , 0. ] ]),
} }
elif self.lattice == 'tetragonal': elif self.lattice == 'tetragonal':
basis = {'improper':np.array([ [ 0. , 0. , 1. ], basis = {'improper':np.array([ [ 0. , 0. , 1. ],
[ 1. , -1. , 0. ], [ 1. , -1. , 0. ],
[ 0. , np.sqrt(2.) , 0. ] ]), [ 0. , np.sqrt(2.) , 0. ] ]),
'proper':np.array([ [ 0. , 0. , 1. ], 'proper':np.array([ [ 0. , 0. , 1. ],
[-1. , 1. , 0. ], [-1. , 1. , 0. ],
[ np.sqrt(2.) , 0. , 0. ] ]), [ np.sqrt(2.) , 0. , 0. ] ]),
} }
elif self.lattice == 'orthorhombic': elif self.lattice == 'orthorhombic':
basis = {'improper':np.array([ [ 0., 0., 1.], basis = {'improper':np.array([ [ 0., 0., 1.],
@ -774,26 +774,23 @@ class Symmetry:
[-1., 0., 0.], [-1., 0., 0.],
[ 0., 1., 0.] ]), [ 0., 1., 0.] ]),
} }
else: else: # direct exit for unspecified symmetry
basis = {'improper': np.zeros((3,3),dtype=float), if color:
'proper': np.zeros((3,3),dtype=float), return (True,np.zeros(3,'d'))
} else:
return True
if np.all(basis == 0.0): v = np.array(vector,dtype = float)
theComponents = -np.ones(3,'d') if proper: # check both improper ...
theComponents = np.dot(basis['improper'],v)
inSST = np.all(theComponents >= 0.0) inSST = np.all(theComponents >= 0.0)
else: if not inSST: # ... and proper SST
v = np.array(vector,dtype = float) theComponents = np.dot(basis['proper'],v)
if proper: # check both improper ...
theComponents = np.dot(basis['improper'],v)
inSST = np.all(theComponents >= 0.0)
if not inSST: # ... and proper SST
theComponents = np.dot(basis['proper'],v)
inSST = np.all(theComponents >= 0.0)
else:
v[2] = abs(v[2]) # z component projects identical
theComponents = np.dot(basis['improper'],v) # for positive and negative values
inSST = np.all(theComponents >= 0.0) inSST = np.all(theComponents >= 0.0)
else:
v[2] = abs(v[2]) # z component projects identical
theComponents = np.dot(basis['improper'],v) # for positive and negative values
inSST = np.all(theComponents >= 0.0)
if color: # have to return color array if color: # have to return color array
if inSST: if inSST:
@ -806,7 +803,7 @@ class Symmetry:
else: else:
return inSST return inSST
# code derived from http://pyeuclid.googlecode.com/svn/trunk/euclid.py # code derived from https://github.com/ezag/pyeuclid
# suggested reading: http://web.mit.edu/2.998/www/QuaternionReport1.pdf # suggested reading: http://web.mit.edu/2.998/www/QuaternionReport1.pdf
@ -996,7 +993,7 @@ class Orientation:
def related(self, def related(self,
relationModel, relationModel,
direction, direction,
targetSymmetry = None): targetSymmetry = 'cubic'):
""" """
Orientation relationship Orientation relationship
@ -1244,4 +1241,4 @@ class Orientation:
rot=np.dot(otherMatrix,myMatrix.T) rot=np.dot(otherMatrix,myMatrix.T)
return Orientation(matrix=np.dot(rot,self.asMatrix())) # no symmetry information ?? return Orientation(matrix=np.dot(rot,self.asMatrix()),symmetry=targetSymmetry)

View File

@ -58,11 +58,11 @@ class Test():
self.parser.add_option("--ok", "--accept", self.parser.add_option("--ok", "--accept",
action = "store_true", action = "store_true",
dest = "accept", dest = "accept",
help = "calculate results but always consider test as successfull") help = "calculate results but always consider test as successful")
self.parser.add_option("-l", "--list", self.parser.add_option("-l", "--list",
action = "store_true", action = "store_true",
dest = "show", dest = "show",
help = "show all test variants and do no calculation") help = "show all test variants without actual calculation")
self.parser.add_option("-s", "--select", self.parser.add_option("-s", "--select",
dest = "select", dest = "select",
help = "run test of given name only") help = "run test of given name only")
@ -83,8 +83,9 @@ class Test():
for variant,name in enumerate(self.variants): for variant,name in enumerate(self.variants):
if self.options.show: if self.options.show:
logging.critical('{}: {}'.format(variant,name)) logging.critical('{}: {}'.format(variant+1,name))
elif self.options.select is not None and name != self.options.select: elif self.options.select is not None \
and not (name == self.options.select or str(variant+1) == self.options.select):
pass pass
else: else:
try: try:
@ -93,14 +94,15 @@ class Test():
self.run(variant) self.run(variant)
self.postprocess(variant) self.postprocess(variant)
self.compare(variant)
if self.options.update: if self.options.update:
if self.update(variant) != 0: logging.critical('update for "{}" failed.'.format(name)) if self.update(variant) != 0: logging.critical('update for "{}" failed.'.format(name))
elif not (self.options.accept or self.compare(variant)): # no update, do comparison elif not (self.options.accept or self.compare(variant)): # no update, do comparison
return variant+1 # return culprit return variant+1 # return culprit
except Exception as e : except Exception as e:
logging.critical('exception during variant execution: {}'.format(e)) logging.critical('exception during variant execution: "{}"'.format(e.message))
return variant+1 # return culprit return variant+1 # return culprit
return 0 return 0
@ -465,7 +467,7 @@ class Test():
mean = np.amax(np.abs(np.mean(normedDelta,0))) mean = np.amax(np.abs(np.mean(normedDelta,0)))
std = np.amax(np.std(normedDelta,0)) std = np.amax(np.std(normedDelta,0))
logging.info('mean: {:f}'.format(mean)) logging.info('mean: {:f}'.format(mean))
logging.info('std: {:f}'.format(std)) logging.info('std: {:f}'.format(std))
return (mean<meanTol) & (std < stdTol) return (mean<meanTol) & (std < stdTol)
@ -514,7 +516,7 @@ class Test():
table.close() # ... close table.close() # ... close
for j,label in enumerate(labels): # iterate over object labels for j,label in enumerate(labels): # iterate over object labels
maximum[j] = np.maximum(\ maximum[j] = np.maximum(
maximum[j], maximum[j],
np.amax(np.linalg.norm(table.data[:,table.label_indexrange(label)], np.amax(np.linalg.norm(table.data[:,table.label_indexrange(label)],
axis=1)) axis=1))
@ -525,12 +527,21 @@ class Test():
for i in range(len(data)): for i in range(len(data)):
data[i] /= maximum # normalize each table data[i] /= maximum # normalize each table
logging.info('shape of data {}: {}'.format(i,data[i].shape))
if debug: if debug:
logging.debug(str(maximum)) violators = np.absolute(data[0]-data[1]) > atol + rtol*np.absolute(data[1])
allclose = np.absolute(data[0]-data[1]) <= (atol + rtol*np.absolute(data[1])) logging.info('shape of violators: {}'.format(violators.shape))
for ok,valA,valB in zip(allclose,data[0],data[1]): for j,culprits in enumerate(violators):
logging.debug('{}:\n{}\n{}'.format(ok,valA,valB)) goodguys = np.logical_not(culprits)
if culprits.any():
logging.info('{} has {}'.format(j,np.sum(culprits)))
logging.info('deviation: {}'.format(np.absolute(data[0][j]-data[1][j])[culprits]))
logging.info('data : {}'.format(np.absolute(data[1][j])[culprits]))
logging.info('deviation: {}'.format(np.absolute(data[0][j]-data[1][j])[goodguys]))
logging.info('data : {}'.format(np.absolute(data[1][j])[goodguys]))
# for ok,valA,valB in zip(allclose,data[0],data[1]):
# logging.debug('{}:\n{}\n{}'.format(ok,valA,valB))
allclose = True # start optimistic allclose = True # start optimistic
for i in range(1,len(data)): for i in range(1,len(data)):
@ -565,7 +576,7 @@ class Test():
ret = culprit ret = culprit
if culprit == 0: if culprit == 0:
msg = 'The test passed' if len(self.variants) == 1 \ msg = 'The test passed.' if (self.options.select is not None or len(self.variants) == 1) \
else 'All {} tests passed.'.format(len(self.variants)) else 'All {} tests passed.'.format(len(self.variants))
elif culprit == -1: elif culprit == -1:
msg = 'Warning: Could not start test...' msg = 'Warning: Could not start test...'

View File

Before

Width:  |  Height:  |  Size: 34 KiB

After

Width:  |  Height:  |  Size: 34 KiB

BIN
misc/DAMASK_QR-CodeBW.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.5 KiB

31
misc/DAMASK_QR-CodeBW.svg Normal file

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 9.0 KiB

View File

@ -14,26 +14,27 @@ scriptID = ' '.join([scriptName,damask.version])
# -------------------------------------------------------------------- # --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Add data in column(s) of second ASCIItable selected from row that is given by the value in a mapping column. Add data in column(s) of mapped ASCIItable selected from the row indexed by the value in a mapping column.
Row numbers start at 1.
""", version = scriptID) """, version = scriptID)
parser.add_option('-c','--map', parser.add_option('--index',
dest = 'map', dest = 'index',
type = 'string', metavar = 'string', type = 'string', metavar = 'string',
help = 'heading of column containing row mapping') help = 'column label containing row index')
parser.add_option('-o','--offset', parser.add_option('-o','--offset',
dest = 'offset', dest = 'offset',
type = 'int', metavar = 'int', type = 'int', metavar = 'int',
help = 'offset between mapping column value and actual row in mapped table [%default]') help = 'constant offset for index column value [%default]')
parser.add_option('-l','--label', parser.add_option('-l','--label',
dest = 'label', dest = 'label',
action = 'extend', metavar = '<string LIST>', action = 'extend', metavar = '<string LIST>',
help='column label(s) to be mapped') help = 'column label(s) to be appended')
parser.add_option('-a','--asciitable', parser.add_option('-a','--asciitable',
dest = 'asciitable', dest = 'asciitable',
type = 'string', metavar = 'string', type = 'string', metavar = 'string',
help = 'mapped ASCIItable') help = 'indexed ASCIItable')
parser.set_defaults(offset = 0, parser.set_defaults(offset = 0,
) )
@ -42,24 +43,25 @@ parser.set_defaults(offset = 0,
if options.label is None: if options.label is None:
parser.error('no data columns specified.') parser.error('no data columns specified.')
if options.map is None: if options.index is None:
parser.error('no mapping column given.') parser.error('no index column given.')
# ------------------------------------------ process mapping ASCIItable --------------------------- # ------------------------------------------ process indexed ASCIItable ---------------------------
if options.asciitable is not None and os.path.isfile(options.asciitable): if options.asciitable is not None and os.path.isfile(options.asciitable):
mappedTable = damask.ASCIItable(name = options.asciitable, indexedTable = damask.ASCIItable(name = options.asciitable,
buffered = False, buffered = False,
readonly = True) readonly = True)
mappedTable.head_read() # read ASCII header info of mapped table indexedTable.head_read() # read ASCII header info of indexed table
missing_labels = mappedTable.data_readArray(options.label) missing_labels = indexedTable.data_readArray(options.label)
indexedTable.close() # close input ASCII table
if len(missing_labels) > 0: if len(missing_labels) > 0:
damask.util.croak('column{} {} not found...'.format('s' if len(missing_labels) > 1 else '',', '.join(missing_labels))) damask.util.croak('column{} {} not found...'.format('s' if len(missing_labels) > 1 else '',', '.join(missing_labels)))
else: else:
parser.error('no mapped ASCIItable given.') parser.error('no indexed ASCIItable given.')
# --- loop over input files ------------------------------------------------------------------------- # --- loop over input files -------------------------------------------------------------------------
@ -79,8 +81,8 @@ for name in filenames:
errors = [] errors = []
mappedColumn = table.label_index(options.map) indexColumn = table.label_index(options.index)
if mappedColumn < 0: errors.append('mapping column {} not found.'.format(options.map)) if indexColumn < 0: errors.append('index column {} not found.'.format(options.index))
if errors != []: if errors != []:
damask.util.croak(errors) damask.util.croak(errors)
@ -90,7 +92,7 @@ for name in filenames:
# ------------------------------------------ assemble header -------------------------------------- # ------------------------------------------ assemble header --------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append(mappedTable.labels(raw = True)) # extend ASCII header with new labels table.labels_append(indexedTable.labels(raw = True)) # extend ASCII header with new labels
table.head_write() table.head_write()
# ------------------------------------------ process data ------------------------------------------ # ------------------------------------------ process data ------------------------------------------
@ -98,13 +100,11 @@ for name in filenames:
outputAlive = True outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table while outputAlive and table.data_read(): # read next data line of ASCII table
try: try:
table.data_append(mappedTable.data[int(round(float(table.data[mappedColumn])))+options.offset-1]) # add all mapped data types table.data_append(indexedTable.data[int(round(float(table.data[indexColumn])))+options.offset-1]) # add all mapped data types
except IndexError: except IndexError:
table.data_append(np.nan*np.ones_like(mappedTable.data[0])) table.data_append(np.nan*np.ones_like(indexedTable.data[0]))
outputAlive = table.data_write() # output processed line outputAlive = table.data_write() # output processed line
# ------------------------------------------ output finalization ----------------------------------- # ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables table.close() # close ASCII tables
mappedTable.close() # close mapped input ASCII table

110
processing/post/addLinked.py Executable file
View File

@ -0,0 +1,110 @@
#!/usr/bin/env python2.7
# -*- coding: UTF-8 no BOM -*-
import os,sys
import numpy as np
from optparse import OptionParser
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Add data of selected column(s) from (first) row of second ASCIItable that shares the linking column value.
""", version = scriptID)
parser.add_option('--link',
dest = 'link', nargs = 2,
type = 'string', metavar = 'string string',
help = 'column labels containing linked values')
parser.add_option('-l','--label',
dest = 'label',
action = 'extend', metavar = '<string LIST>',
help = 'column label(s) to be appended')
parser.add_option('-a','--asciitable',
dest = 'asciitable',
type = 'string', metavar = 'string',
help = 'linked ASCIItable')
parser.set_defaults()
(options,filenames) = parser.parse_args()
if options.label is None:
parser.error('no data columns specified.')
if options.link is None:
parser.error('no linking columns given.')
# -------------------------------------- process linked ASCIItable --------------------------------
if options.asciitable is not None and os.path.isfile(options.asciitable):
linkedTable = damask.ASCIItable(name = options.asciitable,
buffered = False,
readonly = True)
linkedTable.head_read() # read ASCII header info of linked table
if linkedTable.label_dimension(options.link[1]) != 1:
parser.error('linking column {} needs to be scalar valued.'.format(options.link[1]))
missing_labels = linkedTable.data_readArray([options.link[1]]+options.label)
linkedTable.close() # close linked ASCII table
if len(missing_labels) > 0:
damask.util.croak('column{} {} not found...'.format('s' if len(missing_labels) > 1 else '',', '.join(missing_labels)))
index = linkedTable.data[:,0]
data = linkedTable.data[:,1:]
else:
parser.error('no linked ASCIItable given.')
# --- loop over input files -----------------------------------------------------------------------
if filenames == []: filenames = [None]
for name in filenames:
try: table = damask.ASCIItable(name = name,
buffered = False)
except: continue
damask.util.report(scriptName,name)
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
errors = []
linkColumn = table.label_index(options.link[0])
if linkColumn < 0: errors.append('linking column {} not found.'.format(options.link[0]))
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header --------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append(linkedTable.labels(raw = True)[1:]) # extend with new labels (except for linked column)
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
try:
table.data_append(data[np.argwhere(index == float(table.data[linkColumn]))[0]]) # add data from first matching line
except IndexError:
table.data_append(np.nan*np.ones_like(data[0])) # or add NaNs
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables

View File

@ -61,9 +61,8 @@ parser.set_defaults(condition = '',
if filenames == []: filenames = [None] if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
try: try: table = damask.ASCIItable(name = name,
table = damask.ASCIItable(name = name, buffered = False)
buffered = False)
except: continue except: continue
damask.util.report(scriptName,name) damask.util.report(scriptName,name)

View File

@ -7,14 +7,11 @@ import numpy as np
from optparse import OptionParser, OptionGroup from optparse import OptionParser, OptionGroup
import damask import damask
#"https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions" def periodicAverage(coords, limits):
def periodicAverage(Points, Box): """Centroid in periodic domain, see https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions"""
theta = (Points/Box[1]) * (2.0*np.pi) theta = 2.0*np.pi * (coords - limits[0])/(limits[1] - limits[0])
xi = np.cos(theta) theta_avg = np.pi + np.arctan2(-np.sin(theta).mean(axis=0), -np.cos(theta).mean(axis=0))
zeta = np.sin(theta) return limits[0] + theta_avg * (limits[1] - limits[0])/2.0/np.pi
theta_avg = np.arctan2(-1.0*zeta.mean(), -1.0*xi.mean()) + np.pi
Pmean = Box[1] * theta_avg/(2.0*np.pi)
return Pmean
scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version]) scriptID = ' '.join([scriptName,damask.version])
@ -26,6 +23,7 @@ scriptID = ' '.join([scriptName,damask.version])
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Apply a user-specified function to condense all rows for which column 'label' has identical values into a single row. Apply a user-specified function to condense all rows for which column 'label' has identical values into a single row.
Output table will contain as many rows as there are different (unique) values in the grouping column. Output table will contain as many rows as there are different (unique) values in the grouping column.
Periodic domain averaging of coordinate values is supported.
Examples: Examples:
For grain averaged values, replace all rows of particular 'texture' with a single row containing their average. For grain averaged values, replace all rows of particular 'texture' with a single row containing their average.
@ -43,23 +41,22 @@ parser.add_option('-a','--all',
dest = 'all', dest = 'all',
action = 'store_true', action = 'store_true',
help = 'apply mapping function also to grouping column') help = 'apply mapping function also to grouping column')
group = OptionGroup(parser, "periodic averaging", "") group = OptionGroup(parser, "periodic averaging", "")
group.add_option('-p','--periodic', group.add_option ('-p','--periodic',
dest = 'periodic', dest = 'periodic',
action = 'store_true', action = 'extend', metavar = '<string LIST>',
help = 'calculate average in periodic space defined by periodic length [%default]') help = 'coordinate label(s) to average across periodic domain')
group.add_option('--boundary', group.add_option ('--limits',
dest = 'boundary', metavar = 'MIN MAX', dest = 'boundary',
type = 'float', nargs = 2, type = 'float', metavar = 'float float', nargs = 2,
help = 'define periodic box end points %default') help = 'min and max of periodic domain %default')
parser.add_option_group(group) parser.add_option_group(group)
parser.set_defaults(function = 'np.average', parser.set_defaults(function = 'np.average',
all = False, all = False,
periodic = False,
boundary = [0.0, 1.0]) boundary = [0.0, 1.0])
(options,filenames) = parser.parse_args() (options,filenames) = parser.parse_args()
@ -108,6 +105,7 @@ for name in filenames:
# ------------------------------------------ process data -------------------------------- # ------------------------------------------ process data --------------------------------
table.data_readArray() table.data_readArray()
indexrange = table.label_indexrange(options.periodic) if options.periodic is not None else []
rows,cols = table.data.shape rows,cols = table.data.shape
table.data = table.data[np.lexsort([table.data[:,grpColumn]])] # sort data by grpColumn table.data = table.data[np.lexsort([table.data[:,grpColumn]])] # sort data by grpColumn
@ -117,10 +115,10 @@ for name in filenames:
grpTable = np.empty((len(values), cols)) # initialize output grpTable = np.empty((len(values), cols)) # initialize output
for i in range(len(values)): # iterate over groups (unique values in grpColumn) for i in range(len(values)): # iterate over groups (unique values in grpColumn)
if options.periodic : grpTable[i] = np.apply_along_axis(mapFunction,0,table.data[index[i]:index[i+1]]) # apply (general) mapping function
grpTable[i] = periodicAverage(table.data[index[i]:index[i+1]],options.boundary) # apply periodicAverage mapping function grpTable[i,indexrange] = \
else : periodicAverage(table.data[index[i]:index[i+1],indexrange],options.boundary) # apply periodicAverage mapping function
grpTable[i] = np.apply_along_axis(mapFunction,0,table.data[index[i]:index[i+1]]) # apply mapping function
if not options.all: grpTable[i,grpColumn] = table.data[index[i],grpColumn] # restore grouping column value if not options.all: grpTable[i,grpColumn] = table.data[index[i],grpColumn] # restore grouping column value
table.data = grpTable table.data = grpTable

View File

@ -34,10 +34,9 @@ parser.set_defaults(pos = 'pos',
if filenames == []: filenames = [None] if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
try: try: table = damask.ASCIItable(name = name,
table = damask.ASCIItable(name = name, buffered = False,
buffered = False, readonly = True)
readonly = True)
except: continue except: continue
damask.util.report(scriptName,name) damask.util.report(scriptName,name)

View File

@ -1,13 +1,20 @@
#!/usr/bin/env bash #!/usr/bin/env bash
if [[ "$1" == "-f" || "$1" == "--float" ]]; then
shift
arg='--float'
else
arg=''
fi
for geom in "$@" for geom in "$@"
do do
geom_toTable \ geom_toTable $arg \
< $geom \ < $geom \
| \ | \
vtk_rectilinearGrid > ${geom%.*}.vtk vtk_rectilinearGrid > ${geom%.*}.vtk
geom_toTable \ geom_toTable $arg \
< $geom \ < $geom \
| \ | \
vtk_addRectilinearGridData \ vtk_addRectilinearGridData \

View File

@ -178,6 +178,10 @@ parser.add_option_group(group)
group = OptionGroup(parser, "Configuration","") group = OptionGroup(parser, "Configuration","")
group.add_option('--no-config',
dest = 'config',
action = 'store_false',
help = 'omit material configuration header')
group.add_option('--homogenization', group.add_option('--homogenization',
dest = 'homogenization', dest = 'homogenization',
type = 'int', metavar = 'int', type = 'int', metavar = 'int',
@ -203,6 +207,7 @@ parser.set_defaults(pos = 'pos',
cpus = 2, cpus = 2,
laguerre = False, laguerre = False,
nonperiodic = False, nonperiodic = False,
config = True,
) )
(options,filenames) = parser.parse_args() (options,filenames) = parser.parse_args()
@ -303,20 +308,21 @@ for name in filenames:
config_header = [] config_header = []
formatwidth = 1+int(math.log10(NgrainIDs)) formatwidth = 1+int(math.log10(NgrainIDs))
config_header += ['<microstructure>'] if options.config:
for i,ID in enumerate(grainIDs): config_header += ['<microstructure>']
config_header += ['[Grain{}]'.format(str(ID).zfill(formatwidth)), for i,ID in enumerate(grainIDs):
'crystallite {}'.format(options.crystallite),
'(constituent)\tphase {}\ttexture {}\tfraction 1.0'.format(options.phase,str(ID).rjust(formatwidth)),
]
if hasEulers:
config_header += ['<texture>']
for ID in grainIDs:
eulerID = np.nonzero(grains == ID)[0][0] # find first occurrence of this grain id
config_header += ['[Grain{}]'.format(str(ID).zfill(formatwidth)), config_header += ['[Grain{}]'.format(str(ID).zfill(formatwidth)),
'(gauss)\tphi1 {:g}\tPhi {:g}\tphi2 {:g}\tscatter 0.0\tfraction 1.0'.format(*eulers[eulerID]) 'crystallite {}'.format(options.crystallite),
'(constituent)\tphase {}\ttexture {}\tfraction 1.0'.format(options.phase,str(ID).rjust(formatwidth)),
] ]
if options.axes is not None: config_header.append('axes\t{} {} {}'.format(*options.axes)) if hasEulers:
config_header += ['<texture>']
for ID in grainIDs:
eulerID = np.nonzero(grains == ID)[0][0] # find first occurrence of this grain id
config_header += ['[Grain{}]'.format(str(ID).zfill(formatwidth)),
'(gauss)\tphi1 {:g}\tPhi {:g}\tphi2 {:g}\tscatter 0.0\tfraction 1.0'.format(*eulers[eulerID])
]
if options.axes is not None: config_header.append('axes\t{} {} {}'.format(*options.axes))
table.labels_clear() table.labels_clear()
table.info_clear() table.info_clear()

View File

@ -22,32 +22,46 @@ The final geometry is assembled by selecting at each voxel that grain index for
""", version = scriptID) """, version = scriptID)
parser.add_option('-d', '--distance', dest='d', type='int', metavar='int', parser.add_option('-d', '--distance',
help='diffusion distance in voxels [%default]') dest = 'd',
parser.add_option('-N', '--smooth', dest='N', type='int', metavar='int', type = 'float', metavar = 'float',
help='N for curvature flow [%default]') help = 'diffusion distance in voxels [%default]')
parser.add_option('-r', '--renumber', dest='renumber', action='store_true', parser.add_option('-N', '--iterations',
help='renumber microstructure indices from 1...N [%default]') dest = 'N',
parser.add_option('-i', '--immutable', action='extend', dest='immutable', metavar = '<int LIST>', type = 'int', metavar = 'int',
help='list of immutable microstructures') help = 'curvature flow iterations [%default]')
parser.add_option('-i', '--immutable',
action = 'extend', dest = 'immutable', metavar = '<int LIST>',
help = 'list of immutable microstructure indices')
parser.add_option('-r', '--renumber',
dest = 'renumber', action='store_true',
help = 'output consecutive microstructure indices')
parser.add_option('--ndimage',
dest = 'ndimage', action='store_true',
help = 'use ndimage.gaussian_filter in lieu of explicit FFT')
parser.set_defaults(d = 1) parser.set_defaults(d = 1,
parser.set_defaults(N = 1) N = 1,
parser.set_defaults(renumber = False) immutable = [],
parser.set_defaults(immutable = []) renumber = False,
ndimage = False,
)
(options, filenames) = parser.parse_args() (options, filenames) = parser.parse_args()
options.immutable = map(int,options.immutable) options.immutable = map(int,options.immutable)
# --- loop over input files ------------------------------------------------------------------------- getInterfaceEnergy = lambda A,B: np.float32((A*B != 0)*(A != B)*1.0) # 1.0 if A & B are distinct & nonzero, 0.0 otherwise
struc = ndimage.generate_binary_structure(3,1) # 3D von Neumann neighborhood
# --- loop over input files -----------------------------------------------------------------------
if filenames == []: filenames = [None] if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
try: try: table = damask.ASCIItable(name = name,
table = damask.ASCIItable(name = name, buffered = False,
buffered = False, labeled = False) labeled = False)
except: continue except: continue
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
@ -56,12 +70,12 @@ for name in filenames:
table.head_read() table.head_read()
info,extra_header = table.head_getGeom() info,extra_header = table.head_getGeom()
damask.util.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))), damask.util.croak(['grid a b c: {}'.format(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))), 'size x y z: {}'.format(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))), 'origin x y z: {}'.format(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'], 'homogenization: {}'.format(info['homogenization']),
'microstructures: %i'%info['microstructures'], 'microstructures: {}'.format(info['microstructures']),
]) ])
errors = [] errors = []
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.') if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
@ -71,39 +85,43 @@ for name in filenames:
table.close(dismiss = True) table.close(dismiss = True)
continue continue
# --- read data ------------------------------------------------------------------------------------ # --- read data -----------------------------------------------------------------------------------
microstructure = np.tile(np.array(table.microstructure_read(info['grid']),'i').reshape(info['grid'],order='F'), microstructure = np.tile(table.microstructure_read(info['grid']).reshape(info['grid'],order='F'),
np.where(info['grid'] == 1, 2,1)) # make one copy along dimensions with grid == 1 np.where(info['grid'] == 1, 2,1)) # make one copy along dimensions with grid == 1
grid = np.array(microstructure.shape) grid = np.array(microstructure.shape)
#--- initialize support data ----------------------------------------------------------------------- # --- initialize support data ---------------------------------------------------------------------
# store a copy the initial microstructure to find locations of immutable indices # store a copy the initial microstructure to find locations of immutable indices
microstructure_original = np.copy(microstructure) microstructure_original = np.copy(microstructure)
X,Y,Z = np.mgrid[0:grid[0],0:grid[1],0:grid[2]] if not options.ndimage:
X,Y,Z = np.mgrid[0:grid[0],0:grid[1],0:grid[2]]
# Calculates gaussian weights for simulating 3d diffusion # Calculates gaussian weights for simulating 3d diffusion
gauss = np.exp(-(X*X + Y*Y + Z*Z)/(2.0*options.d*options.d))/math.pow(2.0*np.pi*options.d*options.d,1.5) gauss = np.exp(-(X*X + Y*Y + Z*Z)/(2.0*options.d*options.d),dtype=np.float32) \
gauss[:,:,grid[2]/2::] = gauss[:,:,int(round(grid[2]/2.))-1::-1] # trying to cope with uneven (odd) grid size /np.power(2.0*np.pi*options.d*options.d,(3.0 - np.count_nonzero(info['grid'] == 1))/2.,dtype=np.float32)
gauss[:,grid[1]/2::,:] = gauss[:,int(round(grid[1]/2.))-1::-1,:]
gauss[grid[0]/2::,:,:] = gauss[int(round(grid[0]/2.))-1::-1,:,:] gauss[:,:,:grid[2]/2:-1] = gauss[:,:,1:(grid[2]+1)/2] # trying to cope with uneven (odd) grid size
gauss = np.fft.rfftn(gauss) gauss[:,:grid[1]/2:-1,:] = gauss[:,1:(grid[1]+1)/2,:]
gauss[:grid[0]/2:-1,:,:] = gauss[1:(grid[0]+1)/2,:,:]
getInterfaceEnergy = lambda A,B: (A*B != 0)*(A != B)*1.0 # 1.0 if A & B are distinct & nonzero, 0.0 otherwise gauss = np.fft.rfftn(gauss).astype(np.complex64)
struc = ndimage.generate_binary_structure(3,1) # 3D von Neumann neighborhood
for smoothIter in range(options.N): for smoothIter in range(options.N):
periodic_microstructure = np.tile(microstructure,(3,3,3))[grid[0]/2:-grid[0]/2,
grid[1]/2:-grid[1]/2, # replace immutable microstructures with closest mutable ones
grid[2]/2:-grid[2]/2] # periodically extend the microstructure index = ndimage.morphology.distance_transform_edt(np.in1d(microstructure,options.immutable).reshape(grid),
interfaceEnergy = np.zeros(microstructure.shape) return_distances = False,
return_indices = True)
microstructure = microstructure[index[0],
index[1],
index[2]]
interfaceEnergy = np.zeros(microstructure.shape,dtype=np.float32)
for i in (-1,0,1): for i in (-1,0,1):
for j in (-1,0,1): for j in (-1,0,1):
for k in (-1,0,1): for k in (-1,0,1):
# assign interfacial energy to all voxels that have a differing neighbor (in Moore neighborhood) # assign interfacial energy to all voxels that have a differing neighbor (in Moore neighborhood)
interfaceEnergy = np.maximum(interfaceEnergy, interfaceEnergy = np.maximum(interfaceEnergy,
getInterfaceEnergy(microstructure,np.roll(np.roll(np.roll( getInterfaceEnergy(microstructure,np.roll(np.roll(np.roll(
microstructure,i,axis=0), j,axis=1), k,axis=2))) microstructure,i,axis=0), j,axis=1), k,axis=2)))
@ -112,44 +130,67 @@ for name in filenames:
periodic_interfaceEnergy = np.tile(interfaceEnergy,(3,3,3))[grid[0]/2:-grid[0]/2, periodic_interfaceEnergy = np.tile(interfaceEnergy,(3,3,3))[grid[0]/2:-grid[0]/2,
grid[1]/2:-grid[1]/2, grid[1]/2:-grid[1]/2,
grid[2]/2:-grid[2]/2] grid[2]/2:-grid[2]/2]
# transform bulk volume (i.e. where interfacial energy is zero)
# transform bulk volume (i.e. where interfacial energy remained zero), store index of closest boundary voxel
index = ndimage.morphology.distance_transform_edt(periodic_interfaceEnergy == 0., index = ndimage.morphology.distance_transform_edt(periodic_interfaceEnergy == 0.,
return_distances = False, return_distances = False,
return_indices = True) return_indices = True)
# want array index of nearest voxel on periodically extended boundary # want array index of nearest voxel on periodically extended boundary
periodic_bulkEnergy = periodic_interfaceEnergy[index[0], periodic_bulkEnergy = periodic_interfaceEnergy[index[0],
index[1], index[1],
index[2]].reshape(2*grid) # fill bulk with energy of nearest interface index[2]].reshape(2*grid) # fill bulk with energy of nearest interface
diffusedEnergy = np.fft.irfftn(np.fft.rfftn(
np.where( if options.ndimage:
ndimage.morphology.binary_dilation(interfaceEnergy > 0., periodic_diffusedEnergy = ndimage.gaussian_filter(
structure = struc, np.where(ndimage.morphology.binary_dilation(periodic_interfaceEnergy > 0.,
iterations = options.d/2 + 1), # fat boundary | PE: why 2d-1? I would argue for d/2 + 1 structure = struc,
periodic_bulkEnergy[grid[0]/2:-grid[0]/2, # retain filled energy on fat boundary... iterations = int(round(options.d*2.))-1, # fat boundary
grid[1]/2:-grid[1]/2, ),
grid[2]/2:-grid[2]/2], # ...and zero everywhere else periodic_bulkEnergy, # ...and zero everywhere else
0.))*gauss) 0.),
periodic_diffusedEnergy = np.tile(diffusedEnergy,(3,3,3))[grid[0]/2:-grid[0]/2, sigma = options.d)
grid[1]/2:-grid[1]/2, else:
grid[2]/2:-grid[2]/2] # periodically extend the smoothed bulk energy diffusedEnergy = np.fft.irfftn(np.fft.rfftn(
# transform voxels close to interface region | question PE: what motivates 1/2 (could be any small number, or)? np.where(
index = ndimage.morphology.distance_transform_edt(periodic_diffusedEnergy >= 0.5, ndimage.morphology.binary_dilation(interfaceEnergy > 0.,
structure = struc,
iterations = int(round(options.d*2.))-1),# fat boundary
periodic_bulkEnergy[grid[0]/2:-grid[0]/2, # retain filled energy on fat boundary...
grid[1]/2:-grid[1]/2,
grid[2]/2:-grid[2]/2], # ...and zero everywhere else
0.)).astype(np.complex64) *
gauss).astype(np.float32)
periodic_diffusedEnergy = np.tile(diffusedEnergy,(3,3,3))[grid[0]/2:-grid[0]/2,
grid[1]/2:-grid[1]/2,
grid[2]/2:-grid[2]/2] # periodically extend the smoothed bulk energy
# transform voxels close to interface region
index = ndimage.morphology.distance_transform_edt(periodic_diffusedEnergy >= 0.95*np.amax(periodic_diffusedEnergy),
return_distances = False, return_distances = False,
return_indices = True) # want index of closest bulk grain return_indices = True) # want index of closest bulk grain
periodic_microstructure = np.tile(microstructure,(3,3,3))[grid[0]/2:-grid[0]/2,
grid[1]/2:-grid[1]/2,
grid[2]/2:-grid[2]/2] # periodically extend the microstructure
microstructure = periodic_microstructure[index[0], microstructure = periodic_microstructure[index[0],
index[1], index[1],
index[2]].reshape(2*grid)[grid[0]/2:-grid[0]/2, index[2]].reshape(2*grid)[grid[0]/2:-grid[0]/2,
grid[1]/2:-grid[1]/2, grid[1]/2:-grid[1]/2,
grid[2]/2:-grid[2]/2] # extent grains into interface region grid[2]/2:-grid[2]/2] # extent grains into interface region
immutable = np.zeros(microstructure.shape, dtype=bool) immutable = np.zeros(microstructure.shape, dtype=np.bool)
# find locations where immutable microstructures have been or are now # find locations where immutable microstructures have been (or are now)
for micro in options.immutable: for micro in options.immutable:
immutable += np.logical_or(microstructure == micro, microstructure_original == micro) immutable += microstructure_original == micro
# undo any changes involving immutable microstructures
microstructure = np.where(immutable, microstructure_original,microstructure)
# --- renumber to sequence 1...Ngrains if requested ------------------------------------------------ # undo any changes involving immutable microstructures
microstructure = np.where(immutable, microstructure_original,microstructure)
# --- renumber to sequence 1...Ngrains if requested -----------------------------------------------
# http://stackoverflow.com/questions/10741346/np-frequency-counts-for-unique-values-in-an-array # http://stackoverflow.com/questions/10741346/np-frequency-counts-for-unique-values-in-an-array
if options.renumber: if options.renumber:
@ -162,13 +203,14 @@ for name in filenames:
newInfo = {'microstructures': 0,} newInfo = {'microstructures': 0,}
newInfo['microstructures'] = microstructure.max() newInfo['microstructures'] = microstructure.max()
# --- report --------------------------------------------------------------------------------------- # --- report --------------------------------------------------------------------------------------
remarks = [] remarks = []
if (newInfo['microstructures'] != info['microstructures']): remarks.append('--> microstructures: %i'%newInfo['microstructures']) if newInfo['microstructures'] != info['microstructures']:
remarks.append('--> microstructures: {}'.format(newInfo['microstructures']))
if remarks != []: damask.util.croak(remarks) if remarks != []: damask.util.croak(remarks)
# --- write header --------------------------------------------------------------------------------- # --- write header --------------------------------------------------------------------------------
table.labels_clear() table.labels_clear()
table.info_clear() table.info_clear()
@ -185,8 +227,11 @@ for name in filenames:
# --- write microstructure information ------------------------------------------------------------ # --- write microstructure information ------------------------------------------------------------
formatwidth = int(math.floor(math.log10(microstructure.max())+1)) formatwidth = int(math.floor(math.log10(microstructure.max())+1))
table.data = microstructure.reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose() table.data = microstructure[::1 if info['grid'][0]>1 else 2,
table.data_writeArray('%%%ii'%(formatwidth),delimiter = ' ') ::1 if info['grid'][1]>1 else 2,
::1 if info['grid'][2]>1 else 2,].\
reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
table.data_writeArray('%{}i'.format(formatwidth),delimiter = ' ')
# --- output finalization -------------------------------------------------------------------------- # --- output finalization --------------------------------------------------------------------------

View File

@ -19,8 +19,17 @@ Translate geom description into ASCIItable containing position and microstructur
""", version = scriptID) """, version = scriptID)
parser.add_option('--float',
dest = 'real',
action = 'store_true',
help = 'use float input')
parser.set_defaults(real = False,
)
(options, filenames) = parser.parse_args() (options, filenames) = parser.parse_args()
datatype = 'f' if options.real else 'i'
# --- loop over input files ------------------------------------------------------------------------- # --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = [None] if filenames == []: filenames = [None]
@ -56,7 +65,7 @@ for name in filenames:
# --- read data ------------------------------------------------------------------------------------ # --- read data ------------------------------------------------------------------------------------
microstructure = table.microstructure_read(info['grid']) microstructure = table.microstructure_read(info['grid'],datatype)
# ------------------------------------------ assemble header --------------------------------------- # ------------------------------------------ assemble header ---------------------------------------

View File

@ -109,7 +109,6 @@ for name in filenames:
for j in range(Ny): for j in range(Ny):
grid[0] = round((i+0.5)*box[0]*info['grid'][0]/Nx-0.5)+offset[0] grid[0] = round((i+0.5)*box[0]*info['grid'][0]/Nx-0.5)+offset[0]
grid[1] = round((j+0.5)*box[1]*info['grid'][1]/Ny-0.5)+offset[1] grid[1] = round((j+0.5)*box[1]*info['grid'][1]/Ny-0.5)+offset[1]
damask.util.croak('x,y coord on surface: {},{}...'.format(*grid[:2]))
for k in range(Nz): for k in range(Nz):
grid[2] = k + offset[2] grid[2] = k + offset[2]
grid %= info['grid'] grid %= info['grid']