Use ArrayLike for numpy >= 1.20
This commit is contained in:
parent
430b947c7e
commit
0468bfd3e1
|
@ -6,6 +6,10 @@ from pathlib import Path
|
||||||
from typing import Sequence, Union, TextIO
|
from typing import Sequence, Union, TextIO
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
try:
|
||||||
|
from numpy.typing import ArrayLike
|
||||||
|
except ImportError:
|
||||||
|
ArrayLike = Union[np.ndarray,Sequence[float]] # type: ignore
|
||||||
import scipy.interpolate as interp
|
import scipy.interpolate as interp
|
||||||
import matplotlib as mpl
|
import matplotlib as mpl
|
||||||
if os.name == 'posix' and 'DISPLAY' not in os.environ:
|
if os.name == 'posix' and 'DISPLAY' not in os.environ:
|
||||||
|
@ -78,8 +82,8 @@ class Colormap(mpl.colors.ListedColormap):
|
||||||
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def from_range(low: Sequence[float],
|
def from_range(low: ArrayLike,
|
||||||
high: Sequence[float],
|
high: ArrayLike,
|
||||||
name: str = 'DAMASK colormap',
|
name: str = 'DAMASK colormap',
|
||||||
N: int = 256,
|
N: int = 256,
|
||||||
model: str = 'rgb') -> 'Colormap':
|
model: str = 'rgb') -> 'Colormap':
|
||||||
|
@ -129,7 +133,7 @@ class Colormap(mpl.colors.ListedColormap):
|
||||||
if model.lower() not in toMsh:
|
if model.lower() not in toMsh:
|
||||||
raise ValueError(f'Invalid color model: {model}.')
|
raise ValueError(f'Invalid color model: {model}.')
|
||||||
|
|
||||||
low_high = np.vstack((low,high))
|
low_high = np.vstack((low,high)).astype(float)
|
||||||
out_of_bounds = np.bool_(False)
|
out_of_bounds = np.bool_(False)
|
||||||
|
|
||||||
if model.lower() == 'rgb':
|
if model.lower() == 'rgb':
|
||||||
|
@ -142,7 +146,7 @@ class Colormap(mpl.colors.ListedColormap):
|
||||||
out_of_bounds = np.any(low_high[:,0]<0)
|
out_of_bounds = np.any(low_high[:,0]<0)
|
||||||
|
|
||||||
if out_of_bounds:
|
if out_of_bounds:
|
||||||
raise ValueError(f'{model.upper()} colors {low} | {high} are out of bounds.')
|
raise ValueError(f'{model.upper()} colors {low_high[0]} | {low_high[1]} are out of bounds.')
|
||||||
|
|
||||||
low_,high_ = map(toMsh[model.lower()],low_high)
|
low_,high_ = map(toMsh[model.lower()],low_high)
|
||||||
msh = map(functools.partial(Colormap._interpolate_msh,low=low_,high=high_),np.linspace(0,1,N))
|
msh = map(functools.partial(Colormap._interpolate_msh,low=low_,high=high_),np.linspace(0,1,N))
|
||||||
|
@ -225,7 +229,7 @@ class Colormap(mpl.colors.ListedColormap):
|
||||||
|
|
||||||
def shade(self,
|
def shade(self,
|
||||||
field: np.ndarray,
|
field: np.ndarray,
|
||||||
bounds: Sequence[float] = None,
|
bounds: ArrayLike = None,
|
||||||
gap: float = None) -> Image:
|
gap: float = None) -> Image:
|
||||||
"""
|
"""
|
||||||
Generate PIL image of 2D field using colormap.
|
Generate PIL image of 2D field using colormap.
|
||||||
|
@ -235,7 +239,7 @@ class Colormap(mpl.colors.ListedColormap):
|
||||||
field : numpy.array, shape (:,:)
|
field : numpy.array, shape (:,:)
|
||||||
Data to be shaded.
|
Data to be shaded.
|
||||||
bounds : sequence of float, len (2), optional
|
bounds : sequence of float, len (2), optional
|
||||||
Value range (low,high) spanned by colormap.
|
Value range (left,right) spanned by colormap.
|
||||||
gap : field.dtype, optional
|
gap : field.dtype, optional
|
||||||
Transparent value. NaN will always be rendered transparent.
|
Transparent value. NaN will always be rendered transparent.
|
||||||
|
|
||||||
|
@ -248,17 +252,17 @@ class Colormap(mpl.colors.ListedColormap):
|
||||||
mask = np.logical_not(np.isnan(field) if gap is None else \
|
mask = np.logical_not(np.isnan(field) if gap is None else \
|
||||||
np.logical_or (np.isnan(field), field == gap)) # mask NaN (and gap if present)
|
np.logical_or (np.isnan(field), field == gap)) # mask NaN (and gap if present)
|
||||||
|
|
||||||
lo,hi = (field[mask].min(),field[mask].max()) if bounds is None else \
|
l,r = (field[mask].min(),field[mask].max()) if bounds is None else \
|
||||||
(min(bounds[:2]),max(bounds[:2]))
|
np.array(bounds,float)[:2]
|
||||||
|
|
||||||
delta,avg = hi-lo,0.5*(hi+lo)
|
delta,avg = r-l,0.5*abs(r+l)
|
||||||
|
|
||||||
if delta * 1e8 <= avg: # delta is similar to numerical noise
|
if abs(delta) * 1e8 <= avg: # delta is similar to numerical noise
|
||||||
hi,lo = hi+0.5*avg,lo-0.5*avg # extend range to have actual data centered within
|
l,r = l-0.5*avg*np.sign(delta),r+0.5*avg*np.sign(delta), # extend range to have actual data centered within
|
||||||
|
|
||||||
return Image.fromarray(
|
return Image.fromarray(
|
||||||
(np.dstack((
|
(np.dstack((
|
||||||
self.colors[(np.round(np.clip((field-lo)/(hi-lo),0.0,1.0)*(self.N-1))).astype(np.uint16),:3],
|
self.colors[(np.round(np.clip((field-l)/delta,0.0,1.0)*(self.N-1))).astype(np.uint16),:3],
|
||||||
mask.astype(float)
|
mask.astype(float)
|
||||||
)
|
)
|
||||||
)*255
|
)*255
|
||||||
|
|
Loading…
Reference in New Issue