polishing
This commit is contained in:
parent
d181b988c1
commit
03c6708629
|
@ -940,7 +940,7 @@ pure subroutine kinetics_tw(Mp,T,dot_gamma_sl,ph,en,&
|
||||||
ddot_gamma_dtau_tw
|
ddot_gamma_dtau_tw
|
||||||
|
|
||||||
real :: &
|
real :: &
|
||||||
ratio_tau_s, &
|
ratio_tau_r, &
|
||||||
tau, tau_r, &
|
tau, tau_r, &
|
||||||
dot_N_0, &
|
dot_N_0, &
|
||||||
x0, &
|
x0, &
|
||||||
|
@ -962,13 +962,13 @@ pure subroutine kinetics_tw(Mp,T,dot_gamma_sl,ph,en,&
|
||||||
|
|
||||||
do i = 1, prm%sum_N_tw
|
do i = 1, prm%sum_N_tw
|
||||||
tau = math_tensordot(Mp,prm%P_tw(1:3,1:3,i))
|
tau = math_tensordot(Mp,prm%P_tw(1:3,1:3,i))
|
||||||
x0 = mu*prm%b_tw(i)**2/(Gamma*8.0_pReal*PI)*(2.0_pReal+nu)/(1.0_pReal-nu) ! ToDo: In the paper, the Burgers vector for slip is used
|
x0 = mu*prm%b_tr(i)**2*(2.0_pReal+nu)/(Gamma*8.0_pReal*PI*(1.0_pReal-nu)) ! ToDo: In the paper, the Burgers vector for slip is used
|
||||||
tau_r = mu*prm%b_tw(i)/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tw)+cos(PI/3.0_pReal)/x0)
|
tau_r = mu*prm%b_tw(i)/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tw)+cos(PI/3.0_pReal)/x0) ! ToDo: In the paper, the Burgers vector for slip is used
|
||||||
|
|
||||||
if (tau > tol_math_check .and. tau < tau_r) then
|
if (tau > tol_math_check .and. tau < tau_r) then
|
||||||
ratio_tau_s = (dst%tau_hat_tw(i,en)/tau)**prm%r(i)
|
ratio_tau_r = (dst%tau_hat_tw(i,en)/tau)**prm%r(i)
|
||||||
P = exp(-ratio_tau_s)
|
P = exp(-ratio_tau_r)
|
||||||
dP_dTau = prm%r(i) * ratio_tau_s/tau * P
|
dP_dTau = prm%r(i) * ratio_tau_r/tau * P
|
||||||
|
|
||||||
s = prm%fcc_twinNucleationSlipPair(1:2,i)
|
s = prm%fcc_twinNucleationSlipPair(1:2,i)
|
||||||
dot_N_0 = sum(abs(dot_gamma_sl(s(2:1:-1)))*(stt%rho_mob(s,en)+stt%rho_dip(s,en))) &
|
dot_N_0 = sum(abs(dot_gamma_sl(s(2:1:-1)))*(stt%rho_mob(s,en)+stt%rho_dip(s,en))) &
|
||||||
|
@ -1052,8 +1052,8 @@ pure subroutine kinetics_tr(Mp,T,dot_gamma_sl,ph,en,&
|
||||||
|
|
||||||
do i = 1, prm%sum_N_tr
|
do i = 1, prm%sum_N_tr
|
||||||
tau = math_tensordot(Mp,prm%P_tr(1:3,1:3,i))
|
tau = math_tensordot(Mp,prm%P_tr(1:3,1:3,i))
|
||||||
x0 = mu*prm%b_tr(i)**2/(Gamma*8.0_pReal*PI)*(2.0_pReal+nu)/(1.0_pReal-nu) ! ToDo: In the paper, the Burgers vector for slip is used
|
x0 = mu*prm%b_tr(i)**2*(2.0_pReal+nu)/(Gamma*8.0_pReal*PI*(1.0_pReal-nu)) ! ToDo: In the paper, the Burgers vector for slip is used
|
||||||
tau_r = mu*prm%b_tr(i)/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tr)+cos(PI/3.0_pReal)/x0)
|
tau_r = mu*prm%b_tr(i)/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tr)+cos(PI/3.0_pReal)/x0) ! ToDo: In the paper, the Burgers vector for slip is used
|
||||||
|
|
||||||
if (tau > tol_math_check .and. tau < tau_r) then
|
if (tau > tol_math_check .and. tau < tau_r) then
|
||||||
ratio_tau_s = (dst%tau_hat_tr(i,en)/tau)**prm%s(i)
|
ratio_tau_s = (dst%tau_hat_tr(i,en)/tau)**prm%s(i)
|
||||||
|
|
Loading…
Reference in New Issue