polishing

This commit is contained in:
Martin Diehl 2022-01-01 11:26:31 +01:00
parent d181b988c1
commit 03c6708629
1 changed files with 8 additions and 8 deletions

View File

@ -940,7 +940,7 @@ pure subroutine kinetics_tw(Mp,T,dot_gamma_sl,ph,en,&
ddot_gamma_dtau_tw ddot_gamma_dtau_tw
real :: & real :: &
ratio_tau_s, & ratio_tau_r, &
tau, tau_r, & tau, tau_r, &
dot_N_0, & dot_N_0, &
x0, & x0, &
@ -962,13 +962,13 @@ pure subroutine kinetics_tw(Mp,T,dot_gamma_sl,ph,en,&
do i = 1, prm%sum_N_tw do i = 1, prm%sum_N_tw
tau = math_tensordot(Mp,prm%P_tw(1:3,1:3,i)) tau = math_tensordot(Mp,prm%P_tw(1:3,1:3,i))
x0 = mu*prm%b_tw(i)**2/(Gamma*8.0_pReal*PI)*(2.0_pReal+nu)/(1.0_pReal-nu) ! ToDo: In the paper, the Burgers vector for slip is used x0 = mu*prm%b_tr(i)**2*(2.0_pReal+nu)/(Gamma*8.0_pReal*PI*(1.0_pReal-nu)) ! ToDo: In the paper, the Burgers vector for slip is used
tau_r = mu*prm%b_tw(i)/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tw)+cos(PI/3.0_pReal)/x0) tau_r = mu*prm%b_tw(i)/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tw)+cos(PI/3.0_pReal)/x0) ! ToDo: In the paper, the Burgers vector for slip is used
if (tau > tol_math_check .and. tau < tau_r) then if (tau > tol_math_check .and. tau < tau_r) then
ratio_tau_s = (dst%tau_hat_tw(i,en)/tau)**prm%r(i) ratio_tau_r = (dst%tau_hat_tw(i,en)/tau)**prm%r(i)
P = exp(-ratio_tau_s) P = exp(-ratio_tau_r)
dP_dTau = prm%r(i) * ratio_tau_s/tau * P dP_dTau = prm%r(i) * ratio_tau_r/tau * P
s = prm%fcc_twinNucleationSlipPair(1:2,i) s = prm%fcc_twinNucleationSlipPair(1:2,i)
dot_N_0 = sum(abs(dot_gamma_sl(s(2:1:-1)))*(stt%rho_mob(s,en)+stt%rho_dip(s,en))) & dot_N_0 = sum(abs(dot_gamma_sl(s(2:1:-1)))*(stt%rho_mob(s,en)+stt%rho_dip(s,en))) &
@ -1052,8 +1052,8 @@ pure subroutine kinetics_tr(Mp,T,dot_gamma_sl,ph,en,&
do i = 1, prm%sum_N_tr do i = 1, prm%sum_N_tr
tau = math_tensordot(Mp,prm%P_tr(1:3,1:3,i)) tau = math_tensordot(Mp,prm%P_tr(1:3,1:3,i))
x0 = mu*prm%b_tr(i)**2/(Gamma*8.0_pReal*PI)*(2.0_pReal+nu)/(1.0_pReal-nu) ! ToDo: In the paper, the Burgers vector for slip is used x0 = mu*prm%b_tr(i)**2*(2.0_pReal+nu)/(Gamma*8.0_pReal*PI*(1.0_pReal-nu)) ! ToDo: In the paper, the Burgers vector for slip is used
tau_r = mu*prm%b_tr(i)/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tr)+cos(PI/3.0_pReal)/x0) tau_r = mu*prm%b_tr(i)/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tr)+cos(PI/3.0_pReal)/x0) ! ToDo: In the paper, the Burgers vector for slip is used
if (tau > tol_math_check .and. tau < tau_r) then if (tau > tol_math_check .and. tau < tau_r) then
ratio_tau_s = (dst%tau_hat_tr(i,en)/tau)**prm%s(i) ratio_tau_s = (dst%tau_hat_tr(i,en)/tau)**prm%s(i)