Merge branch 'plastic-name-behavior-fix' into 'development'

adjusted names and behavior of dislo(tungsten + twin) + kinehardening

See merge request damask/DAMASK!419
This commit is contained in:
Franz Roters 2021-07-26 14:51:20 +00:00
commit 012f09caa7
10 changed files with 232 additions and 248 deletions

@ -1 +1 @@
Subproject commit f2e2d6c71ea798bfc63230a756b7cf9748599bec Subproject commit 72c58103860e127d37ccf3a06827331de29406ca

View File

@ -1,42 +0,0 @@
[Tungsten]
elasticity hooke
plasticity disloucla
(output) edge_density
(output) dipole_density
(output) shear_rate_slip
(output) accumulated_shear_slip
(output) resolved_stress_slip
(output) threshold_stress_slip
grainsize 2.7e-5 # Average grain size [m] 2.0e-5
SolidSolutionStrength 0.0 # Strength due to elements in solid solution
### Dislocation glide parameters ###
#per family
Nslip 12
slipburgers 2.72e-10 # Burgers vector of slip system [m]
rhoedge0 1.0e12 # Initial edge dislocation density [m/m**3]
rhoedgedip0 1.0 # Initial edged dipole dislocation density [m/m**3]
Qedge 2.61154e-19 # Activation energy for dislocation glide [J], 1.63 eV
v0 1 # Initial glide velocity [m/s]
p_slip 0.86 # p-exponent in glide velocity
q_slip 1.69 # q-exponent in glide velocity
tau_peierls 2.03e9 # peierls stress [Pa]
#mobility law
kink_height 2.567e-10 # kink height sqrt(6)/3*lattice_parameter [m]
omega 9.1e11 # attemp frequency (from kMC paper) [s^(-1)]
kink_width 29.95e-10 # kink pair width ~ 11 b (kMC paper) [m]
dislolength 78e-10 # dislocation length (ideally lambda) [m] initial value 11b
friction_coeff 8.3e-5 # friction coeff. B [Pa*s]
#hardening
dipoleformationfactor 0 # to have hardening due to dipole formation off
CLambdaSlip 10.0 # Adj. parameter controlling dislocation mean free path
D0 4.0e-5 # Vacancy diffusion prefactor [m**2/s]
Qsd 4.5e-19 # Activation energy for climb [J]
Catomicvolume 1.0 # Adj. parameter controlling the atomic volume [in b]
Cedgedipmindistance 1.0 # Adj. parameter controlling the minimum dipole distance [in b]
interaction_slipslip 0.009 0.72 0.009 0.05 0.05 0.06 0.09
nonschmid_coefficients 0.938 0.71 4.43 0.0 0.0 0.0

View File

@ -0,0 +1,26 @@
type: dislotungsten
N_sl: [12]
rho_mob_0: [1.0e+9]
rho_dip_0: [1.0]
nu_a: [9.1e+11]
b_sl: [2.72e-10]
Delta_H_kp,0: [2.61154e-19] # 1.63 eV, Delta_H0
tau_Peierls: [2.03e+9]
p_sl: [0.86]
q_sl: [1.69]
h: [2.566e-10]
w: [2.992e-09]
B: [8.3e-5]
D_a: 1.0 # d_edge
# climb (disabled)
D_0: 0.0
Q_cl: 0.0
V_cl: [0.0]
h_sl-sl: [0.009, 0.72, 0.009, 0.05, 0.05, 0.06, 0.09]
a_nonSchmid: [0.938, 0.71, 4.43]

View File

@ -6,7 +6,7 @@ b_sl: [2.56e-10]
rho_mob_0: [1.0e+12] rho_mob_0: [1.0e+12]
rho_dip_0: [1.0] rho_dip_0: [1.0]
v_0: [1.0e+4] v_0: [1.0e+4]
Q_s: [3.7e-19] Q_sl: [3.7e-19]
p_sl: [1.0] p_sl: [1.0]
q_sl: [1.0] q_sl: [1.0]
tau_0: [1.5e+8] tau_0: [1.5e+8]

View File

@ -11,7 +11,7 @@ b_sl: [2.49e-10, 2.49e-10]
rho_mob_0: [2.81e12, 2.8e+12] rho_mob_0: [2.81e12, 2.8e+12]
rho_dip_0: [1.0, 1.0] # not given rho_dip_0: [1.0, 1.0] # not given
v_0: [1.4e+3, 1.4e+3] v_0: [1.4e+3, 1.4e+3]
Q_s: [1.57e-19, 1.57e-19] # Delta_F Q_sl: [1.57e-19, 1.57e-19] # Delta_F
tau_0: [454.e+6, 454.e+6] tau_0: [454.e+6, 454.e+6]
p_sl: [0.325, 0.325] p_sl: [0.325, 0.325]
q_sl: [1.55, 1.55] q_sl: [1.55, 1.55]
@ -19,6 +19,5 @@ i_sl: [23.3, 23.3]
D_a: 7.4 # C_anni D_a: 7.4 # C_anni
B: [0.001, 0.001] B: [0.001, 0.001]
h_sl-sl: [0.1, 0.72, 0.1, 0.053, 0.053, 0.073, 0.137, 0.72, 0.72, 0.053, 0.053, 0.053, 0.053, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.137, 0.073, 0.073, 0.137, 0.073] h_sl-sl: [0.1, 0.72, 0.1, 0.053, 0.053, 0.073, 0.137, 0.72, 0.72, 0.053, 0.053, 0.053, 0.053, 0.073, 0.073, 0.073, 0.073, 0.073, 0.073, 0.137, 0.073, 0.073, 0.137, 0.073]
D_0: 4.0e-05
Q_cl: 5.4e-19 # no recovery! Q_cl: 5.4e-19 # no recovery!
D: 40.e-6 # estimated D: 40.e-6 # estimated

View File

@ -1,20 +1,29 @@
N_sl: [3, 3, 0, 6, 0, 6]
N_tw: [6, 0, 0, 6]
h_0_tw-tw: 50.0e+6
h_0_sl-sl: 500.0e+6
h_0_tw-sl: 150.0e+6
h_sl-sl: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
h_tw-tw: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
h_sl-tw: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
h_tw-sl: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
output: [xi_sl, xi_tw]
type: phenopowerlaw type: phenopowerlaw
references:
- F. Wang et al.,
Acta Materialia 80:77-93, 2014,
https://doi.org/10.1016/j.actamat.2014.07.048
output: [xi_sl, xi_tw]
N_sl: [3, 3, 0, 6, 0, 6] # basal, 1. prism, -, 1. pyr<a>, -, 2. pyr<c+a>
N_tw: [6, 0, 6] # tension, -, compression
xi_0_sl: [10.e+6, 55.e+6, 0., 60.e+6, 0., 60.e+6] xi_0_sl: [10.e+6, 55.e+6, 0., 60.e+6, 0., 60.e+6]
xi_inf_sl: [40.e+6, 135.e+6, 0., 150.e+6, 0., 150.e+6] xi_inf_sl: [40.e+6, 135.e+6, 0., 150.e+6, 0., 150.e+6]
xi_0_tw: [40.e+6, 0., 0., 60.e+6] xi_0_tw: [40.e+6, 0., 60.e+6]
a_sl: 2.25 a_sl: 2.25
dot_gamma_0_sl: 0.001 dot_gamma_0_sl: 0.001
dot_gamma_0_tw: 0.001 dot_gamma_0_tw: 0.001
n_sl: 20 n_sl: 20
n_tw: 20 n_tw: 20
f_sat_sl-tw: 10.0 f_sat_sl-tw: 10.0
h_0_sl-sl: 500.0e+6
h_0_tw-tw: 50.0e+6
h_0_tw-sl: 150.0e+6
h_sl-sl: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
h_tw-tw: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
h_tw-sl: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
h_sl-tw: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

View File

@ -7,14 +7,17 @@ references:
Acta Materialia 132:598-610, 2017, Acta Materialia 132:598-610, 2017,
https://doi.org/10.1016/j.actamat.2017.05.015 https://doi.org/10.1016/j.actamat.2017.05.015
output: [gamma_sl] output: [gamma_sl]
N_sl: [3, 3, 0, 0, 12]
N_sl: [3, 3, 0, 0, 12] # basal, 1. prism, -, -, 2. pyr<c+a>
n_sl: 20 n_sl: 20
a_sl: 2.0 a_sl: 2.0
dot_gamma_0_sl: 0.001 dot_gamma_0_sl: 0.001
h_0_sl-sl: 200.e+6 h_0_sl-sl: 200.e+6
# C. Zambaldi et al.: # C. Zambaldi et al.:
xi_0_sl: [349.e+6, 150.e+6, 0.0, 0.0, 1107.e+6] xi_0_sl: [349.e+6, 150.e+6, 0.0, 0.0, 1107.e+6]
xi_inf_sl: [568.e+6, 150.e+7, 0.0, 0.0, 3420.e+6] xi_inf_sl: [568.e+6, 150.e+7, 0.0, 0.0, 3420.e+6]
# L. Wang et al. : # L. Wang et al. :
# xi_0_sl: [127.e+6, 96.e+6, 0.0, 0.0, 240.e+6] # xi_0_sl: [127.e+6, 96.e+6, 0.0, 0.0, 240.e+6]
h_sl-sl: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] h_sl-sl: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

View File

@ -18,7 +18,7 @@ submodule(phase:plastic) dislotungsten
Q_cl = 1.0_pReal !< activation energy for dislocation climb Q_cl = 1.0_pReal !< activation energy for dislocation climb
real(pReal), allocatable, dimension(:) :: & real(pReal), allocatable, dimension(:) :: &
b_sl, & !< magnitude of Burgers vector [m] b_sl, & !< magnitude of Burgers vector [m]
D_a, & d_caron, & !< distance of spontaneous annhihilation
i_sl, & !< Adj. parameter for distance between 2 forest dislocations i_sl, & !< Adj. parameter for distance between 2 forest dislocations
f_at, & !< factor to calculate atomic volume f_at, & !< factor to calculate atomic volume
tau_Peierls, & !< Peierls stress tau_Peierls, & !< Peierls stress
@ -56,7 +56,7 @@ submodule(phase:plastic) dislotungsten
type :: tDisloTungstendependentState type :: tDisloTungstendependentState
real(pReal), dimension(:,:), allocatable :: & real(pReal), dimension(:,:), allocatable :: &
Lambda_sl, & Lambda_sl, &
threshold_stress tau_pass
end type tDisloTungstendependentState end type tDisloTungstendependentState
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -172,7 +172,6 @@ module function plastic_dislotungsten_init() result(myPlasticity)
prm%D_0 = pl%get_asFloat('D_0') prm%D_0 = pl%get_asFloat('D_0')
prm%Q_cl = pl%get_asFloat('Q_cl') prm%Q_cl = pl%get_asFloat('Q_cl')
prm%f_at = pl%get_asFloat('f_at') * prm%b_sl**3.0_pReal prm%f_at = pl%get_asFloat('f_at') * prm%b_sl**3.0_pReal
prm%D_a = pl%get_asFloat('D_a') * prm%b_sl
prm%dipoleformation = .not. pl%get_asBool('no_dipole_formation', defaultVal = .false.) prm%dipoleformation = .not. pl%get_asBool('no_dipole_formation', defaultVal = .false.)
@ -191,7 +190,7 @@ module function plastic_dislotungsten_init() result(myPlasticity)
prm%B = math_expand(prm%B, N_sl) prm%B = math_expand(prm%B, N_sl)
prm%i_sl = math_expand(prm%i_sl, N_sl) prm%i_sl = math_expand(prm%i_sl, N_sl)
prm%f_at = math_expand(prm%f_at, N_sl) prm%f_at = math_expand(prm%f_at, N_sl)
prm%D_a = math_expand(prm%D_a, N_sl) prm%d_caron = pl%get_asFloat('D_a') * prm%b_sl
! sanity checks ! sanity checks
if ( prm%D_0 <= 0.0_pReal) extmsg = trim(extmsg)//' D_0' if ( prm%D_0 <= 0.0_pReal) extmsg = trim(extmsg)//' D_0'
@ -202,12 +201,13 @@ module function plastic_dislotungsten_init() result(myPlasticity)
if (any(prm%b_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' b_sl' if (any(prm%b_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' b_sl'
if (any(prm%Q_s <= 0.0_pReal)) extmsg = trim(extmsg)//' Q_s' if (any(prm%Q_s <= 0.0_pReal)) extmsg = trim(extmsg)//' Q_s'
if (any(prm%tau_Peierls < 0.0_pReal)) extmsg = trim(extmsg)//' tau_Peierls' if (any(prm%tau_Peierls < 0.0_pReal)) extmsg = trim(extmsg)//' tau_Peierls'
if (any(prm%D_a <= 0.0_pReal)) extmsg = trim(extmsg)//' D_a or b_sl' if (any(prm%B < 0.0_pReal)) extmsg = trim(extmsg)//' B'
if (any(prm%d_caron < 0.0_pReal)) extmsg = trim(extmsg)//' d_caron(D_a,b_sl)'
if (any(prm%f_at <= 0.0_pReal)) extmsg = trim(extmsg)//' f_at or b_sl' if (any(prm%f_at <= 0.0_pReal)) extmsg = trim(extmsg)//' f_at or b_sl'
else slipActive else slipActive
rho_mob_0= emptyRealArray; rho_dip_0 = emptyRealArray rho_mob_0= emptyRealArray; rho_dip_0 = emptyRealArray
allocate(prm%b_sl,prm%D_a,prm%i_sl,prm%f_at,prm%tau_Peierls, & allocate(prm%b_sl,prm%d_caron,prm%i_sl,prm%f_at,prm%tau_Peierls, &
prm%Q_s,prm%v_0,prm%p,prm%q,prm%B,prm%h,prm%w,prm%omega, & prm%Q_s,prm%v_0,prm%p,prm%q,prm%B,prm%h,prm%w,prm%omega, &
source = emptyRealArray) source = emptyRealArray)
allocate(prm%forestProjection(0,0)) allocate(prm%forestProjection(0,0))
@ -247,7 +247,7 @@ module function plastic_dislotungsten_init() result(myPlasticity)
if(any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_gamma' if(any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_gamma'
allocate(dst%Lambda_sl(prm%sum_N_sl,Nmembers), source=0.0_pReal) allocate(dst%Lambda_sl(prm%sum_N_sl,Nmembers), source=0.0_pReal)
allocate(dst%threshold_stress(prm%sum_N_sl,Nmembers), source=0.0_pReal) allocate(dst%tau_pass(prm%sum_N_sl,Nmembers), source=0.0_pReal)
end associate end associate
@ -316,8 +316,6 @@ module subroutine dislotungsten_dotState(Mp,T,ph,en)
ph, & ph, &
en en
real(pReal) :: &
VacancyDiffusion
real(pReal), dimension(param(ph)%sum_N_sl) :: & real(pReal), dimension(param(ph)%sum_N_sl) :: &
dot_gamma_pos, dot_gamma_neg,& dot_gamma_pos, dot_gamma_neg,&
tau_pos,& tau_pos,&
@ -325,38 +323,36 @@ module subroutine dislotungsten_dotState(Mp,T,ph,en)
v_cl, & v_cl, &
dot_rho_dip_formation, & dot_rho_dip_formation, &
dot_rho_dip_climb, & dot_rho_dip_climb, &
dip_distance d_hat
associate(prm => param(ph), stt => state(ph),& associate(prm => param(ph), stt => state(ph), dot => dotState(ph), dst => dependentState(ph))
dot => dotState(ph), dst => dependentState(ph))
call kinetics(Mp,T,ph,en,& call kinetics(Mp,T,ph,en,&
dot_gamma_pos,dot_gamma_neg, & dot_gamma_pos,dot_gamma_neg, &
tau_pos_out = tau_pos,tau_neg_out = tau_neg) tau_pos_out = tau_pos,tau_neg_out = tau_neg)
dot%gamma_sl(:,en) = (dot_gamma_pos+dot_gamma_neg) ! ToDo: needs to be abs dot%gamma_sl(:,en) = abs(dot_gamma_pos+dot_gamma_neg)
VacancyDiffusion = prm%D_0*exp(-prm%Q_cl/(kB*T))
where(dEq0(tau_pos)) ! ToDo: use avg of pos and neg where(dEq0(tau_pos)) ! ToDo: use avg of +/-
dot_rho_dip_formation = 0.0_pReal dot_rho_dip_formation = 0.0_pReal
dot_rho_dip_climb = 0.0_pReal dot_rho_dip_climb = 0.0_pReal
else where else where
dip_distance = math_clip(3.0_pReal*prm%mu*prm%b_sl/(16.0_pReal*PI*abs(tau_pos)), & d_hat = math_clip(3.0_pReal*prm%mu*prm%b_sl/(16.0_pReal*PI*abs(tau_pos)), & ! ToDo: use avg of +/-
prm%D_a, & ! lower limit prm%d_caron, & ! lower limit
dst%Lambda_sl(:,en)) ! upper limit dst%Lambda_sl(:,en)) ! upper limit
dot_rho_dip_formation = merge(2.0_pReal*dip_distance* stt%rho_mob(:,en)*abs(dot%gamma_sl(:,en))/prm%b_sl, & ! ToDo: ignore region of spontaneous annihilation dot_rho_dip_formation = merge(2.0_pReal*(d_hat-prm%d_caron)*stt%rho_mob(:,en)*dot%gamma_sl(:,en)/prm%b_sl, &
0.0_pReal, & 0.0_pReal, &
prm%dipoleformation) prm%dipoleformation)
v_cl = (3.0_pReal*prm%mu*VacancyDiffusion*prm%f_at/(2.0_pReal*pi*kB*T)) & v_cl = (3.0_pReal*prm%mu*prm%D_0*exp(-prm%Q_cl/(kB*T))*prm%f_at/(2.0_pReal*PI*kB*T)) &
* (1.0_pReal/(dip_distance+prm%D_a)) * (1.0_pReal/(d_hat+prm%d_caron))
dot_rho_dip_climb = (4.0_pReal*v_cl*stt%rho_dip(:,en))/(dip_distance-prm%D_a) ! ToDo: Discuss with Franz: Stress dependency? dot_rho_dip_climb = (4.0_pReal*v_cl*stt%rho_dip(:,en))/(d_hat-prm%d_caron) ! ToDo: Discuss with Franz: Stress dependency?
end where end where
dot%rho_mob(:,en) = abs(dot%gamma_sl(:,en))/(prm%b_sl*dst%Lambda_sl(:,en)) & ! multiplication dot%rho_mob(:,en) = dot%gamma_sl(:,en)/(prm%b_sl*dst%Lambda_sl(:,en)) & ! multiplication
- dot_rho_dip_formation & - dot_rho_dip_formation &
- (2.0_pReal*prm%D_a)/prm%b_sl*stt%rho_mob(:,en)*abs(dot%gamma_sl(:,en)) ! Spontaneous annihilation of 2 single edge dislocations - (2.0_pReal*prm%d_caron)/prm%b_sl*stt%rho_mob(:,en)*dot%gamma_sl(:,en) ! Spontaneous annihilation of 2 edges
dot%rho_dip(:,en) = dot_rho_dip_formation & dot%rho_dip(:,en) = dot_rho_dip_formation &
- (2.0_pReal*prm%D_a)/prm%b_sl*stt%rho_dip(:,en)*abs(dot%gamma_sl(:,en)) & ! Spontaneous annihilation of a single edge dislocation with a dipole constituent - (2.0_pReal*prm%d_caron)/prm%b_sl*stt%rho_dip(:,en)*dot%gamma_sl(:,en) & ! Spontaneous annihilation of an edge with a dipole
- dot_rho_dip_climb - dot_rho_dip_climb
end associate end associate
@ -377,10 +373,10 @@ module subroutine dislotungsten_dependentState(ph,en)
dislocationSpacing dislocationSpacing
associate(prm => param(ph), stt => state(ph),dst => dependentState(ph)) associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
dislocationSpacing = sqrt(matmul(prm%forestProjection,stt%rho_mob(:,en)+stt%rho_dip(:,en))) dislocationSpacing = sqrt(matmul(prm%forestProjection,stt%rho_mob(:,en)+stt%rho_dip(:,en)))
dst%threshold_stress(:,en) = prm%mu*prm%b_sl & dst%tau_pass(:,en) = prm%mu*prm%b_sl &
* sqrt(matmul(prm%h_sl_sl,stt%rho_mob(:,en)+stt%rho_dip(:,en))) * sqrt(matmul(prm%h_sl_sl,stt%rho_mob(:,en)+stt%rho_dip(:,en)))
dst%Lambda_sl(:,en) = prm%D/(1.0_pReal+prm%D*dislocationSpacing/prm%i_sl) dst%Lambda_sl(:,en) = prm%D/(1.0_pReal+prm%D*dislocationSpacing/prm%i_sl)
@ -416,7 +412,7 @@ module subroutine plastic_dislotungsten_results(ph,group)
if(prm%sum_N_sl>0) call results_writeDataset(dst%Lambda_sl,group,trim(prm%output(o)), & if(prm%sum_N_sl>0) call results_writeDataset(dst%Lambda_sl,group,trim(prm%output(o)), &
'mean free path for slip','m') 'mean free path for slip','m')
case('tau_pass') case('tau_pass')
if(prm%sum_N_sl>0) call results_writeDataset(dst%threshold_stress,group,trim(prm%output(o)), & if(prm%sum_N_sl>0) call results_writeDataset(dst%tau_pass,group,trim(prm%output(o)), &
'threshold stress for slip','Pa') 'threshold stress for slip','Pa')
end select end select
enddo outputsLoop enddo outputsLoop
@ -456,8 +452,7 @@ pure subroutine kinetics(Mp,T,ph,en, &
StressRatio_p,StressRatio_pminus1, & StressRatio_p,StressRatio_pminus1, &
dvel, vel, & dvel, vel, &
tau_pos,tau_neg, & tau_pos,tau_neg, &
t_n, t_k, dtk,dtn, & t_n, t_k, dtk,dtn
needsGoodName ! ToDo: @Karo: any idea?
integer :: j integer :: j
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph)) associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
@ -475,13 +470,12 @@ pure subroutine kinetics(Mp,T,ph,en, &
dot_gamma_0 => stt%rho_mob(:,en)*prm%b_sl*prm%v_0, & dot_gamma_0 => stt%rho_mob(:,en)*prm%b_sl*prm%v_0, &
effectiveLength => dst%Lambda_sl(:,en) - prm%w) effectiveLength => dst%Lambda_sl(:,en) - prm%w)
significantPositiveTau: where(abs(tau_pos)-dst%threshold_stress(:,en) > tol_math_check) significantPositiveTau: where(abs(tau_pos)-dst%tau_pass(:,en) > tol_math_check)
StressRatio = (abs(tau_pos)-dst%threshold_stress(:,en))/prm%tau_Peierls StressRatio = (abs(tau_pos)-dst%tau_pass(:,en))/prm%tau_Peierls
StressRatio_p = StressRatio** prm%p StressRatio_p = StressRatio** prm%p
StressRatio_pminus1 = StressRatio**(prm%p-1.0_pReal) StressRatio_pminus1 = StressRatio**(prm%p-1.0_pReal)
needsGoodName = exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q)
t_n = prm%b_sl/(needsGoodName*prm%omega*effectiveLength) t_n = prm%b_sl/(exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q)*prm%omega*effectiveLength)
t_k = effectiveLength * prm%B /(2.0_pReal*prm%b_sl*tau_pos) t_k = effectiveLength * prm%B /(2.0_pReal*prm%b_sl*tau_pos)
vel = prm%h/(t_n + t_k) vel = prm%h/(t_n + t_k)
@ -492,7 +486,7 @@ pure subroutine kinetics(Mp,T,ph,en, &
end where significantPositiveTau end where significantPositiveTau
if (present(ddot_gamma_dtau_pos)) then if (present(ddot_gamma_dtau_pos)) then
significantPositiveTau2: where(abs(tau_pos)-dst%threshold_stress(:,en) > tol_math_check) significantPositiveTau2: where(abs(tau_pos)-dst%tau_pass(:,en) > tol_math_check)
dtn = -1.0_pReal * t_n * BoltzmannRatio * prm%p * prm%q * (1.0_pReal-StressRatio_p)**(prm%q - 1.0_pReal) & dtn = -1.0_pReal * t_n * BoltzmannRatio * prm%p * prm%q * (1.0_pReal-StressRatio_p)**(prm%q - 1.0_pReal) &
* (StressRatio)**(prm%p - 1.0_pReal) / prm%tau_Peierls * (StressRatio)**(prm%p - 1.0_pReal) / prm%tau_Peierls
dtk = -1.0_pReal * t_k / tau_pos dtk = -1.0_pReal * t_k / tau_pos
@ -505,13 +499,12 @@ pure subroutine kinetics(Mp,T,ph,en, &
end where significantPositiveTau2 end where significantPositiveTau2
endif endif
significantNegativeTau: where(abs(tau_neg)-dst%threshold_stress(:,en) > tol_math_check) significantNegativeTau: where(abs(tau_neg)-dst%tau_pass(:,en) > tol_math_check)
StressRatio = (abs(tau_neg)-dst%threshold_stress(:,en))/prm%tau_Peierls StressRatio = (abs(tau_neg)-dst%tau_pass(:,en))/prm%tau_Peierls
StressRatio_p = StressRatio** prm%p StressRatio_p = StressRatio** prm%p
StressRatio_pminus1 = StressRatio**(prm%p-1.0_pReal) StressRatio_pminus1 = StressRatio**(prm%p-1.0_pReal)
needsGoodName = exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q)
t_n = prm%b_sl/(needsGoodName*prm%omega*effectiveLength) t_n = prm%b_sl/(exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q)*prm%omega*effectiveLength)
t_k = effectiveLength * prm%B /(2.0_pReal*prm%b_sl*tau_pos) t_k = effectiveLength * prm%B /(2.0_pReal*prm%b_sl*tau_pos)
vel = prm%h/(t_n + t_k) vel = prm%h/(t_n + t_k)
@ -522,7 +515,7 @@ pure subroutine kinetics(Mp,T,ph,en, &
end where significantNegativeTau end where significantNegativeTau
if (present(ddot_gamma_dtau_neg)) then if (present(ddot_gamma_dtau_neg)) then
significantNegativeTau2: where(abs(tau_neg)-dst%threshold_stress(:,en) > tol_math_check) significantNegativeTau2: where(abs(tau_neg)-dst%tau_pass(:,en) > tol_math_check)
dtn = -1.0_pReal * t_n * BoltzmannRatio * prm%p * prm%q * (1.0_pReal-StressRatio_p)**(prm%q - 1.0_pReal) & dtn = -1.0_pReal * t_n * BoltzmannRatio * prm%p * prm%q * (1.0_pReal-StressRatio_p)**(prm%q - 1.0_pReal) &
* (StressRatio)**(prm%p - 1.0_pReal) / prm%tau_Peierls * (StressRatio)**(prm%p - 1.0_pReal) / prm%tau_Peierls
dtk = -1.0_pReal * t_k / tau_neg dtk = -1.0_pReal * t_k / tau_neg

View File

@ -16,13 +16,11 @@ submodule(phase:plastic) dislotwin
real(pReal) :: & real(pReal) :: &
mu = 1.0_pReal, & !< equivalent shear modulus mu = 1.0_pReal, & !< equivalent shear modulus
nu = 1.0_pReal, & !< equivalent shear Poisson's ratio nu = 1.0_pReal, & !< equivalent shear Poisson's ratio
D_0 = 1.0_pReal, & !< prefactor for self-diffusion coefficient
Q_cl = 1.0_pReal, & !< activation energy for dislocation climb Q_cl = 1.0_pReal, & !< activation energy for dislocation climb
omega = 1.0_pReal, & !< frequency factor for dislocation climb omega = 1.0_pReal, & !< frequency factor for dislocation climb
D = 1.0_pReal, & !< grain size D = 1.0_pReal, & !< grain size
p_sb = 1.0_pReal, & !< p-exponent in shear band velocity p_sb = 1.0_pReal, & !< p-exponent in shear band velocity
q_sb = 1.0_pReal, & !< q-exponent in shear band velocity q_sb = 1.0_pReal, & !< q-exponent in shear band velocity
D_a = 1.0_pReal, & !< adjustment parameter to calculate minimum dipole distance
i_tw = 1.0_pReal, & !< adjustment parameter to calculate MFP for twinning i_tw = 1.0_pReal, & !< adjustment parameter to calculate MFP for twinning
L_tw = 1.0_pReal, & !< Length of twin nuclei in Burgers vectors L_tw = 1.0_pReal, & !< Length of twin nuclei in Burgers vectors
L_tr = 1.0_pReal, & !< Length of trans nuclei in Burgers vectors L_tr = 1.0_pReal, & !< Length of trans nuclei in Burgers vectors
@ -42,7 +40,7 @@ submodule(phase:plastic) dislotwin
b_sl, & !< absolute length of Burgers vector [m] for each slip system b_sl, & !< absolute length of Burgers vector [m] for each slip system
b_tw, & !< absolute length of Burgers vector [m] for each twin system b_tw, & !< absolute length of Burgers vector [m] for each twin system
b_tr, & !< absolute length of Burgers vector [m] for each transformation system b_tr, & !< absolute length of Burgers vector [m] for each transformation system
Q_s,& !< activation energy for glide [J] for each slip system Q_sl,& !< activation energy for glide [J] for each slip system
v_0, & !< dislocation velocity prefactor [m/s] for each slip system v_0, & !< dislocation velocity prefactor [m/s] for each slip system
dot_N_0_tw, & !< twin nucleation rate [1/m³s] for each twin system dot_N_0_tw, & !< twin nucleation rate [1/m³s] for each twin system
dot_N_0_tr, & !< trans nucleation rate [1/m³s] for each trans system dot_N_0_tr, & !< trans nucleation rate [1/m³s] for each trans system
@ -55,7 +53,8 @@ submodule(phase:plastic) dislotwin
s, & !< s-exponent in trans nucleation rate s, & !< s-exponent in trans nucleation rate
tau_0, & !< strength due to elements in solid solution tau_0, & !< strength due to elements in solid solution
gamma_char, & !< characteristic shear for twins gamma_char, & !< characteristic shear for twins
B !< drag coefficient B, & !< drag coefficient
d_caron !< distance of spontaneous annhihilation
real(pReal), allocatable, dimension(:,:) :: & real(pReal), allocatable, dimension(:,:) :: &
h_sl_sl, & !< components of slip-slip interaction matrix h_sl_sl, & !< components of slip-slip interaction matrix
h_sl_tw, & !< components of slip-twin interaction matrix h_sl_tw, & !< components of slip-twin interaction matrix
@ -206,7 +205,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
rho_dip_0 = pl%get_as1dFloat('rho_dip_0', requiredSize=size(N_sl)) rho_dip_0 = pl%get_as1dFloat('rho_dip_0', requiredSize=size(N_sl))
prm%v_0 = pl%get_as1dFloat('v_0', requiredSize=size(N_sl)) prm%v_0 = pl%get_as1dFloat('v_0', requiredSize=size(N_sl))
prm%b_sl = pl%get_as1dFloat('b_sl', requiredSize=size(N_sl)) prm%b_sl = pl%get_as1dFloat('b_sl', requiredSize=size(N_sl))
prm%Q_s = pl%get_as1dFloat('Q_s', requiredSize=size(N_sl)) prm%Q_sl = pl%get_as1dFloat('Q_sl', requiredSize=size(N_sl))
prm%i_sl = pl%get_as1dFloat('i_sl', requiredSize=size(N_sl)) prm%i_sl = pl%get_as1dFloat('i_sl', requiredSize=size(N_sl))
prm%p = pl%get_as1dFloat('p_sl', requiredSize=size(N_sl)) prm%p = pl%get_as1dFloat('p_sl', requiredSize=size(N_sl))
prm%q = pl%get_as1dFloat('q_sl', requiredSize=size(N_sl)) prm%q = pl%get_as1dFloat('q_sl', requiredSize=size(N_sl))
@ -214,8 +213,6 @@ module function plastic_dislotwin_init() result(myPlasticity)
prm%B = pl%get_as1dFloat('B', requiredSize=size(N_sl), & prm%B = pl%get_as1dFloat('B', requiredSize=size(N_sl), &
defaultVal=[(0.0_pReal, i=1,size(N_sl))]) defaultVal=[(0.0_pReal, i=1,size(N_sl))])
prm%D_a = pl%get_asFloat('D_a')
prm%D_0 = pl%get_asFloat('D_0')
prm%Q_cl = pl%get_asFloat('Q_cl') prm%Q_cl = pl%get_asFloat('Q_cl')
prm%ExtendedDislocations = pl%get_asBool('extend_dislocations',defaultVal = .false.) prm%ExtendedDislocations = pl%get_asBool('extend_dislocations',defaultVal = .false.)
@ -231,28 +228,29 @@ module function plastic_dislotwin_init() result(myPlasticity)
rho_dip_0 = math_expand(rho_dip_0, N_sl) rho_dip_0 = math_expand(rho_dip_0, N_sl)
prm%v_0 = math_expand(prm%v_0, N_sl) prm%v_0 = math_expand(prm%v_0, N_sl)
prm%b_sl = math_expand(prm%b_sl, N_sl) prm%b_sl = math_expand(prm%b_sl, N_sl)
prm%Q_s = math_expand(prm%Q_s, N_sl) prm%Q_sl = math_expand(prm%Q_sl, N_sl)
prm%i_sl = math_expand(prm%i_sl, N_sl) prm%i_sl = math_expand(prm%i_sl, N_sl)
prm%p = math_expand(prm%p, N_sl) prm%p = math_expand(prm%p, N_sl)
prm%q = math_expand(prm%q, N_sl) prm%q = math_expand(prm%q, N_sl)
prm%tau_0 = math_expand(prm%tau_0, N_sl) prm%tau_0 = math_expand(prm%tau_0, N_sl)
prm%B = math_expand(prm%B, N_sl) prm%B = math_expand(prm%B, N_sl)
prm%d_caron = pl%get_asFloat('D_a') * prm%b_sl
! sanity checks ! sanity checks
if ( prm%D_0 <= 0.0_pReal) extmsg = trim(extmsg)//' D_0'
if ( prm%Q_cl <= 0.0_pReal) extmsg = trim(extmsg)//' Q_cl' if ( prm%Q_cl <= 0.0_pReal) extmsg = trim(extmsg)//' Q_cl'
if (any(rho_mob_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_mob_0' if (any(rho_mob_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_mob_0'
if (any(rho_dip_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_dip_0' if (any(rho_dip_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_dip_0'
if (any(prm%v_0 < 0.0_pReal)) extmsg = trim(extmsg)//' v_0' if (any(prm%v_0 < 0.0_pReal)) extmsg = trim(extmsg)//' v_0'
if (any(prm%b_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' b_sl' if (any(prm%b_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' b_sl'
if (any(prm%Q_s <= 0.0_pReal)) extmsg = trim(extmsg)//' Q_s' if (any(prm%Q_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' Q_sl'
if (any(prm%i_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' i_sl' if (any(prm%i_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' i_sl'
if (any(prm%B < 0.0_pReal)) extmsg = trim(extmsg)//' B' if (any(prm%B < 0.0_pReal)) extmsg = trim(extmsg)//' B'
if (any(prm%d_caron < 0.0_pReal)) extmsg = trim(extmsg)//' d_caron(D_a,b_sl)'
if (any(prm%p<=0.0_pReal .or. prm%p>1.0_pReal)) extmsg = trim(extmsg)//' p_sl' if (any(prm%p<=0.0_pReal .or. prm%p>1.0_pReal)) extmsg = trim(extmsg)//' p_sl'
if (any(prm%q< 1.0_pReal .or. prm%q>2.0_pReal)) extmsg = trim(extmsg)//' q_sl' if (any(prm%q< 1.0_pReal .or. prm%q>2.0_pReal)) extmsg = trim(extmsg)//' q_sl'
else slipActive else slipActive
rho_mob_0 = emptyRealArray; rho_dip_0 = emptyRealArray rho_mob_0 = emptyRealArray; rho_dip_0 = emptyRealArray
allocate(prm%b_sl,prm%Q_s,prm%v_0,prm%i_sl,prm%p,prm%q,prm%B,source=emptyRealArray) allocate(prm%b_sl,prm%Q_sl,prm%v_0,prm%i_sl,prm%p,prm%q,prm%B,source=emptyRealArray)
allocate(prm%forestProjection(0,0),prm%h_sl_sl(0,0)) allocate(prm%forestProjection(0,0),prm%h_sl_sl(0,0))
endif slipActive endif slipActive
@ -516,7 +514,7 @@ module subroutine dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,T,ph,en)
integer :: i,k,l,m,n integer :: i,k,l,m,n
real(pReal) :: & real(pReal) :: &
f_unrotated,StressRatio_p,& f_unrotated,StressRatio_p,&
BoltzmannRatio, & E_kB_T, &
ddot_gamma_dtau, & ddot_gamma_dtau, &
tau tau
real(pReal), dimension(param(ph)%sum_N_sl) :: & real(pReal), dimension(param(ph)%sum_N_sl) :: &
@ -586,7 +584,7 @@ module subroutine dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,T,ph,en)
shearBandingContribution: if(dNeq0(prm%v_sb)) then shearBandingContribution: if(dNeq0(prm%v_sb)) then
BoltzmannRatio = prm%E_sb/(kB*T) E_kB_T = prm%E_sb/(kB*T)
call math_eigh33(eigValues,eigVectors,Mp) ! is Mp symmetric by design? call math_eigh33(eigValues,eigVectors,Mp) ! is Mp symmetric by design?
do i = 1,6 do i = 1,6
@ -596,8 +594,8 @@ module subroutine dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,T,ph,en)
significantShearBandStress: if (abs(tau) > tol_math_check) then significantShearBandStress: if (abs(tau) > tol_math_check) then
StressRatio_p = (abs(tau)/prm%xi_sb)**prm%p_sb StressRatio_p = (abs(tau)/prm%xi_sb)**prm%p_sb
dot_gamma_sb = sign(prm%v_sb*exp(-BoltzmannRatio*(1-StressRatio_p)**prm%q_sb), tau) dot_gamma_sb = sign(prm%v_sb*exp(-E_kB_T*(1-StressRatio_p)**prm%q_sb), tau)
ddot_gamma_dtau = abs(dot_gamma_sb)*BoltzmannRatio* prm%p_sb*prm%q_sb/ prm%xi_sb & ddot_gamma_dtau = abs(dot_gamma_sb)*E_kB_T*prm%p_sb*prm%q_sb/prm%xi_sb &
* (abs(tau)/prm%xi_sb)**(prm%p_sb-1.0_pReal) & * (abs(tau)/prm%xi_sb)**(prm%p_sb-1.0_pReal) &
* (1.0_pReal-StressRatio_p)**(prm%q_sb-1.0_pReal) * (1.0_pReal-StressRatio_p)**(prm%q_sb-1.0_pReal)
@ -631,7 +629,7 @@ module subroutine dislotwin_dotState(Mp,T,ph,en)
integer :: i integer :: i
real(pReal) :: & real(pReal) :: &
f_unrotated, & f_unrotated, &
rho_dip_distance, & d_hat, &
v_cl, & !< climb velocity v_cl, & !< climb velocity
tau, & tau, &
sigma_cl, & !< climb stress sigma_cl, & !< climb stress
@ -639,15 +637,14 @@ module subroutine dislotwin_dotState(Mp,T,ph,en)
real(pReal), dimension(param(ph)%sum_N_sl) :: & real(pReal), dimension(param(ph)%sum_N_sl) :: &
dot_rho_dip_formation, & dot_rho_dip_formation, &
dot_rho_dip_climb, & dot_rho_dip_climb, &
rho_dip_distance_min, &
dot_gamma_sl dot_gamma_sl
real(pReal), dimension(param(ph)%sum_N_tw) :: & real(pReal), dimension(param(ph)%sum_N_tw) :: &
dot_gamma_tw dot_gamma_tw
real(pReal), dimension(param(ph)%sum_N_tr) :: & real(pReal), dimension(param(ph)%sum_N_tr) :: &
dot_gamma_tr dot_gamma_tr
associate(prm => param(ph), stt => state(ph), &
dot => dotState(ph), dst => dependentState(ph)) associate(prm => param(ph), stt => state(ph), dot => dotState(ph), dst => dependentState(ph))
f_unrotated = 1.0_pReal & f_unrotated = 1.0_pReal &
- sum(stt%f_tw(1:prm%sum_N_tw,en)) & - sum(stt%f_tw(1:prm%sum_N_tw,en)) &
@ -656,8 +653,6 @@ module subroutine dislotwin_dotState(Mp,T,ph,en)
call kinetics_sl(Mp,T,ph,en,dot_gamma_sl) call kinetics_sl(Mp,T,ph,en,dot_gamma_sl)
dot%gamma_sl(:,en) = abs(dot_gamma_sl) dot%gamma_sl(:,en) = abs(dot_gamma_sl)
rho_dip_distance_min = prm%D_a*prm%b_sl
slipState: do i = 1, prm%sum_N_sl slipState: do i = 1, prm%sum_N_sl
tau = math_tensordot(Mp,prm%P_sl(1:3,1:3,i)) tau = math_tensordot(Mp,prm%P_sl(1:3,1:3,i))
@ -665,14 +660,14 @@ module subroutine dislotwin_dotState(Mp,T,ph,en)
dot_rho_dip_formation(i) = 0.0_pReal dot_rho_dip_formation(i) = 0.0_pReal
dot_rho_dip_climb(i) = 0.0_pReal dot_rho_dip_climb(i) = 0.0_pReal
else significantSlipStress else significantSlipStress
rho_dip_distance = 3.0_pReal*prm%mu*prm%b_sl(i)/(16.0_pReal*PI*abs(tau)) d_hat = 3.0_pReal*prm%mu*prm%b_sl(i)/(16.0_pReal*PI*abs(tau))
rho_dip_distance = math_clip(rho_dip_distance, right = dst%Lambda_sl(i,en)) d_hat = math_clip(d_hat, right = dst%Lambda_sl(i,en))
rho_dip_distance = math_clip(rho_dip_distance, left = rho_dip_distance_min(i)) d_hat = math_clip(d_hat, left = prm%d_caron(i))
dot_rho_dip_formation(i) = 2.0_pReal*(rho_dip_distance-rho_dip_distance_min(i))/prm%b_sl(i) & dot_rho_dip_formation(i) = 2.0_pReal*(d_hat-prm%d_caron(i))/prm%b_sl(i) &
* stt%rho_mob(i,en)*abs(dot_gamma_sl(i)) * stt%rho_mob(i,en)*abs(dot_gamma_sl(i))
if (dEq(rho_dip_distance,rho_dip_distance_min(i))) then if (dEq(d_hat,prm%d_caron(i))) then
dot_rho_dip_climb(i) = 0.0_pReal dot_rho_dip_climb(i) = 0.0_pReal
else else
! Argon & Moffat, Acta Metallurgica, Vol. 29, pg 293 to 299, 1981 ! Argon & Moffat, Acta Metallurgica, Vol. 29, pg 293 to 299, 1981
@ -685,17 +680,17 @@ module subroutine dislotwin_dotState(Mp,T,ph,en)
* (exp(abs(sigma_cl)*prm%b_sl(i)**3.0_pReal/(kB*T)) - 1.0_pReal) * (exp(abs(sigma_cl)*prm%b_sl(i)**3.0_pReal/(kB*T)) - 1.0_pReal)
dot_rho_dip_climb(i) = 4.0_pReal*v_cl*stt%rho_dip(i,en) & dot_rho_dip_climb(i) = 4.0_pReal*v_cl*stt%rho_dip(i,en) &
/ (rho_dip_distance-rho_dip_distance_min(i)) / (d_hat-prm%d_caron(i))
endif endif
endif significantSlipStress endif significantSlipStress
enddo slipState enddo slipState
dot%rho_mob(:,en) = abs(dot_gamma_sl)/(prm%b_sl*dst%Lambda_sl(:,en)) & dot%rho_mob(:,en) = abs(dot_gamma_sl)/(prm%b_sl*dst%Lambda_sl(:,en)) &
- dot_rho_dip_formation & - dot_rho_dip_formation &
- 2.0_pReal*rho_dip_distance_min/prm%b_sl * stt%rho_mob(:,en)*abs(dot_gamma_sl) - 2.0_pReal*prm%d_caron/prm%b_sl * stt%rho_mob(:,en)*abs(dot_gamma_sl)
dot%rho_dip(:,en) = dot_rho_dip_formation & dot%rho_dip(:,en) = dot_rho_dip_formation &
- 2.0_pReal*rho_dip_distance_min/prm%b_sl * stt%rho_dip(:,en)*abs(dot_gamma_sl) & - 2.0_pReal*prm%d_caron/prm%b_sl * stt%rho_dip(:,en)*abs(dot_gamma_sl) &
- dot_rho_dip_climb - dot_rho_dip_climb
call kinetics_tw(Mp,T,dot_gamma_sl,ph,en,dot_gamma_tw) call kinetics_tw(Mp,T,dot_gamma_sl,ph,en,dot_gamma_tw)
@ -763,19 +758,17 @@ module subroutine dislotwin_dependentState(T,ph,en)
dst%tau_pass(:,en) = prm%mu*prm%b_sl* sqrt(matmul(prm%h_sl_sl,stt%rho_mob(:,en)+stt%rho_dip(:,en))) dst%tau_pass(:,en) = prm%mu*prm%b_sl* sqrt(matmul(prm%h_sl_sl,stt%rho_mob(:,en)+stt%rho_dip(:,en)))
!* threshold stress for growing twin/martensite !* threshold stress for growing twin/martensite
if(prm%sum_N_tw == prm%sum_N_sl) &
dst%tau_hat_tw(:,en) = Gamma/(3.0_pReal*prm%b_tw) & dst%tau_hat_tw(:,en) = Gamma/(3.0_pReal*prm%b_tw) &
+ 3.0_pReal*prm%b_tw*prm%mu/(prm%L_tw*prm%b_sl) ! slip Burgers here correct? + 3.0_pReal*prm%b_tw*prm%mu/(prm%L_tw*prm%b_tw)
if(prm%sum_N_tr == prm%sum_N_sl) &
dst%tau_hat_tr(:,en) = Gamma/(3.0_pReal*prm%b_tr) & dst%tau_hat_tr(:,en) = Gamma/(3.0_pReal*prm%b_tr) &
+ 3.0_pReal*prm%b_tr*prm%mu/(prm%L_tr*prm%b_sl) & ! slip Burgers here correct? + 3.0_pReal*prm%b_tr*prm%mu/(prm%L_tr*prm%b_tr) &
+ prm%h*prm%delta_G/ (3.0_pReal*prm%b_tr) + prm%h*prm%delta_G/(3.0_pReal*prm%b_tr)
dst%V_tw(:,en) = (PI/4.0_pReal)*prm%t_tw*dst%Lambda_tw(:,en)**2.0_pReal dst%V_tw(:,en) = (PI/4.0_pReal)*prm%t_tw*dst%Lambda_tw(:,en)**2.0_pReal
dst%V_tr(:,en) = (PI/4.0_pReal)*prm%t_tr*dst%Lambda_tr(:,en)**2.0_pReal dst%V_tr(:,en) = (PI/4.0_pReal)*prm%t_tr*dst%Lambda_tr(:,en)**2.0_pReal
x0 = prm%mu*prm%b_tw**2.0_pReal/(Gamma*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the Burgers vector for slip and is the same for twin and trans x0 = prm%mu*prm%b_tw**2.0_pReal/(Gamma*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the Burgers vector for slip
dst%tau_r_tw(:,en) = prm%mu*prm%b_tw/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tw)+cos(pi/3.0_pReal)/x0) dst%tau_r_tw(:,en) = prm%mu*prm%b_tw/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tw)+cos(pi/3.0_pReal)/x0)
x0 = prm%mu*prm%b_tr**2.0_pReal/(Gamma*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the Burgers vector for slip x0 = prm%mu*prm%b_tr**2.0_pReal/(Gamma*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the Burgers vector for slip
@ -867,7 +860,7 @@ pure subroutine kinetics_sl(Mp,T,ph,en, &
tau, & tau, &
stressRatio, & stressRatio, &
StressRatio_p, & StressRatio_p, &
BoltzmannRatio, & Q_kB_T, &
v_wait_inverse, & !< inverse of the effective velocity of a dislocation waiting at obstacles (unsigned) v_wait_inverse, & !< inverse of the effective velocity of a dislocation waiting at obstacles (unsigned)
v_run_inverse, & !< inverse of the velocity of a free moving dislocation (unsigned) v_run_inverse, & !< inverse of the velocity of a free moving dislocation (unsigned)
dV_wait_inverse_dTau, & dV_wait_inverse_dTau, &
@ -876,6 +869,7 @@ pure subroutine kinetics_sl(Mp,T,ph,en, &
tau_eff !< effective resolved stress tau_eff !< effective resolved stress
integer :: i integer :: i
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph)) associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
tau = [(math_tensordot(Mp,prm%P_sl(1:3,1:3,i)),i = 1, prm%sum_N_sl)] tau = [(math_tensordot(Mp,prm%P_sl(1:3,1:3,i)),i = 1, prm%sum_N_sl)]
@ -885,13 +879,13 @@ pure subroutine kinetics_sl(Mp,T,ph,en, &
significantStress: where(tau_eff > tol_math_check) significantStress: where(tau_eff > tol_math_check)
stressRatio = tau_eff/prm%tau_0 stressRatio = tau_eff/prm%tau_0
StressRatio_p = stressRatio** prm%p StressRatio_p = stressRatio** prm%p
BoltzmannRatio = prm%Q_s/(kB*T) Q_kB_T = prm%Q_sl/(kB*T)
v_wait_inverse = prm%v_0**(-1.0_pReal) * exp(BoltzmannRatio*(1.0_pReal-StressRatio_p)** prm%q) v_wait_inverse = prm%v_0**(-1.0_pReal) * exp(Q_kB_T*(1.0_pReal-StressRatio_p)** prm%q)
v_run_inverse = prm%B/(tau_eff*prm%b_sl) v_run_inverse = prm%B/(tau_eff*prm%b_sl)
dot_gamma_sl = sign(stt%rho_mob(:,en)*prm%b_sl/(v_wait_inverse+v_run_inverse),tau) dot_gamma_sl = sign(stt%rho_mob(:,en)*prm%b_sl/(v_wait_inverse+v_run_inverse),tau)
dV_wait_inverse_dTau = -1.0_pReal * v_wait_inverse * prm%p * prm%q * BoltzmannRatio & dV_wait_inverse_dTau = -1.0_pReal * v_wait_inverse * prm%p * prm%q * Q_kB_T &
* (stressRatio**(prm%p-1.0_pReal)) & * (stressRatio**(prm%p-1.0_pReal)) &
* (1.0_pReal-StressRatio_p)**(prm%q-1.0_pReal) & * (1.0_pReal-StressRatio_p)**(prm%q-1.0_pReal) &
/ prm%tau_0 / prm%tau_0
@ -945,6 +939,7 @@ pure subroutine kinetics_tw(Mp,T,dot_gamma_sl,ph,en,&
integer :: i,s1,s2 integer :: i,s1,s2
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph)) associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
do i = 1, prm%sum_N_tw do i = 1, prm%sum_N_tw
@ -954,9 +949,9 @@ pure subroutine kinetics_tw(Mp,T,dot_gamma_sl,ph,en,&
s2=prm%fcc_twinNucleationSlipPair(2,i) s2=prm%fcc_twinNucleationSlipPair(2,i)
if (tau(i) < dst%tau_r_tw(i,en)) then ! ToDo: correct? if (tau(i) < dst%tau_r_tw(i,en)) then ! ToDo: correct?
Ndot0=(abs(dot_gamma_sl(s1))*(stt%rho_mob(s2,en)+stt%rho_dip(s2,en))+& Ndot0=(abs(dot_gamma_sl(s1))*(stt%rho_mob(s2,en)+stt%rho_dip(s2,en))+&
abs(dot_gamma_sl(s2))*(stt%rho_mob(s1,en)+stt%rho_dip(s1,en)))/& ! ToDo: MD: it would be more consistent to use shearrates from state abs(dot_gamma_sl(s2))*(stt%rho_mob(s1,en)+stt%rho_dip(s1,en)))/&
(prm%L_tw*prm%b_sl(i))*& (prm%L_tw*prm%b_sl(i))*&
(1.0_pReal-exp(-prm%V_cs/(kB*T)*(dst%tau_r_tw(i,en)-tau(i)))) ! P_ncs (1.0_pReal-exp(-prm%V_cs/(kB*T)*(dst%tau_r_tw(i,en)-tau(i))))
else else
Ndot0=0.0_pReal Ndot0=0.0_pReal
end if end if
@ -1011,8 +1006,9 @@ pure subroutine kinetics_tr(Mp,T,dot_gamma_sl,ph,en,&
Ndot0, & Ndot0, &
stressRatio_s, & stressRatio_s, &
ddot_gamma_dtau ddot_gamma_dtau
integer :: i,s1,s2 integer :: i,s1,s2
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph)) associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
do i = 1, prm%sum_N_tr do i = 1, prm%sum_N_tr
@ -1022,9 +1018,9 @@ pure subroutine kinetics_tr(Mp,T,dot_gamma_sl,ph,en,&
s2=prm%fcc_twinNucleationSlipPair(2,i) s2=prm%fcc_twinNucleationSlipPair(2,i)
if (tau(i) < dst%tau_r_tr(i,en)) then ! ToDo: correct? if (tau(i) < dst%tau_r_tr(i,en)) then ! ToDo: correct?
Ndot0=(abs(dot_gamma_sl(s1))*(stt%rho_mob(s2,en)+stt%rho_dip(s2,en))+& Ndot0=(abs(dot_gamma_sl(s1))*(stt%rho_mob(s2,en)+stt%rho_dip(s2,en))+&
abs(dot_gamma_sl(s2))*(stt%rho_mob(s1,en)+stt%rho_dip(s1,en)))/& ! ToDo: MD: it would be more consistent to use shearrates from state abs(dot_gamma_sl(s2))*(stt%rho_mob(s1,en)+stt%rho_dip(s1,en)))/&
(prm%L_tr*prm%b_sl(i))*& (prm%L_tr*prm%b_sl(i))*&
(1.0_pReal-exp(-prm%V_cs/(kB*T)*(dst%tau_r_tr(i,en)-tau(i)))) ! P_ncs (1.0_pReal-exp(-prm%V_cs/(kB*T)*(dst%tau_r_tr(i,en)-tau(i))))
else else
Ndot0=0.0_pReal Ndot0=0.0_pReal
end if end if

View File

@ -359,11 +359,11 @@ module subroutine plastic_kinehardening_results(ph,group)
case ('xi') case ('xi')
if(prm%sum_N_sl>0) call results_writeDataset(stt%xi,group,trim(prm%output(o)), & if(prm%sum_N_sl>0) call results_writeDataset(stt%xi,group,trim(prm%output(o)), &
'resistance against plastic slip','Pa') 'resistance against plastic slip','Pa')
case ('tau_b') !ToDo: chi case ('chi')
if(prm%sum_N_sl>0) call results_writeDataset(stt%chi,group,trim(prm%output(o)), & if(prm%sum_N_sl>0) call results_writeDataset(stt%chi,group,trim(prm%output(o)), &
'back stress','Pa') 'back stress','Pa')
case ('sgn(gamma)') case ('sgn(gamma)')
if(prm%sum_N_sl>0) call results_writeDataset(stt%sgn_gamma,group,trim(prm%output(o)), & ! ToDo: could be int if(prm%sum_N_sl>0) call results_writeDataset(int(stt%sgn_gamma),group,trim(prm%output(o)), &
'sense of shear','1') 'sense of shear','1')
case ('chi_0') case ('chi_0')
if(prm%sum_N_sl>0) call results_writeDataset(stt%chi_0,group,trim(prm%output(o)), & if(prm%sum_N_sl>0) call results_writeDataset(stt%chi_0,group,trim(prm%output(o)), &