fix some type errors; add more comments
This commit is contained in:
parent
43b665ba48
commit
0097d39873
|
@ -237,15 +237,16 @@ def Tresca(eqStress, paras, sigmas, mFix, criteria, Jac = False):
|
|||
'''
|
||||
Tresca yield criterion
|
||||
the fitted parameters is: paras(sigma0)
|
||||
eqStress, mFix, criteria are invalid input
|
||||
'''
|
||||
if not Jac:
|
||||
lambdas = principalStresses(sigmas)
|
||||
r = np.amax(np.array([abs(lambdas[2,:]-lambdas[1,:]),\
|
||||
abs(lambdas[1,:]-lambdas[0,:]),\
|
||||
abs(lambdas[0,:]-lambdas[2,:])]),0) - paras
|
||||
if not Jac:
|
||||
return r.ravel()
|
||||
else:
|
||||
return -np.ones(len(r))
|
||||
return -np.ones(len(sigmas))
|
||||
|
||||
def Cazacu_Barlat(eqStress, paras, sigmas, mFix, criteria, Jac = False):
|
||||
'''
|
||||
|
@ -334,7 +335,7 @@ def Hill1948(eqStress, paras, sigmas, mFix, criteria, Jac = False):
|
|||
'''
|
||||
Hill 1948 yield criterion
|
||||
the fitted parameters are F, G, H, L, M, N
|
||||
eqStress, criteria are invalid input
|
||||
eqStress, mFix, criteria are invalid input
|
||||
'''
|
||||
s11,s22,s33,s12,s23,s31 = sigmas
|
||||
jac = np.array([(s22-s33)**2,(s33-s11)**2,(s11-s22)**2, 2.0*s23**2,2.0*s31**2,2.0*s12**2])
|
||||
|
@ -347,6 +348,7 @@ def Hill1979(eqStress,paras, sigmas, mFix, criteria, Jac = False):
|
|||
'''
|
||||
Hill 1979 yield criterion
|
||||
the fitted parameters are: f,g,h,a,b,c,m
|
||||
criteria are invalid input
|
||||
'''
|
||||
if mFix[0]: m = mFix[1]
|
||||
else: m = paras[-1]
|
||||
|
@ -379,16 +381,16 @@ def Hosford(eqStress, paras, sigmas, mFix, criteria, Jac = False):
|
|||
|
||||
if criteria == 'vonmises':
|
||||
coeff = np.ones(3)
|
||||
a = 2.0
|
||||
sigma0 = paras
|
||||
a = 2.0
|
||||
elif criteria == 'hershey':
|
||||
coeff = np.ones(3)
|
||||
sigma0 = paras[0]
|
||||
if mFix[0]: a = mFix[1]
|
||||
else: a = paras[1]
|
||||
coeff = np.ones(3)
|
||||
else:
|
||||
print '11'
|
||||
coeff = paras[0:3]
|
||||
sigma0 = eqStress
|
||||
if mFix[0]: a = mFix[1]
|
||||
else: a = paras[3]
|
||||
|
||||
|
@ -421,6 +423,7 @@ def Barlat1991(eqStress, paras, sigmas, mFix, criteria, Jac=False):
|
|||
the fitted parameters are:
|
||||
Isotropic: sigma0, m
|
||||
Anisotropic: a, b, c, f, g, h, m
|
||||
m is optional
|
||||
'''
|
||||
if criteria == 'barlat1991iso':
|
||||
sigma0 = paras[0]
|
||||
|
@ -451,7 +454,7 @@ def Barlat1991(eqStress, paras, sigmas, mFix, criteria, Jac=False):
|
|||
jm = r*math_ln(left)/(-m**2) + dfdl*0.5*(
|
||||
absc1**m*math_ln(absc1) + absc2**m*math_ln(absc2) + absc3**m*math_ln(absc3) )
|
||||
if criteria == 'barlat1991iso':
|
||||
js = -(r + 1.0)/sigma0
|
||||
js = -r/sigma0
|
||||
if mFix[0]: return js
|
||||
else: return np.vstack((js,jm)).T
|
||||
else:
|
||||
|
@ -471,7 +474,10 @@ def Barlat1991(eqStress, paras, sigmas, mFix, criteria, Jac=False):
|
|||
|
||||
def BBC2003(eqStress, paras, sigmas, mFix, criteria, Jac=False):
|
||||
'''
|
||||
residuum of the BBC2003 yield criterion for plain stress
|
||||
BBC2003 yield criterion
|
||||
the fitted parameters are
|
||||
a, b, c, d, e, f, g, k; k is optional
|
||||
criteria are invalid input
|
||||
'''
|
||||
a,b,c, d,e,f,g= paras[0:7]
|
||||
if mFix[0]: k = mFix[1]
|
||||
|
@ -524,7 +530,10 @@ def BBC2003(eqStress, paras, sigmas, mFix, criteria, Jac=False):
|
|||
|
||||
def BBC2005(eqStress, paras, sigmas, mFix, criteria, Jac=False):
|
||||
'''
|
||||
residuum of the BBC2005 yield criterion for plain stress
|
||||
BBC2005 yield criterion
|
||||
the fitted parameters are
|
||||
a, b, L ,M, N, P, Q, R, k; k is optional
|
||||
criteria are invalid input
|
||||
'''
|
||||
a,b,L, M, N, P, Q, R = paras[0:8]
|
||||
if mFix[0]: k = mFix[1]
|
||||
|
@ -571,8 +580,11 @@ def BBC2005(eqStress, paras, sigmas, mFix, criteria, Jac=False):
|
|||
|
||||
def Yld200418p(eqStress, paras, sigmas, mFix, criteria, Jac=False):
|
||||
'''
|
||||
C: c12,c21,c23,c32,c13,c31,c44,c55,c66
|
||||
D: d12,d21,d23,d32,d31,d13,d44,d55,d66
|
||||
Yld2004-18p yield criterion
|
||||
the fitted parameters are
|
||||
C: c12,c21,c23,c32,c13,c31,c44,c55,c66; D: d12,d21,d23,d32,d31,d13,d44,d55,d66
|
||||
and m, m is optional
|
||||
criteria are invalid input
|
||||
'''
|
||||
C,D = paras[0:9], paras[9:18]
|
||||
if mFix[0]: m = mFix[1]
|
||||
|
@ -610,14 +622,21 @@ def Yld200418p(eqStress, paras, sigmas, mFix, criteria, Jac=False):
|
|||
else: return np.vstack((jc,jd,jm)).T
|
||||
|
||||
def KarafillisBoyce(eqStress, paras, sigmas, mFix, criteria, Jac=False):
|
||||
'''
|
||||
Karafillis-Boyce yield criterion
|
||||
the fitted parameters are
|
||||
c11,c12,c13,c14,c15,c16,c21,c22,c23,c24,c25,c26,alpha,b1,b2,a
|
||||
0<alpha<1, b1,b2,a are optional
|
||||
criteria are invalid input
|
||||
'''
|
||||
ks = lambda (s1,s2,s3,s4,s5,s6),(c1,c2,c3,c4,c5,c6): np.array( [
|
||||
((c2+c3)*s1-c3*s2-c2*s3)/3.0, ((c3+c1)*s2-c3*s1-c1*s3)/3.0,
|
||||
((c1+c2)*s3-c2*s1-c1*s2)/3.0, c4*s4, c5*s5, c6*s6 ])
|
||||
|
||||
C1,C2,alpha = paras[0:6], paras[6:12], paras[12]
|
||||
if mFix[0]: b1=b2=a = mFix[1]
|
||||
else: b1,b2,a = paras[12:15]
|
||||
print b1,b2,a
|
||||
else: b1,b2,a = paras[13:16]
|
||||
|
||||
p,q = ks(sigmas, C1), ks(sigmas, C2)
|
||||
plambdas,qlambdas = principalStress(p), principalStress(q)
|
||||
b1i,b2i,ai,rb2 = 1.0/b1, 1.0/b2, 1.0/a, 3.0**b2/(2.0**b2+2.0)
|
||||
|
@ -1109,11 +1128,11 @@ parser.add_option('-t','--threads', dest='threads', type='int',
|
|||
parser.add_option('-d','--dimension', dest='dimension', type='int',
|
||||
help='dimension of the virtual test [%default]', metavar='int')
|
||||
parser.add_option('-v', '--vegter', dest='vegter', action='store_true',
|
||||
help='Vegter criteria [%default]')
|
||||
help='Vegter criteria [%default]', metavar='float')
|
||||
parser.add_option('-e', '--exponent',dest='exponent', type='float',
|
||||
help='exponent of non-quadratic criteria')
|
||||
parser.add_option('-u', '--uniaxial',dest='eqStress', type='float',
|
||||
help='Equivalent stress')
|
||||
help='Equivalent stress', metavar='float')
|
||||
parser.set_defaults(min = 12)
|
||||
parser.set_defaults(max = 30)
|
||||
parser.set_defaults(threads = 4)
|
||||
|
@ -1145,9 +1164,6 @@ if options.yieldValue[2] != int(options.yieldValue[2]):
|
|||
if not os.path.isfile('numerics.config'):
|
||||
print('numerics.config file not found')
|
||||
|
||||
if not os.path.isfile('material.config'):
|
||||
print('material.config file not found')
|
||||
|
||||
numParas = len(fitCriteria[options.criterion]['bound'])
|
||||
nExpo = fitCriteria[options.criterion]['nExpo']
|
||||
Guess = []
|
||||
|
@ -1161,8 +1177,7 @@ for i in xrange(numParas):
|
|||
g = (temp[0]+temp[1])/2.0
|
||||
if g == 0: g = temp[1]*0.5
|
||||
Guess.append(g)
|
||||
print Guess
|
||||
print fitCriteria[options.criterion]['bound']
|
||||
|
||||
if options.vegter is True:
|
||||
options.dimension = 2
|
||||
unitGPa = 10.e8
|
||||
|
|
Loading…
Reference in New Issue