force using HDF5 from PETSc

This commit is contained in:
Chen Zhang 2016-03-04 14:42:55 -05:00
parent 2a15ff166c
commit 005e4df0dd
83 changed files with 14 additions and 55411 deletions

View File

@ -12,12 +12,6 @@ set (DAMASK_VERSION_MINOR ${DAMASK_V})
if (NOT DEFINED PETSC_DIR) if (NOT DEFINED PETSC_DIR)
message (FATAL_ERROR "PETSC_DIR is not found!") message (FATAL_ERROR "PETSC_DIR is not found!")
endif (NOT DEFINED PETSC_DIR) endif (NOT DEFINED PETSC_DIR)
# RECOMMEND USING HDF5 FROM PETSC
if (DEFINED HDF5_DIR)
message ("\n***Using HDF5 library found at ${HDF5_DIR}\n")
else(DEFINED HDF5_DIR)
message ("\n***Using HDF5 library from PETSc\n" )
endif (DEFINED HDF5_DIR)
# Setting installation prefix # Setting installation prefix
if (NOT DEFINED DAMASK_INSTALL) if (NOT DEFINED DAMASK_INSTALL)
@ -101,7 +95,7 @@ execute_process(COMMAND ${MAKE_EXECUTABLE} -f ${petsc_config_makefile} "compiler
OUTPUT_STRIP_TRAILING_WHITESPACE) OUTPUT_STRIP_TRAILING_WHITESPACE)
file (REMOVE ${petsc_config_makefile}) file (REMOVE ${petsc_config_makefile})
# remove duplicate flags for compiler and linking # REMOVE DUPLICATE FLAGS FOR COMPILER AND LINKING
string( REGEX MATCHALL "-I([^\" ]+)" TMP_LIST "${petsc_includes}") string( REGEX MATCHALL "-I([^\" ]+)" TMP_LIST "${petsc_includes}")
list(REMOVE_DUPLICATES TMP_LIST) list(REMOVE_DUPLICATES TMP_LIST)
foreach (dir ${TMP_LIST}) foreach (dir ${TMP_LIST})
@ -120,11 +114,6 @@ message("***Found PETSC_EXTERNAL_LIB:\n${PETSC_EXTERNAL_LIB}\n")
message("***Found PETSC_LINKER:\n${PETSC_LINKER}\n") message("***Found PETSC_LINKER:\n${PETSC_LINKER}\n")
message("***Found PETSC_MPIEXEC:\n${MPIEXEC}\n") message("***Found PETSC_MPIEXEC:\n${MPIEXEC}\n")
# SET INCLUDE DIRECTORIES (SNEAK IT IN WITH PETSC)
if (DEFINED HDF5_DIR)
set (DAMASK_INCLUDE_FLAGS "${PETSC_INCLUDES} -I${HDF5_DIR}/include" )
set (PETSC_EXTERNAL_LIB "${PETSC_EXTERNAL_LIB} -L${HDF5_DIR}/lib")
endif (DEFINED HDF5_DIR)
set (DAMASK_INCLUDE_FLAGS "${DAMASK_INCLUDE_FLAGS} ${PETSC_INCLUDES}" ) set (DAMASK_INCLUDE_FLAGS "${DAMASK_INCLUDE_FLAGS} ${PETSC_INCLUDES}" )
set (DAMASK_INCLUDE_FLAGS "${DAMASK_INCLUDE_FLAGS} -I${PROJECT_SOURCE_DIR}/lib") set (DAMASK_INCLUDE_FLAGS "${DAMASK_INCLUDE_FLAGS} -I${PROJECT_SOURCE_DIR}/lib")
@ -387,6 +376,7 @@ set (PRECISION_gfortran "-fdefault-real-8 -fdefault-double-8")
get_filename_component (Fortran_COMPILER_NAME ${CMAKE_Fortran_COMPILER} NAME) get_filename_component (Fortran_COMPILER_NAME ${CMAKE_Fortran_COMPILER} NAME)
if (Fortran_COMPILER_NAME MATCHES "ifort.*") if (Fortran_COMPILER_NAME MATCHES "ifort.*")
set (INTEL_FORTRAN ON)
# for RELEASE # for RELEASE
set (CMAKE_Fortran_FLAGS_RELEASE "${CMAKE_Fortran_FLAGS_RELEASE} ${OPENMP_FLAG_ifort}" ) set (CMAKE_Fortran_FLAGS_RELEASE "${CMAKE_Fortran_FLAGS_RELEASE} ${OPENMP_FLAG_ifort}" )
set (CMAKE_Fortran_FLAGS_RELEASE "${CMAKE_Fortran_FLAGS_RELEASE} ${STANDARD_CHECK_ifort}" ) set (CMAKE_Fortran_FLAGS_RELEASE "${CMAKE_Fortran_FLAGS_RELEASE} ${STANDARD_CHECK_ifort}" )
@ -398,7 +388,6 @@ if (Fortran_COMPILER_NAME MATCHES "ifort.*")
set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${LINK_OPTIONS_ifort}" ) set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${LINK_OPTIONS_ifort}" )
set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${OPTIMIZATION_ifort}" ) set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${OPTIMIZATION_ifort}" )
set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${STANDARD_CHECK_ifort}") set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${STANDARD_CHECK_ifort}")
set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${PETSC_EXTERNAL_LIB}" )
# for DEBUG # for DEBUG
set (CMAKE_Fortran_FLAGS_DEBUG "${CMAKE_Fortran_FLAGS_DEBUG} ${CMAKE_Fortran_FLAGS_RELEASE}") set (CMAKE_Fortran_FLAGS_DEBUG "${CMAKE_Fortran_FLAGS_DEBUG} ${CMAKE_Fortran_FLAGS_RELEASE}")
@ -407,7 +396,7 @@ if (Fortran_COMPILER_NAME MATCHES "ifort.*")
set (CMAKE_EXE_LINKER_FLAGS_DEBUG "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${DEBUG_OPTIONS_ifort}" ) set (CMAKE_EXE_LINKER_FLAGS_DEBUG "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${DEBUG_OPTIONS_ifort}" )
# #
elseif (Fortran_COMPILER_NAME MATCHES "gfortran.*") elseif (Fortran_COMPILER_NAME MATCHES "gfortran.*")
set (CMAKE_Fortran_COMPILER "${MPIEXEC}") set (GNU_FORTRAN ON)
# for RELEASE # for RELEASE
set (CMAKE_Fortran_FLAGS_RELEASE "${CMAKE_Fortran_FLAGS_RELEASE} ${OPENMP_FLAG_gfortran}" ) set (CMAKE_Fortran_FLAGS_RELEASE "${CMAKE_Fortran_FLAGS_RELEASE} ${OPENMP_FLAG_gfortran}" )
set (CMAKE_Fortran_FLAGS_RELEASE "${CMAKE_Fortran_FLAGS_RELEASE} ${STANDARD_CHECK_gfortran}" ) set (CMAKE_Fortran_FLAGS_RELEASE "${CMAKE_Fortran_FLAGS_RELEASE} ${STANDARD_CHECK_gfortran}" )
@ -417,8 +406,8 @@ elseif (Fortran_COMPILER_NAME MATCHES "gfortran.*")
set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${OPENMP_FLAG_gfortran}" ) set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${OPENMP_FLAG_gfortran}" )
set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${LINK_OPTIONS_gfortran}" ) set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${LINK_OPTIONS_gfortran}" )
set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${STANDARD_CHECK_gfortran}")
set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${OPTIMIZATION_gfortran}" ) set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${OPTIMIZATION_gfortran}" )
set (CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} ${STANDARD_CHECK_gfortran}")
# for DEBUG # for DEBUG
set (CMAKE_Fortran_FLAGS_DEBUG "${CMAKE_Fortran_FLAGS_DEBUG} ${CMAKE_Fortran_FLAGS_RELEASE}") set (CMAKE_Fortran_FLAGS_DEBUG "${CMAKE_Fortran_FLAGS_DEBUG} ${CMAKE_Fortran_FLAGS_RELEASE}")
set (CMAKE_Fortran_FLAGS_DEBUG "${CMAKE_Fortran_FLAGS_DEBUG} ${DEBUG_OPTIONS_gfortran}" ) set (CMAKE_Fortran_FLAGS_DEBUG "${CMAKE_Fortran_FLAGS_DEBUG} ${DEBUG_OPTIONS_gfortran}" )
@ -447,12 +436,17 @@ endif(CMAKE_BUILD_TYPE STREQUAL "RELEASE")
message("***COMPILE FLAGS:\n${CMAKE_Fortran_FLAGS_RELEASE}\n") message("***COMPILE FLAGS:\n${CMAKE_Fortran_FLAGS_RELEASE}\n")
message("***LINK FLAGS:\n${CMAKE_EXE_LINKER_FLAGS_RELEASE}\n") message("***LINK FLAGS:\n${CMAKE_EXE_LINKER_FLAGS_RELEASE}\n")
# MOVE to SOURCE DIRECTORY for BUILDING
add_subdirectory(src)
## # INSTALL BUILT BINARIES
# ADD CODE DIRECTORY if (SPECTRAL)
add_subdirectory(code) INSTALL(PROGRAMS ${PROJECT_BINARY_DIR}/src/DAMASKSpectral.exe
INSTALL(PROGRAMS ${PROJECT_BINARY_DIR}/code/DAMASKSpectral.exe DESTINATION ${CMAKE_INSTALL_PREFIX})
DESTINATION ${CMAKE_INSTALL_PREFIX}) elseif (FEM)
INSTALL(PROGRAMS ${PROJECT_BINARY_DIR}/src/DAMASK_FEM.exe
DESTINATION ${CMAKE_INSTALL_PREFIX})
endif(SPECTRAL)
## ##
# ADD TESTING CASES # ADD TESTING CASES

View File

@ -24,7 +24,6 @@ cd build_FEM
## ##
# CMake call # CMake call
# PETSC_DIR | PETSC directory # PETSC_DIR | PETSC directory
# HDF5_DIR | HDF5 library (same compiler for DAMASK)
# DAMASK_V | DAMASK current revision # DAMASK_V | DAMASK current revision
# CMAKE_BUILD_TYPE | Default set to release (no debugging output) # CMAKE_BUILD_TYPE | Default set to release (no debugging output)
# OPENMP | [ON/OFF] # OPENMP | [ON/OFF]
@ -37,7 +36,6 @@ cmake -D PETSC_DIR=${PETSC_DIR} \
-D OPENMP=ON \ -D OPENMP=ON \
-D OPTIMIZATION=DEFENSIVE \ -D OPTIMIZATION=DEFENSIVE \
-D DAMASK_DRIVER=FEM \ -D DAMASK_DRIVER=FEM \
-D DAMASK_FEM_DIR=PRIVATE/FEM/code \
-D DAMASK_INSTALL=${HOME}/bin \ -D DAMASK_INSTALL=${HOME}/bin \
../.. ../..

View File

@ -24,7 +24,6 @@ cd build_spectral
## ##
# CMake call # CMake call
# PETSC_DIR | PETSC directory # PETSC_DIR | PETSC directory
# HDF5_DIR | HDF5 library (same compiler for DAMASK)
# DAMASK_V | DAMASK current revision # DAMASK_V | DAMASK current revision
# CMAKE_BUILD_TYPE | Default set to release (no debugging output) # CMAKE_BUILD_TYPE | Default set to release (no debugging output)
# OPENMP | [ON/OFF] # OPENMP | [ON/OFF]

View File

@ -1,172 +0,0 @@
# The dependency detection in CMake is not functioning for Fortran
# !!! EXPLICIT DEPENDENCY DECLARATION !!!
add_library(DAMASK_PREC "prec.f90")
if (SPECTRAL)
add_library(DAMASK_INTERFACE "spectral_interface.f90")
elseif(FEM)
add_library(DAMASK_INTERFACE "DAMASK_FEM_interface.f90")
endif(SPECTRAL)
target_link_libraries(DAMASK_INTERFACE DAMASK_PREC)
add_library(DAMASK_IO "IO.f90")
target_link_libraries(DAMASK_IO DAMASK_INTERFACE)
add_library(DAMASK_LIBS "libs.f90")
target_link_libraries(DAMASK_LIBS DAMASK_IO)
add_library(DAMASK_NUMERICS "numerics.f90")
target_link_libraries(DAMASK_NUMERICS DAMASK_LIBS)
add_library(DAMASK_DEBUG "debug.f90")
target_link_libraries(DAMASK_DEBUG DAMASK_NUMERICS)
add_library(DAMASK_FEsolving "FEsolving.f90")
target_link_libraries(DAMASK_FEsolving DAMASK_DEBUG)
add_library(DAMASK_MATH "math.f90")
target_link_libraries(DAMASK_MATH DAMASK_FEsolving)
# SPECTRAL solver and FEM solver use different mesh
# source files
if (SPECTRAL)
add_library(DAMASK_MESH "mesh.f90")
target_link_libraries(DAMASK_MESH DAMASK_MATH)
endif(SPECTRAL)
if (FEM)
add_library(DAMASK_FEZoo "FEZoo.f90")
target_link_libraries(DAMASK_FEZoo DAMASK_MATH)
add_library(DAMASK_MESH "meshFEM.f90")
target_link_libraries(DAMASK_MESH DAMASK_FEZoo)
endif(FEM)
add_library(DAMASK_MATERIAL "material.f90")
target_link_libraries(DAMASK_MATERIAL DAMASK_MESH)
add_library(DAMASK_LATTICE "lattice.f90")
target_link_libraries(DAMASK_LATTICE DAMASK_MATERIAL)
add_library(DAMASK_DRIVERS ALIAS DAMASK_LATTICE)
# For each modular section
add_library (DAMASK_PLASTIC "plastic_dislotwin.f90"
"plastic_disloUCLA.f90"
"plastic_isotropic.f90"
"plastic_j2.f90"
"plastic_phenopowerlaw.f90"
"plastic_titanmod.f90"
"plastic_nonlocal.f90"
"plastic_none.f90"
"plastic_phenoplus.f90")
target_link_libraries(DAMASK_PLASTIC DAMASK_DRIVERS)
add_library (DAMASK_KINEMATICS "kinematics_cleavage_opening.f90"
"kinematics_slipplane_opening.f90"
"kinematics_thermal_expansion.f90"
"kinematics_vacancy_strain.f90"
"kinematics_hydrogen_strain.f90")
target_link_libraries(DAMASK_KINEMATICS DAMASK_DRIVERS)
add_library (DAMASK_SOURCE "source_thermal_dissipation.f90"
"source_thermal_externalheat.f90"
"source_damage_isoBrittle.f90"
"source_damage_isoDuctile.f90"
"source_damage_anisoBrittle.f90"
"source_damage_anisoDuctile.f90"
"source_vacancy_phenoplasticity.f90"
"source_vacancy_irradiation.f90"
"source_vacancy_thermalfluc.f90")
target_link_libraries(DAMASK_SOURCE DAMASK_DRIVERS)
add_library(DAMASK_CONSTITUTIVE "constitutive.f90")
target_link_libraries(DAMASK_CONSTITUTIVE DAMASK_PLASTIC )
target_link_libraries(DAMASK_CONSTITUTIVE DAMASK_KINEMATICS)
target_link_libraries(DAMASK_CONSTITUTIVE DAMASK_SOURCE )
add_library(DAMASK_CRYSTALLITE "crystallite.f90")
target_link_libraries(DAMASK_CRYSTALLITE DAMASK_CONSTITUTIVE)
add_library(DAMASK_HOMOGENIZATION "homogenization_RGC.f90"
"homogenization_isostrain.f90"
"homogenization_none.f90")
target_link_libraries(DAMASK_HOMOGENIZATION DAMASK_CRYSTALLITE)
add_library(DAMASK_HYDROGENFLUX "hydrogenflux_isoconc.f90"
"hydrogenflux_cahnhilliard.f90")
target_link_libraries(DAMASK_HYDROGENFLUX DAMASK_CRYSTALLITE)
add_library(DAMASK_POROSITY "porosity_none.f90"
"porosity_phasefield.f90")
target_link_libraries(DAMASK_POROSITY DAMASK_CRYSTALLITE)
add_library(DAMASK_VACANCYFLUX "vacancyflux_isoconc.f90"
"vacancyflux_isochempot.f90"
"vacancyflux_cahnhilliard.f90")
target_link_libraries(DAMASK_VACANCYFLUX DAMASK_CRYSTALLITE)
add_library(DAMASK_DAMAGE "damage_none.f90"
"damage_local.f90"
"damage_nonlocal.f90")
target_link_libraries(DAMASK_DAMAGE DAMASK_CRYSTALLITE)
add_library(DAMASK_THERMAL "thermal_isothermal.f90"
"thermal_adiabatic.f90"
"thermal_conduction.f90")
target_link_libraries(DAMASK_THERMAL DAMASK_CRYSTALLITE)
add_library(DAMASK_ENGINE "homogenization.f90")
target_link_libraries(DAMASK_ENGINE DAMASK_THERMAL )
target_link_libraries(DAMASK_ENGINE DAMASK_DAMAGE )
target_link_libraries(DAMASK_ENGINE DAMASK_VACANCYFLUX )
target_link_libraries(DAMASK_ENGINE DAMASK_POROSITY )
target_link_libraries(DAMASK_ENGINE DAMASK_HYDROGENFLUX )
target_link_libraries(DAMASK_ENGINE DAMASK_HOMOGENIZATION)
if (FEM)
add_library(DAMASK_CPFE "CPFEM.f90")
target_link_libraries(DAMASK_CPFE DAMASK_ENGINE)
add_library(DAMASK_FEM_UTILITY "FEM_utilities.f90")
target_link_libraries(DAMASK_FEM_UTILITY DAMASK_CPFE)
add_library(DAMASK_FEM_BASE "FEM_hydrogenflux.f90"
"FEM_porosity.f90"
"FEM_vacancyflux.f90"
"FEM_damage.f90"
"FEM_thermal.f90"
"FEM_mech.f90")
target_link_libraries(DAMASK_FEM_BASE DAMASK_FEM_UTILITY)
add_library(DAMASK_FEM_DRIVER "DAMASK_FEM_driver.f90")
target_link_libraries(DAMASK_FEM_DRIVER DAMASK_FEM_BASE)
add_executable(DAMASK_FEM.exe "DAMASK_FEM_driver.f90")
target_link_libraries(DAMASK_FEM.exe DAMASK_FEM_DRIVER)
endif(FEM)
if (SPECTRAL)
add_library(DAMASK_CPFE "CPFEM2.f90")
target_link_libraries(DAMASK_CPFE DAMASK_ENGINE)
add_library(DAMASK_SPECTRAL_UTILITY spectral_utilities.f90)
target_link_libraries(DAMASK_SPECTRAL_UTILITY DAMASK_CPFE)
add_library(DAMASK_SPECTRAL_BASE "spectral_thermal.f90"
"spectral_damage.f90")
target_link_libraries(DAMASK_SPECTRAL_BASE DAMASK_SPECTRAL_UTILITY)
add_library(DAMASK_SPECTRAL_MECH "spectral_mech_AL.f90"
"spectral_mech_Polarisation.f90"
"spectral_mech_Basic.f90")
target_link_libraries(DAMASK_SPECTRAL_MECH DAMASK_SPECTRAL_UTILITY)
add_library(DAMASK_EXE "DAMASK_spectral.f90")
target_link_libraries(DAMASK_EXE DAMASK_CPFE )
target_link_libraries(DAMASK_EXE DAMASK_SPECTRAL_BASE)
target_link_libraries(DAMASK_EXE DAMASK_SPECTRAL_MECH)
add_executable(DAMASKSpectral.exe "DAMASK_spectral.f90")
target_link_libraries(DAMASKSpectral.exe DAMASK_EXE)
endif(SPECTRAL)

View File

@ -1,705 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief CPFEM engine
!--------------------------------------------------------------------------------------------------
module CPFEM
use prec, only: &
pReal, &
pInt
implicit none
private
#if defined(Marc4DAMASK) || defined(Abaqus)
real(pReal), parameter, private :: &
CPFEM_odd_stress = 1e15_pReal, & !< return value for stress in case of ping pong dummy cycle
CPFEM_odd_jacobian = 1e50_pReal !< return value for jacobian in case of ping pong dummy cycle
real(pReal), dimension (:,:,:), allocatable, private :: &
CPFEM_cs !< Cauchy stress
real(pReal), dimension (:,:,:,:), allocatable, private :: &
CPFEM_dcsdE !< Cauchy stress tangent
real(pReal), dimension (:,:,:,:), allocatable, private :: &
CPFEM_dcsdE_knownGood !< known good tangent
#endif
integer(pInt), public :: &
cycleCounter = 0_pInt, & !< needs description
theInc = -1_pInt, & !< needs description
lastLovl = 0_pInt, & !< lovl in previous call to marc hypela2
lastStep = 0_pInt !< kstep in previous call to abaqus umat
real(pReal), public :: &
theTime = 0.0_pReal, & !< needs description
theDelta = 0.0_pReal
logical, public :: &
outdatedFFN1 = .false., & !< needs description
lastIncConverged = .false., & !< needs description
outdatedByNewInc = .false. !< needs description
logical, public, protected :: &
CPFEM_init_done = .false. !< remember whether init has been done already
logical, private :: &
CPFEM_calc_done = .false. !< remember whether first ip has already calced the results
integer(pInt), parameter, public :: &
CPFEM_COLLECT = 2_pInt**0_pInt, &
CPFEM_CALCRESULTS = 2_pInt**1_pInt, &
CPFEM_AGERESULTS = 2_pInt**2_pInt, &
CPFEM_BACKUPJACOBIAN = 2_pInt**3_pInt, &
CPFEM_RESTOREJACOBIAN = 2_pInt**4_pInt
public :: &
CPFEM_general, &
CPFEM_initAll
contains
!--------------------------------------------------------------------------------------------------
!> @brief call (thread safe) all module initializations
!--------------------------------------------------------------------------------------------------
subroutine CPFEM_initAll(el,ip)
use prec, only: &
prec_init
use numerics, only: &
numerics_init
use debug, only: &
debug_init
use FEsolving, only: &
FE_init
use math, only: &
math_init
use mesh, only: &
mesh_init
use lattice, only: &
lattice_init
use material, only: &
material_init
use constitutive, only: &
constitutive_init
use crystallite, only: &
crystallite_init
use homogenization, only: &
homogenization_init
use IO, only: &
IO_init
use DAMASK_interface
#ifdef FEM
use FEZoo, only: &
FEZoo_init
#endif
implicit none
integer(pInt), intent(in) :: el, & !< FE el number
ip !< FE integration point number
!$OMP CRITICAL (init)
if (.not. CPFEM_init_done) then
call DAMASK_interface_init ! Spectral and FEM interface to commandline
call prec_init
call IO_init
#ifdef FEM
call FEZoo_init
#endif
call numerics_init
call debug_init
call math_init
call FE_init
call mesh_init(ip, el) ! pass on coordinates to alter calcMode of first ip
call lattice_init
call material_init
call constitutive_init
call crystallite_init
call homogenization_init
call CPFEM_init
CPFEM_init_done = .true.
endif
!$OMP END CRITICAL (init)
end subroutine CPFEM_initAll
!--------------------------------------------------------------------------------------------------
!> @brief allocate the arrays defined in module CPFEM and initialize them
!--------------------------------------------------------------------------------------------------
subroutine CPFEM_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use prec, only: &
pInt
use IO, only: &
IO_read_realFile,&
IO_read_intFile, &
IO_timeStamp, &
IO_error
use numerics, only: &
worldrank
use debug, only: &
debug_level, &
debug_CPFEM, &
debug_levelBasic, &
debug_levelExtensive
use FEsolving, only: &
#if defined(Marc4DAMASK) || defined(Abaqus)
symmetricSolver, &
#endif
restartRead, &
modelName
#if defined(Marc4DAMASK) || defined(Abaqus)
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips
#endif
use material, only: &
material_phase, &
homogState, &
phase_plasticity, &
plasticState, &
material_Nhomogenization
use crystallite, only: &
crystallite_F0, &
crystallite_Fp0, &
crystallite_Lp0, &
crystallite_Fi0, &
crystallite_Li0, &
crystallite_dPdF0, &
crystallite_Tstar0_v
implicit none
integer(pInt) :: k,l,m,ph,homog
character(len=1024) :: rankStr
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- CPFEM init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
#if defined(Marc4DAMASK) || defined(Abaqus)
! initialize stress and jacobian to zero
allocate(CPFEM_cs(6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_cs = 0.0_pReal
allocate(CPFEM_dcsdE(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_dcsdE = 0.0_pReal
allocate(CPFEM_dcsdE_knownGood(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_dcsdE_knownGood = 0.0_pReal
#endif
! *** restore the last converged values of each essential variable from the binary file
if (restartRead) then
if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) then
write(6,'(a)') '<< CPFEM >> restored state variables of last converged step from binary files'
flush(6)
endif
write(rankStr,'(a1,i0)')'_',worldrank
call IO_read_intFile(777,'recordedPhase'//trim(rankStr),modelName,size(material_phase))
read (777,rec=1) material_phase
close (777)
call IO_read_realFile(777,'convergedF'//trim(rankStr),modelName,size(crystallite_F0))
read (777,rec=1) crystallite_F0
close (777)
call IO_read_realFile(777,'convergedFp'//trim(rankStr),modelName,size(crystallite_Fp0))
read (777,rec=1) crystallite_Fp0
close (777)
call IO_read_realFile(777,'convergedFi'//trim(rankStr),modelName,size(crystallite_Fi0))
read (777,rec=1) crystallite_Fi0
close (777)
call IO_read_realFile(777,'convergedLp'//trim(rankStr),modelName,size(crystallite_Lp0))
read (777,rec=1) crystallite_Lp0
close (777)
call IO_read_realFile(777,'convergedLi'//trim(rankStr),modelName,size(crystallite_Li0))
read (777,rec=1) crystallite_Li0
close (777)
call IO_read_realFile(777,'convergeddPdF'//trim(rankStr),modelName,size(crystallite_dPdF0))
read (777,rec=1) crystallite_dPdF0
close (777)
call IO_read_realFile(777,'convergedTstar'//trim(rankStr),modelName,size(crystallite_Tstar0_v))
read (777,rec=1) crystallite_Tstar0_v
close (777)
call IO_read_realFile(777,'convergedStateConst'//trim(rankStr),modelName)
m = 0_pInt
readPlasticityInstances: do ph = 1_pInt, size(phase_plasticity)
do k = 1_pInt, plasticState(ph)%sizeState
do l = 1, size(plasticState(ph)%state0(1,:))
m = m+1_pInt
read(777,rec=m) plasticState(ph)%state0(k,l)
enddo; enddo
enddo readPlasticityInstances
close (777)
call IO_read_realFile(777,'convergedStateHomog'//trim(rankStr),modelName)
m = 0_pInt
readHomogInstances: do homog = 1_pInt, material_Nhomogenization
do k = 1_pInt, homogState(homog)%sizeState
do l = 1, size(homogState(homog)%state0(1,:))
m = m+1_pInt
read(777,rec=m) homogState(homog)%state0(k,l)
enddo; enddo
enddo readHomogInstances
close (777)
#if defined(Marc4DAMASK) || defined(Abaqus)
call IO_read_realFile(777,'convergeddcsdE',modelName,size(CPFEM_dcsdE))
read (777,rec=1) CPFEM_dcsdE
close (777)
#endif
restartRead = .false.
endif
#if defined(Marc4DAMASK) || defined(Abaqus)
if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0) then
write(6,'(a32,1x,6(i8,1x))') 'CPFEM_cs: ', shape(CPFEM_cs)
write(6,'(a32,1x,6(i8,1x))') 'CPFEM_dcsdE: ', shape(CPFEM_dcsdE)
write(6,'(a32,1x,6(i8,1x),/)') 'CPFEM_dcsdE_knownGood: ', shape(CPFEM_dcsdE_knownGood)
write(6,'(a32,l1)') 'symmetricSolver: ', symmetricSolver
endif
#endif
flush(6)
end subroutine CPFEM_init
!--------------------------------------------------------------------------------------------------
!> @brief perform initialization at first call, update variables and call the actual material model
!--------------------------------------------------------------------------------------------------
#if defined(Marc4DAMASK) || defined(Abaqus)
subroutine CPFEM_general(mode, parallelExecution, ffn, ffn1, temperature_inp, dt, elFE, ip, cauchyStress, jacobian)
#else
subroutine CPFEM_general(mode, ffn, ffn1, dt, elFE, ip)
#endif
use numerics, only: &
defgradTolerance, &
iJacoStiffness, &
worldrank
use debug, only: &
debug_level, &
debug_CPFEM, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
#if defined(Marc4DAMASK) || defined(Abaqus)
debug_stressMaxLocation, &
debug_stressMinLocation, &
debug_jacobianMaxLocation, &
debug_jacobianMinLocation, &
debug_stressMax, &
debug_stressMin, &
debug_jacobianMax, &
debug_jacobianMin, &
#endif
debug_e, &
debug_i
use FEsolving, only: &
terminallyIll, &
FEsolving_execElem, &
FEsolving_execIP, &
restartWrite
use math, only: &
math_identity2nd, &
math_mul33x33, &
math_det33, &
math_transpose33, &
math_I3, &
math_Mandel3333to66, &
math_Mandel66to3333, &
math_Mandel33to6, &
math_Mandel6to33
use mesh, only: &
mesh_FEasCP, &
mesh_NcpElems, &
mesh_maxNips, &
mesh_element
use material, only: &
microstructure_elemhomo, &
plasticState, &
sourceState, &
homogState, &
thermalState, &
damageState, &
vacancyfluxState, &
hydrogenfluxState, &
phaseAt, phasememberAt, &
material_phase, &
phase_plasticity, &
temperature, &
thermalMapping, &
phase_Nsources, &
material_homog, &
material_Nhomogenization
use crystallite, only: &
crystallite_partionedF,&
crystallite_F0, &
crystallite_Fp0, &
crystallite_Fp, &
crystallite_Fi0, &
crystallite_Fi, &
crystallite_Lp0, &
crystallite_Lp, &
crystallite_Li0, &
crystallite_Li, &
crystallite_dPdF0, &
crystallite_dPdF, &
crystallite_Tstar0_v, &
crystallite_Tstar_v
use homogenization, only: &
materialpoint_F, &
materialpoint_F0, &
#if defined(Marc4DAMASK) || defined(Abaqus)
materialpoint_P, &
materialpoint_dPdF, &
materialpoint_results, &
materialpoint_sizeResults, &
#endif
materialpoint_stressAndItsTangent, &
materialpoint_postResults
use IO, only: &
IO_write_jobRealFile, &
IO_warning
use DAMASK_interface
implicit none
integer(pInt), intent(in) :: elFE, & !< FE element number
ip !< integration point number
real(pReal), intent(in) :: dt !< time increment
real(pReal), dimension (3,3), intent(in) :: ffn, & !< deformation gradient for t=t0
ffn1 !< deformation gradient for t=t1
integer(pInt), intent(in) :: mode !< computation mode 1: regular computation plus aging of results
#if defined(Marc4DAMASK) || defined(Abaqus)
real(pReal), intent(in) :: temperature_inp !< temperature
logical, intent(in) :: parallelExecution !< flag indicating parallel computation of requested IPs
real(pReal), dimension(6), intent(out) :: cauchyStress !< stress vector in Mandel notation
real(pReal), dimension(6,6), intent(out) :: jacobian !< jacobian in Mandel notation (Consistent tangent dcs/dE)
real(pReal) J_inverse, & ! inverse of Jacobian
rnd
real(pReal), dimension (3,3) :: Kirchhoff, & ! Piola-Kirchhoff stress in Matrix notation
cauchyStress33 ! stress vector in Matrix notation
real(pReal), dimension (3,3,3,3) :: H_sym, &
H, &
jacobian3333 ! jacobian in Matrix notation
#else
logical, parameter :: parallelExecution = .true.
#endif
integer(pInt) elCP, & ! crystal plasticity element number
i, j, k, l, m, n, ph, homog, mySource
logical updateJaco ! flag indicating if JAcobian has to be updated
character(len=1024) :: rankStr
#if defined(Marc4DAMASK) || defined(Abaqus)
elCP = mesh_FEasCP('elem',elFE)
#else
elCP = elFE
#endif
if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt &
.and. elCP == debug_e .and. ip == debug_i) then
write(6,'(/,a)') '#############################################'
write(6,'(a1,a22,1x,i8,a13)') '#','element', elCP, '#'
write(6,'(a1,a22,1x,i8,a13)') '#','ip', ip, '#'
write(6,'(a1,a22,1x,f15.7,a6)') '#','theTime', theTime, '#'
write(6,'(a1,a22,1x,f15.7,a6)') '#','theDelta', theDelta, '#'
write(6,'(a1,a22,1x,i8,a13)') '#','theInc', theInc, '#'
write(6,'(a1,a22,1x,i8,a13)') '#','cycleCounter', cycleCounter, '#'
write(6,'(a1,a22,1x,i8,a13)') '#','computationMode',mode, '#'
if (terminallyIll) &
write(6,'(a,/)') '# --- terminallyIll --- #'
write(6,'(a,/)') '#############################################'; flush (6)
endif
#if defined(Marc4DAMASK) || defined(Abaqus)
if (iand(mode, CPFEM_BACKUPJACOBIAN) /= 0_pInt) &
CPFEM_dcsde_knownGood = CPFEM_dcsde
if (iand(mode, CPFEM_RESTOREJACOBIAN) /= 0_pInt) &
CPFEM_dcsde = CPFEM_dcsde_knownGood
#endif
!*** age results and write restart data if requested
if (iand(mode, CPFEM_AGERESULTS) /= 0_pInt) then
crystallite_F0 = crystallite_partionedF ! crystallite deformation (_subF is perturbed...)
crystallite_Fp0 = crystallite_Fp ! crystallite plastic deformation
crystallite_Lp0 = crystallite_Lp ! crystallite plastic velocity
crystallite_Fi0 = crystallite_Fi ! crystallite intermediate deformation
crystallite_Li0 = crystallite_Li ! crystallite intermediate velocity
crystallite_dPdF0 = crystallite_dPdF ! crystallite stiffness
crystallite_Tstar0_v = crystallite_Tstar_v ! crystallite 2nd Piola Kirchhoff stress
forall ( i = 1:size(plasticState )) plasticState(i)%state0 = plasticState(i)%state ! copy state in this lenghty way because: A component cannot be an array if the encompassing structure is an array
do i = 1, size(sourceState)
do mySource = 1,phase_Nsources(i)
sourceState(i)%p(mySource)%state0 = sourceState(i)%p(mySource)%state ! copy state in this lenghty way because: A component cannot be an array if the encompassing structure is an array
enddo; enddo
if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt) then
write(6,'(a)') '<< CPFEM >> aging states'
if (debug_e <= mesh_NcpElems .and. debug_i <= mesh_maxNips) then
write(6,'(a,1x,i8,1x,i2,1x,i4,/,(12x,6(e20.8,1x)),/)') &
'<< CPFEM >> aged state of elFE ip grain',debug_e, debug_i, 1, &
plasticState(phaseAt(1,debug_i,debug_e))%state(:,phasememberAt(1,debug_i,debug_e))
endif
endif
do homog = 1_pInt, material_Nhomogenization
homogState (homog)%state0 = homogState (homog)%state
thermalState (homog)%state0 = thermalState (homog)%state
damageState (homog)%state0 = damageState (homog)%state
vacancyfluxState (homog)%state0 = vacancyfluxState (homog)%state
hydrogenfluxState(homog)%state0 = hydrogenfluxState(homog)%state
enddo
! * dump the last converged values of each essential variable to a binary file
if (restartWrite) then
if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt) &
write(6,'(a)') '<< CPFEM >> writing state variables of last converged step to binary files'
write(rankStr,'(a1,i0)')'_',worldrank
call IO_write_jobRealFile(777,'recordedPhase'//trim(rankStr),size(material_phase))
write (777,rec=1) material_phase
close (777)
call IO_write_jobRealFile(777,'convergedF'//trim(rankStr),size(crystallite_F0))
write (777,rec=1) crystallite_F0
close (777)
call IO_write_jobRealFile(777,'convergedFp'//trim(rankStr),size(crystallite_Fp0))
write (777,rec=1) crystallite_Fp0
close (777)
call IO_write_jobRealFile(777,'convergedFi'//trim(rankStr),size(crystallite_Fi0))
write (777,rec=1) crystallite_Fi0
close (777)
call IO_write_jobRealFile(777,'convergedLp'//trim(rankStr),size(crystallite_Lp0))
write (777,rec=1) crystallite_Lp0
close (777)
call IO_write_jobRealFile(777,'convergedLi'//trim(rankStr),size(crystallite_Li0))
write (777,rec=1) crystallite_Li0
close (777)
call IO_write_jobRealFile(777,'convergeddPdF'//trim(rankStr),size(crystallite_dPdF0))
write (777,rec=1) crystallite_dPdF0
close (777)
call IO_write_jobRealFile(777,'convergedTstar'//trim(rankStr),size(crystallite_Tstar0_v))
write (777,rec=1) crystallite_Tstar0_v
close (777)
call IO_write_jobRealFile(777,'convergedStateConst'//trim(rankStr))
m = 0_pInt
writePlasticityInstances: do ph = 1_pInt, size(phase_plasticity)
do k = 1_pInt, plasticState(ph)%sizeState
do l = 1, size(plasticState(ph)%state0(1,:))
m = m+1_pInt
write(777,rec=m) plasticState(ph)%state0(k,l)
enddo; enddo
enddo writePlasticityInstances
close (777)
call IO_write_jobRealFile(777,'convergedStateHomog'//trim(rankStr))
m = 0_pInt
writeHomogInstances: do homog = 1_pInt, material_Nhomogenization
do k = 1_pInt, homogState(homog)%sizeState
do l = 1, size(homogState(homog)%state0(1,:))
m = m+1_pInt
write(777,rec=m) homogState(homog)%state0(k,l)
enddo; enddo
enddo writeHomogInstances
close (777)
#if defined(Marc4DAMASK) || defined(Abaqus)
call IO_write_jobRealFile(777,'convergeddcsdE',size(CPFEM_dcsdE))
write (777,rec=1) CPFEM_dcsdE
close (777)
#endif
endif
endif ! results aging
!*** collection of FEM input with returning of randomize odd stress and jacobian
!* If no parallel execution is required, there is no need to collect FEM input
if (.not. parallelExecution) then
#if defined(Marc4DAMASK) || defined(Abaqus)
temperature(material_homog(ip,elCP))%p(thermalMapping(material_homog(ip,elCP))%p(ip,elCP)) = &
temperature_inp
#endif
materialpoint_F0(1:3,1:3,ip,elCP) = ffn
materialpoint_F(1:3,1:3,ip,elCP) = ffn1
elseif (iand(mode, CPFEM_COLLECT) /= 0_pInt) then
#if defined(Marc4DAMASK) || defined(Abaqus)
call random_number(rnd)
if (rnd < 0.5_pReal) rnd = rnd - 1.0_pReal
CPFEM_cs(1:6,ip,elCP) = rnd * CPFEM_odd_stress
CPFEM_dcsde(1:6,1:6,ip,elCP) = CPFEM_odd_jacobian * math_identity2nd(6)
temperature(material_homog(ip,elCP))%p(thermalMapping(material_homog(ip,elCP))%p(ip,elCP)) = &
temperature_inp
#endif
materialpoint_F0(1:3,1:3,ip,elCP) = ffn
materialpoint_F(1:3,1:3,ip,elCP) = ffn1
CPFEM_calc_done = .false.
endif ! collection
!*** calculation of stress and jacobian
if (iand(mode, CPFEM_CALCRESULTS) /= 0_pInt) then
!*** deformation gradient outdated or any actual deformation gradient differs more than relevantStrain from the stored one
validCalculation: if (terminallyIll &
.or. outdatedFFN1 &
.or. any(abs(ffn1 - materialpoint_F(1:3,1:3,ip,elCP)) > defgradTolerance)) then
if (any(abs(ffn1 - materialpoint_F(1:3,1:3,ip,elCP)) > defgradTolerance)) then
if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt) then
write(6,'(a,1x,i8,1x,i2)') '<< CPFEM >> OUTDATED at elFE ip',elFE,ip
write(6,'(a,/,3(12x,3(f10.6,1x),/))') '<< CPFEM >> FFN1 old:',&
math_transpose33(materialpoint_F(1:3,1:3,ip,elCP))
write(6,'(a,/,3(12x,3(f10.6,1x),/))') '<< CPFEM >> FFN1 now:',math_transpose33(ffn1)
endif
outdatedFFN1 = .true.
endif
#if defined(Marc4DAMASK) || defined(Abaqus)
call random_number(rnd)
if (rnd < 0.5_pReal) rnd = rnd - 1.0_pReal
CPFEM_cs(1:6,ip,elCP) = rnd*CPFEM_odd_stress
CPFEM_dcsde(1:6,1:6,ip,elCP) = CPFEM_odd_jacobian*math_identity2nd(6)
#endif
!*** deformation gradient is not outdated
else validCalculation
updateJaco = mod(cycleCounter,iJacoStiffness) == 0
!* no parallel computation, so we use just one single elFE and ip for computation
if (.not. parallelExecution) then
FEsolving_execElem(1) = elCP
FEsolving_execElem(2) = elCP
if (.not. microstructure_elemhomo(mesh_element(4,elCP)) .or. & ! calculate unless homogeneous
(microstructure_elemhomo(mesh_element(4,elCP)) .and. ip == 1_pInt)) then ! and then only first ip
FEsolving_execIP(1,elCP) = ip
FEsolving_execIP(2,elCP) = ip
if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i8,1x,i2)') '<< CPFEM >> calculation for elFE ip ',elFE,ip
call materialpoint_stressAndItsTangent(updateJaco, dt) ! calculate stress and its tangent
call materialpoint_postResults()
endif
!* parallel computation and calulation not yet done
elseif (.not. CPFEM_calc_done) then
if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i8,a,i8)') '<< CPFEM >> calculation for elements ',FEsolving_execElem(1),&
' to ',FEsolving_execElem(2)
call materialpoint_stressAndItsTangent(updateJaco, dt) ! calculate stress and its tangent (parallel execution inside)
call materialpoint_postResults()
CPFEM_calc_done = .true.
endif
!* map stress and stiffness (or return odd values if terminally ill)
#if defined(Marc4DAMASK) || defined(Abaqus)
terminalIllness: if ( terminallyIll ) then
call random_number(rnd)
if (rnd < 0.5_pReal) rnd = rnd - 1.0_pReal
CPFEM_cs(1:6,ip,elCP) = rnd * CPFEM_odd_stress
CPFEM_dcsde(1:6,1:6,ip,elCP) = CPFEM_odd_jacobian * math_identity2nd(6)
else terminalIllness
if (microstructure_elemhomo(mesh_element(4,elCP)) .and. ip > 1_pInt) then ! me homogenous? --> copy from first ip
materialpoint_P(1:3,1:3,ip,elCP) = materialpoint_P(1:3,1:3,1,elCP)
materialpoint_F(1:3,1:3,ip,elCP) = materialpoint_F(1:3,1:3,1,elCP)
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,elCP) = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,elCP)
materialpoint_results(1:materialpoint_sizeResults,ip,elCP) = &
materialpoint_results(1:materialpoint_sizeResults,1,elCP)
endif
! translate from P to CS
Kirchhoff = math_mul33x33(materialpoint_P(1:3,1:3,ip,elCP), math_transpose33(materialpoint_F(1:3,1:3,ip,elCP)))
J_inverse = 1.0_pReal / math_det33(materialpoint_F(1:3,1:3,ip,elCP))
CPFEM_cs(1:6,ip,elCP) = math_Mandel33to6(J_inverse * Kirchhoff)
! translate from dP/dF to dCS/dE
H = 0.0_pReal
do i=1,3; do j=1,3; do k=1,3; do l=1,3; do m=1,3; do n=1,3
H(i,j,k,l) = H(i,j,k,l) + &
materialpoint_F(j,m,ip,elCP) * &
materialpoint_F(l,n,ip,elCP) * &
materialpoint_dPdF(i,m,k,n,ip,elCP) - &
math_I3(j,l) * materialpoint_F(i,m,ip,elCP) * materialpoint_P(k,m,ip,elCP) + &
0.5_pReal * (math_I3(i,k) * Kirchhoff(j,l) + math_I3(j,l) * Kirchhoff(i,k) + &
math_I3(i,l) * Kirchhoff(j,k) + math_I3(j,k) * Kirchhoff(i,l))
enddo; enddo; enddo; enddo; enddo; enddo
forall(i=1:3, j=1:3,k=1:3,l=1:3) &
H_sym(i,j,k,l) = 0.25_pReal * (H(i,j,k,l) + H(j,i,k,l) + H(i,j,l,k) + H(j,i,l,k))
CPFEM_dcsde(1:6,1:6,ip,elCP) = math_Mandel3333to66(J_inverse * H_sym)
endif terminalIllness
#endif
endif validCalculation
#if defined(Marc4DAMASK) || defined(Abaqus)
!* report stress and stiffness
if ((iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) &
.and. ((debug_e == elCP .and. debug_i == ip) &
.or. .not. iand(debug_level(debug_CPFEM), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i2,/,12x,6(f10.3,1x)/)') &
'<< CPFEM >> stress/MPa at elFE ip ', elFE, ip, CPFEM_cs(1:6,ip,elCP)*1.0e-6_pReal
write(6,'(a,i8,1x,i2,/,6(12x,6(f10.3,1x)/))') &
'<< CPFEM >> Jacobian/GPa at elFE ip ', elFE, ip, transpose(CPFEM_dcsdE(1:6,1:6,ip,elCP))*1.0e-9_pReal
flush(6)
endif
#endif
endif
#if defined(Marc4DAMASK) || defined(Abaqus)
!*** warn if stiffness close to zero
if (all(abs(CPFEM_dcsdE(1:6,1:6,ip,elCP)) < 1e-10_pReal)) call IO_warning(601,elCP,ip)
!*** copy to output if using commercial FEM solver
cauchyStress = CPFEM_cs (1:6, ip,elCP)
jacobian = CPFEM_dcsdE(1:6,1:6,ip,elCP)
!*** remember extreme values of stress ...
cauchyStress33 = math_Mandel6to33(CPFEM_cs(1:6,ip,elCP))
if (maxval(cauchyStress33) > debug_stressMax) then
debug_stressMaxLocation = [elCP, ip]
debug_stressMax = maxval(cauchyStress33)
endif
if (minval(cauchyStress33) < debug_stressMin) then
debug_stressMinLocation = [elCP, ip]
debug_stressMin = minval(cauchyStress33)
endif
!*** ... and Jacobian
jacobian3333 = math_Mandel66to3333(CPFEM_dcsdE(1:6,1:6,ip,elCP))
if (maxval(jacobian3333) > debug_jacobianMax) then
debug_jacobianMaxLocation = [elCP, ip]
debug_jacobianMax = maxval(jacobian3333)
endif
if (minval(jacobian3333) < debug_jacobianMin) then
debug_jacobianMinLocation = [elCP, ip]
debug_jacobianMin = minval(jacobian3333)
endif
#endif
end subroutine CPFEM_general
end module CPFEM

View File

@ -1,367 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id: CPFEM.f90 4761 2016-01-17 13:29:42Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief needs a good name and description
!--------------------------------------------------------------------------------------------------
module CPFEM2
implicit none
private
public :: &
CPFEM_general, &
CPFEM_initAll
contains
!--------------------------------------------------------------------------------------------------
!> @brief call (thread safe) all module initializations
!--------------------------------------------------------------------------------------------------
subroutine CPFEM_initAll(el,ip)
use prec, only: &
pInt
use prec, only: &
prec_init
use numerics, only: &
numerics_init
use debug, only: &
debug_init
use FEsolving, only: &
FE_init
use math, only: &
math_init
use mesh, only: &
mesh_init
use lattice, only: &
lattice_init
use material, only: &
material_init
use constitutive, only: &
constitutive_init
use crystallite, only: &
crystallite_init
use homogenization, only: &
homogenization_init, &
materialpoint_postResults
use IO, only: &
IO_init
use DAMASK_interface
#ifdef FEM
use FEZoo, only: &
FEZoo_init
#endif
implicit none
integer(pInt), intent(in) :: el, & !< FE el number
ip !< FE integration point number
call DAMASK_interface_init ! Spectral and FEM interface to commandline
call prec_init
call IO_init
#ifdef FEM
call FEZoo_init
#endif
call numerics_init
call debug_init
call math_init
call FE_init
call mesh_init(ip, el) ! pass on coordinates to alter calcMode of first ip
call lattice_init
call material_init
call constitutive_init
call crystallite_init
call homogenization_init
call materialpoint_postResults
call CPFEM_init
end subroutine CPFEM_initAll
!--------------------------------------------------------------------------------------------------
!> @brief allocate the arrays defined in module CPFEM and initialize them
!--------------------------------------------------------------------------------------------------
subroutine CPFEM_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use prec, only: &
pInt
use IO, only: &
IO_read_realFile,&
IO_read_intFile, &
IO_timeStamp, &
IO_error
use numerics, only: &
worldrank
use debug, only: &
debug_level, &
debug_CPFEM, &
debug_levelBasic, &
debug_levelExtensive
use FEsolving, only: &
restartRead, &
modelName
use material, only: &
material_phase, &
homogState, &
phase_plasticity, &
plasticState, &
material_Nhomogenization
use crystallite, only: &
crystallite_F0, &
crystallite_Fp0, &
crystallite_Lp0, &
crystallite_Fi0, &
crystallite_Li0, &
crystallite_dPdF0, &
crystallite_Tstar0_v
implicit none
integer(pInt) :: k,l,m,ph,homog
character(len=1024) :: rankStr
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- CPFEM init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
! *** restore the last converged values of each essential variable from the binary file
if (restartRead) then
if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) then
write(6,'(a)') '<< CPFEM >> restored state variables of last converged step from binary files'
flush(6)
endif
write(rankStr,'(a1,i0)')'_',worldrank
call IO_read_intFile(777,'recordedPhase'//trim(rankStr),modelName,size(material_phase))
read (777,rec=1) material_phase
close (777)
call IO_read_realFile(777,'convergedF'//trim(rankStr),modelName,size(crystallite_F0))
read (777,rec=1) crystallite_F0
close (777)
call IO_read_realFile(777,'convergedFp'//trim(rankStr),modelName,size(crystallite_Fp0))
read (777,rec=1) crystallite_Fp0
close (777)
call IO_read_realFile(777,'convergedFi'//trim(rankStr),modelName,size(crystallite_Fi0))
read (777,rec=1) crystallite_Fi0
close (777)
call IO_read_realFile(777,'convergedLp'//trim(rankStr),modelName,size(crystallite_Lp0))
read (777,rec=1) crystallite_Lp0
close (777)
call IO_read_realFile(777,'convergedLi'//trim(rankStr),modelName,size(crystallite_Li0))
read (777,rec=1) crystallite_Li0
close (777)
call IO_read_realFile(777,'convergeddPdF'//trim(rankStr),modelName,size(crystallite_dPdF0))
read (777,rec=1) crystallite_dPdF0
close (777)
call IO_read_realFile(777,'convergedTstar'//trim(rankStr),modelName,size(crystallite_Tstar0_v))
read (777,rec=1) crystallite_Tstar0_v
close (777)
call IO_read_realFile(777,'convergedStateConst'//trim(rankStr),modelName)
m = 0_pInt
readPlasticityInstances: do ph = 1_pInt, size(phase_plasticity)
do k = 1_pInt, plasticState(ph)%sizeState
do l = 1, size(plasticState(ph)%state0(1,:))
m = m+1_pInt
read(777,rec=m) plasticState(ph)%state0(k,l)
enddo; enddo
enddo readPlasticityInstances
close (777)
call IO_read_realFile(777,'convergedStateHomog'//trim(rankStr),modelName)
m = 0_pInt
readHomogInstances: do homog = 1_pInt, material_Nhomogenization
do k = 1_pInt, homogState(homog)%sizeState
do l = 1, size(homogState(homog)%state0(1,:))
m = m+1_pInt
read(777,rec=m) homogState(homog)%state0(k,l)
enddo; enddo
enddo readHomogInstances
close (777)
restartRead = .false.
endif
flush(6)
end subroutine CPFEM_init
!--------------------------------------------------------------------------------------------------
!> @brief perform initialization at first call, update variables and call the actual material model
!--------------------------------------------------------------------------------------------------
subroutine CPFEM_general(age, dt)
use prec, only: &
pReal, &
pInt
use numerics, only: &
worldrank
use debug, only: &
debug_level, &
debug_CPFEM, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective
use FEsolving, only: &
terminallyIll, &
restartWrite
use math, only: &
math_identity2nd, &
math_mul33x33, &
math_det33, &
math_transpose33, &
math_I3, &
math_Mandel3333to66, &
math_Mandel66to3333, &
math_Mandel33to6, &
math_Mandel6to33
use material, only: &
plasticState, &
sourceState, &
homogState, &
thermalState, &
damageState, &
vacancyfluxState, &
hydrogenfluxState, &
material_phase, &
phase_plasticity, &
phase_Nsources, &
material_Nhomogenization
use crystallite, only: &
crystallite_partionedF,&
crystallite_F0, &
crystallite_Fp0, &
crystallite_Fp, &
crystallite_Fi0, &
crystallite_Fi, &
crystallite_Lp0, &
crystallite_Lp, &
crystallite_Li0, &
crystallite_Li, &
crystallite_dPdF0, &
crystallite_dPdF, &
crystallite_Tstar0_v, &
crystallite_Tstar_v
use homogenization, only: &
materialpoint_F, &
materialpoint_F0, &
materialpoint_stressAndItsTangent, &
materialpoint_postResults
use IO, only: &
IO_write_jobRealFile, &
IO_warning
use DAMASK_interface
implicit none
real(pReal), intent(in) :: dt !< time increment
logical, intent(in) :: age !< age results
integer(pInt) :: i, k, l, m, ph, homog, mySource
character(len=1024) :: rankStr
!*** age results and write restart data if requested
if (age) then
crystallite_F0 = crystallite_partionedF ! crystallite deformation (_subF is perturbed...)
crystallite_Fp0 = crystallite_Fp ! crystallite plastic deformation
crystallite_Lp0 = crystallite_Lp ! crystallite plastic velocity
crystallite_Fi0 = crystallite_Fi ! crystallite intermediate deformation
crystallite_Li0 = crystallite_Li ! crystallite intermediate velocity
crystallite_dPdF0 = crystallite_dPdF ! crystallite stiffness
crystallite_Tstar0_v = crystallite_Tstar_v ! crystallite 2nd Piola Kirchhoff stress
forall ( i = 1:size(plasticState )) plasticState(i)%state0 = plasticState(i)%state ! copy state in this lenghty way because: A component cannot be an array if the encompassing structure is an array
do i = 1, size(sourceState)
do mySource = 1,phase_Nsources(i)
sourceState(i)%p(mySource)%state0 = sourceState(i)%p(mySource)%state ! copy state in this lenghty way because: A component cannot be an array if the encompassing structure is an array
enddo; enddo
if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt) &
write(6,'(a)') '<< CPFEM >> aging states'
do homog = 1_pInt, material_Nhomogenization
homogState (homog)%state0 = homogState (homog)%state
thermalState (homog)%state0 = thermalState (homog)%state
damageState (homog)%state0 = damageState (homog)%state
vacancyfluxState (homog)%state0 = vacancyfluxState (homog)%state
hydrogenfluxState(homog)%state0 = hydrogenfluxState(homog)%state
enddo
if (restartWrite) then
if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt) &
write(6,'(a)') '<< CPFEM >> writing state variables of last converged step to binary files'
write(rankStr,'(a1,i0)')'_',worldrank
call IO_write_jobRealFile(777,'recordedPhase'//trim(rankStr),size(material_phase))
write (777,rec=1) material_phase
close (777)
call IO_write_jobRealFile(777,'convergedF'//trim(rankStr),size(crystallite_F0))
write (777,rec=1) crystallite_F0
close (777)
call IO_write_jobRealFile(777,'convergedFp'//trim(rankStr),size(crystallite_Fp0))
write (777,rec=1) crystallite_Fp0
close (777)
call IO_write_jobRealFile(777,'convergedFi'//trim(rankStr),size(crystallite_Fi0))
write (777,rec=1) crystallite_Fi0
close (777)
call IO_write_jobRealFile(777,'convergedLp'//trim(rankStr),size(crystallite_Lp0))
write (777,rec=1) crystallite_Lp0
close (777)
call IO_write_jobRealFile(777,'convergedLi'//trim(rankStr),size(crystallite_Li0))
write (777,rec=1) crystallite_Li0
close (777)
call IO_write_jobRealFile(777,'convergeddPdF'//trim(rankStr),size(crystallite_dPdF0))
write (777,rec=1) crystallite_dPdF0
close (777)
call IO_write_jobRealFile(777,'convergedTstar'//trim(rankStr),size(crystallite_Tstar0_v))
write (777,rec=1) crystallite_Tstar0_v
close (777)
call IO_write_jobRealFile(777,'convergedStateConst'//trim(rankStr))
m = 0_pInt
writePlasticityInstances: do ph = 1_pInt, size(phase_plasticity)
do k = 1_pInt, plasticState(ph)%sizeState
do l = 1, size(plasticState(ph)%state0(1,:))
m = m+1_pInt
write(777,rec=m) plasticState(ph)%state0(k,l)
enddo; enddo
enddo writePlasticityInstances
close (777)
call IO_write_jobRealFile(777,'convergedStateHomog'//trim(rankStr))
m = 0_pInt
writeHomogInstances: do homog = 1_pInt, material_Nhomogenization
do k = 1_pInt, homogState(homog)%sizeState
do l = 1, size(homogState(homog)%state0(1,:))
m = m+1_pInt
write(777,rec=m) homogState(homog)%state0(k,l)
enddo; enddo
enddo writeHomogInstances
close (777)
endif
endif
if (.not. terminallyIll) &
call materialpoint_stressAndItsTangent(.True., dt)
end subroutine CPFEM_general
end module CPFEM2

View File

@ -1,299 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Koen Janssens, Paul Scherrer Institut
!> @author Arun Prakash, Fraunhofer IWM
!> @brief interfaces DAMASK with Abaqus/Explicit
!> @details put the included file abaqus_v6.env in either your home or model directory,
!> it is a minimum Abaqus environment file containing all changes necessary to use the
!> DAMASK subroutine (see Abaqus documentation for more information on the use of abaqus_v6.env)
!--------------------------------------------------------------------------------------------------
#ifndef INT
#define INT 4
#endif
#ifndef FLOAT
#define FLOAT 8
#endif
#define Abaqus
#include "prec.f90"
module DAMASK_interface
implicit none
character(len=4), dimension(2), parameter :: INPUTFILEEXTENSION = ['.pes','.inp']
character(len=4), parameter :: LOGFILEEXTENSION = '.log'
contains
!--------------------------------------------------------------------------------------------------
!> @brief just reporting
!--------------------------------------------------------------------------------------------------
subroutine DAMASK_interface_init
integer, dimension(8) :: &
dateAndTime ! type default integer
call date_and_time(values = dateAndTime)
write(6,'(/,a)') ' <<<+- DAMASK_abaqus_exp -+>>>'
write(6,'(/,a)') ' Version: '//DAMASKVERSION
write(6,'(a,2(i2.2,a),i4.4)') ' Date: ',dateAndTime(3),'/',&
dateAndTime(2),'/',&
dateAndTime(1)
write(6,'(a,2(i2.2,a),i2.2)') ' Time: ',dateAndTime(5),':',&
dateAndTime(6),':',&
dateAndTime(7)
write(6,'(/,a)') ' <<<+- DAMASK_interface init -+>>>'
#include "compilation_info.f90"
end subroutine DAMASK_interface_init
!--------------------------------------------------------------------------------------------------
!> @brief using Abaqus/Explicit function to get working directory name
!--------------------------------------------------------------------------------------------------
character(1024) function getSolverWorkingDirectoryName()
implicit none
integer :: lenOutDir
getSolverWorkingDirectoryName=''
call vgetOutDir(getSolverWorkingDirectoryName, lenOutDir)
getSolverWorkingDirectoryName=trim(getSolverWorkingDirectoryName)//'/'
end function getSolverWorkingDirectoryName
!--------------------------------------------------------------------------------------------------
!> @brief using Abaqus/Explicit function to get solver job name
!--------------------------------------------------------------------------------------------------
character(1024) function getSolverJobName()
implicit none
integer :: lenJobName
getSolverJobName=''
call vGetJobName(getSolverJobName, lenJobName)
end function getSolverJobName
end module DAMASK_interface
#include "commercialFEM_fileList.f90"
subroutine vumat(nBlock, nDir, nshr, nStateV, nFieldV, nProps, lAnneal, &
stepTime, totalTime, dt, cmName, coordMp, charLength, &
props, density, strainInc, relSpinInc, &
tempOld, stretchOld, defgradOld, fieldOld, &
stressOld, stateOld, enerInternOld, enerInelasOld, &
tempNew, stretchNew, defgradNew, fieldNew, &
stressNew, stateNew, enerInternNew, enerInelasNew)
use prec, only: &
pReal, &
pInt
!$ use numerics, only: &
!$ DAMASK_NumThreadsInt
use FEsolving, only: &
symmetricSolver, &
terminallyIll
use math, only: &
invnrmMandel
use debug, only: &
debug_info, &
debug_reset, &
debug_levelBasic, &
debug_level, &
debug_abaqus
use mesh, only: &
mesh_unitlength, &
mesh_FEasCP, &
mesh_ipCoordinates
use CPFEM, only: &
CPFEM_general, &
CPFEM_init_done, &
CPFEM_initAll, &
CPFEM_CALCRESULTS, &
CPFEM_AGERESULTS, &
cycleCounter, &
theTime, &
outdatedByNewInc, &
outdatedFFN1
use homogenization, only: &
materialpoint_sizeResults, &
materialpoint_results
implicit none
integer(pInt), intent(in) :: &
nDir, & !< number of direct components in a symmetric tensor
nshr, & !< number of indirect components in a symmetric tensor
nStateV, & !< number of user-defined state variables that are associated with this material type
nFieldV, & !< number of user-defined external field variables
nprops, & !< user-specified number of user-defined material properties
lAnneal !< indicating whether the routine is being called during an annealing process
integer(pInt), dimension(*), intent(in) :: &
nBlock !< 1: No of Materialpoints in this call, 2: No of Materialpoint (IP)
!< 3: No of layer, 4: No of secPoint, 5+: element numbers
character(len=80), intent(in) :: &
cmname !< uses-specified material name, left justified
real(pReal), dimension(nprops), intent(in) :: &
props !< user-supplied material properties
real(pReal), intent(in) :: &
stepTime, & !< value of time since the step began
totalTime, & !< value of total time
dt !< time increment size
real(pReal), dimension(nblock(1)), intent(in) :: &
density, & !< current density at material points in the midstep configuration
charLength, & !< characteristic element length
enerInternOld, & !< internal energy per unit mass at each material point at the beginning of the increment
enerInelasOld, & !< dissipated inelastic energy per unit mass at each material point at the beginning of the increment
tempOld, & !< temperature at each material point at the beginning of the increment
tempNew !< temperature at each material point at the end of the increment (Temperature calculated in ABAQUS boundary conditions)
real(pReal), dimension(nblock(1),*), intent(in) :: &
coordMp !< material point coordinates
real(pReal), dimension(nblock(1),ndir+nshr), intent(in) :: &
strainInc, & !< strain increment tensor at each material point
stretchOld, & !< stretch tensor U at each material point
stretchNew, & !< stretch tensor U at each material point
stressOld !< stress tensor at each material point
real(pReal), dimension(nblock(1),nshr), intent(in) :: &
relSpinInc !< incremental relative rotation vector
real(pReal), dimension(nblock(1),nstatev), intent(in) :: &
stateOld !< state variables at each material point at the beginning of the increment
real(pReal), dimension(nblock(1),nfieldv), intent(in) :: &
fieldOld, & !< user-defined field variables
fieldNew !< user-defined field variables
real(pReal), dimension(nblock(1),ndir+2*nshr), intent(in) :: &
defgradOld, &
defgradNew
real(pReal), dimension(nblock(1)), intent(out) :: &
enerInternNew, & !< internal energy per unit mass at each material point at the end of the increment
enerInelasNew !< dissipated inelastic energy per unit mass at each material point at the end of the increment
real(pReal), dimension(nblock(1),ndir+nshr), intent(out) :: &
stressNew !< stress tensor at each material point at the end of the increment
real(pReal), dimension(nblock(1),nstatev), intent(out) :: &
stateNew !< state variables at each material point at the end of the increment
real(pReal), dimension(3) :: coordinates
real(pReal), dimension(3,3) :: defgrd0,defgrd1
real(pReal), dimension(6) :: stress
real(pReal), dimension(6,6) :: ddsdde
real(pReal) :: temp, timeInc, stresspower
integer(pInt) :: computationMode, n, i, cp_en
#ifdef _OPENMP
integer :: defaultNumThreadsInt !< default value set by Abaqus
include "omp_lib.h"
defaultNumThreadsInt = omp_get_num_threads() ! remember number of threads set by Marc
call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution set by DAMASK_NUM_THREADS
#endif
computationMode = CPFEM_CALCRESULTS ! always calculate
do n = 1,nblock(1) ! loop over vector of IPs
temp = tempOld(n) ! temp is intent(in)
if ( .not. CPFEM_init_done ) then
call CPFEM_initAll(nBlock(4_pInt+n),nBlock(2))
outdatedByNewInc = .false.
if (iand(debug_level(debug_abaqus),debug_levelBasic) /= 0) then
write(6,'(i8,1x,i2,1x,a)') nBlock(4_pInt+n),nBlock(2),'first call special case..!'; flush(6)
endif
else if (theTime < totalTime) then ! reached convergence
outdatedByNewInc = .true.
if (iand(debug_level(debug_abaqus),debug_levelBasic) /= 0) then
write (6,'(i8,1x,i2,1x,a)') nBlock(4_pInt+n),nBlock(2),'lastIncConverged + outdated'; flush(6)
endif
endif
outdatedFFN1 = .false.
terminallyIll = .false.
cycleCounter = 1_pInt
if ( outdatedByNewInc ) then
outdatedByNewInc = .false.
call debug_info() ! first after new inc reports debugging
call debug_reset() ! resets debugging
computationMode = ior(computationMode, CPFEM_AGERESULTS) ! age results
endif
theTime = totalTime ! record current starting time
if (iand(debug_level(debug_abaqus),debug_levelBasic) /= 0) then
write(6,'(a,i8,i2,a)') '(',nBlock(4_pInt+n),nBlock(2),')'; flush(6)
write(6,'(a,l1)') 'Aging Results: ', iand(computationMode, CPFEM_AGERESULTS) /= 0_pInt
endif
defgrd0 = 0.0_pReal
defgrd1 = 0.0_pReal
timeInc = dt
! ABAQUS explicit: deformation gradient as vector 11, 22, 33, 12, 23, 31, 21, 32, 13
! ABAQUS explicit: deformation gradient as vector 11, 22, 33, 12, 21
forall (i=1:ndir)
defgrd0(i,i) = defgradOld(n,i)
defgrd1(i,i) = defgradNew(n,i)
end forall
if (nshr == 1) then
defgrd0(1,2) = defgradOld(n,4)
defgrd1(1,2) = defgradNew(n,4)
defgrd0(2,1) = defgradOld(n,5)
defgrd1(2,1) = defgradNew(n,5)
else
defgrd0(1,2) = defgradOld(n,4)
defgrd1(1,2) = defgradNew(n,4)
defgrd0(1,3) = defgradOld(n,9)
defgrd1(1,3) = defgradNew(n,9)
defgrd0(2,1) = defgradOld(n,7)
defgrd1(2,1) = defgradNew(n,7)
defgrd0(2,3) = defgradOld(n,5)
defgrd1(2,3) = defgradNew(n,5)
defgrd0(3,1) = defgradOld(n,6)
defgrd1(3,1) = defgradNew(n,6)
defgrd0(3,2) = defgradOld(n,8)
defgrd1(3,2) = defgradNew(n,8)
endif
cp_en = mesh_FEasCP('elem',nBlock(4_pInt+n))
mesh_ipCoordinates(1:3,n,cp_en) = mesh_unitlength * coordMp(n,1:3)
call CPFEM_general(computationMode,.false.,defgrd0,defgrd1,temp,timeInc,cp_en,nBlock(2),stress,ddsdde)
! Mandel: 11, 22, 33, SQRT(2)*12, SQRT(2)*23, SQRT(2)*13
! straight: 11, 22, 33, 12, 23, 13
! ABAQUS implicit: 11, 22, 33, 12, 13, 23
! ABAQUS explicit: 11, 22, 33, 12, 23, 13
! ABAQUS explicit: 11, 22, 33, 12
stressNew(n,1:ndir+nshr) = stress(1:ndir+nshr)*invnrmMandel(1:ndir+nshr)
stateNew(n,1:min(nstatev,materialpoint_sizeResults)) = &
materialpoint_results(1:min(nstatev,materialpoint_sizeResults),&
nBlock(2),mesh_FEasCP('elem', nBlock(4_pInt+n)))
stresspower = 0.5_pReal*sum((stressOld(n,1:ndir)+stressNew(n,1:ndir))*straininc(n,1:ndir))+&
sum((stressOld(n,ndir+1:ndir+nshr)+stressNew(n,ndir+1:ndir+nshr))*straininc(n,ndir+1:ndir+nshr))
enerInternNew(n) = enerInternOld(n) + stresspower / density(n) ! Internal energy per unit mass
enerInelasNew(n) = enerInternNew(n) ! Dissipated inelastic energy per unit mass(Temporary output)
enddo
!$ call omp_set_num_threads(defaultNumThreadsInt) ! reset number of threads to stored default value
end subroutine vumat
!--------------------------------------------------------------------------------------------------
!> @brief calls the exit function of Abaqus/Explicit
!--------------------------------------------------------------------------------------------------
subroutine quit(mpie_error)
use prec, only: &
pInt
implicit none
integer(pInt) :: mpie_error
flush(6)
call xplb_exit
end subroutine quit

View File

@ -1,342 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Koen Janssens, Paul Scherrer Institut
!> @author Arun Prakash, Fraunhofer IWM
!> @brief interfaces DAMASK with Abaqus/Standard
!> @details put the included file abaqus_v6.env in either your home or model directory,
!> it is a minimum Abaqus environment file containing all changes necessary to use the
!> DAMASK subroutine (see Abaqus documentation for more information on the use of abaqus_v6.env)
!--------------------------------------------------------------------------------------------------
#ifndef INT
#define INT 4
#endif
#ifndef FLOAT
#define FLOAT 8
#endif
#define Abaqus
#include "prec.f90"
module DAMASK_interface
implicit none
character(len=4), dimension(2), parameter :: INPUTFILEEXTENSION = ['.pes','.inp']
character(len=4), parameter :: LOGFILEEXTENSION = '.log'
contains
!--------------------------------------------------------------------------------------------------
!> @brief just reporting
!--------------------------------------------------------------------------------------------------
subroutine DAMASK_interface_init
integer, dimension(8) :: &
dateAndTime ! type default integer
call date_and_time(values = dateAndTime)
write(6,'(/,a)') ' <<<+- DAMASK_abaqus_std -+>>>'
write(6,'(/,a)') ' Version: '//DAMASKVERSION
write(6,'(a,2(i2.2,a),i4.4)') ' Date: ',dateAndTime(3),'/',&
dateAndTime(2),'/',&
dateAndTime(1)
write(6,'(a,2(i2.2,a),i2.2)') ' Time: ',dateAndTime(5),':',&
dateAndTime(6),':',&
dateAndTime(7)
write(6,'(/,a)') ' <<<+- DAMASK_interface init -+>>>'
#include "compilation_info.f90"
end subroutine DAMASK_interface_init
!--------------------------------------------------------------------------------------------------
!> @brief using Abaqus/Standard function to get working directory name
!--------------------------------------------------------------------------------------------------
character(1024) function getSolverWorkingDirectoryName()
implicit none
integer :: lenOutDir
getSolverWorkingDirectoryName=''
call getoutdir(getSolverWorkingDirectoryName, lenOutDir)
getSolverWorkingDirectoryName=trim(getSolverWorkingDirectoryName)//'/'
end function getSolverWorkingDirectoryName
!--------------------------------------------------------------------------------------------------
!> @brief using Abaqus/Standard function to get solver job name
!--------------------------------------------------------------------------------------------------
character(1024) function getSolverJobName()
implicit none
integer :: lenJobName
getSolverJobName=''
call getJobName(getSolverJobName, lenJobName)
end function getSolverJobName
end module DAMASK_interface
#include "commercialFEM_fileList.f90"
subroutine UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,&
RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN,&
TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,NDI,NSHR,NTENS,&
NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT,&
DFGRD0,DFGRD1,NOEL,NPT,KSLAY,KSPT,KSTEP,KINC)
use prec, only: &
pReal, &
pInt
use numerics, only: &
!$ DAMASK_NumThreadsInt, &
usePingPong
use FEsolving, only: &
calcMode, &
terminallyIll, &
symmetricSolver
use math, only: &
invnrmMandel
use debug, only: &
debug_info, &
debug_reset, &
debug_levelBasic, &
debug_level, &
debug_abaqus
use mesh, only: &
mesh_unitlength, &
mesh_FEasCP, &
mesh_ipCoordinates
use CPFEM, only: &
CPFEM_general, &
CPFEM_init_done, &
CPFEM_initAll, &
CPFEM_CALCRESULTS, &
CPFEM_AGERESULTS, &
CPFEM_COLLECT, &
CPFEM_RESTOREJACOBIAN, &
CPFEM_BACKUPJACOBIAN, &
cycleCounter, &
theInc, &
theTime, &
theDelta, &
lastIncConverged, &
outdatedByNewInc, &
outdatedFFN1, &
lastStep
use homogenization, only: &
materialpoint_sizeResults, &
materialpoint_results
implicit none
integer(pInt), intent(in) :: &
nDi, & !< Number of direct stress components at this point
nShr, & !< Number of engineering shear stress components at this point
nTens, & !< Size of the stress or strain component array (NDI + NSHR)
nStatV, & !< Number of solution-dependent state variables
nProps, & !< User-defined number of material constants
noEl, & !< element number
nPt,& !< integration point number
kSlay, & !< layer number (shell elements etc.)
kSpt, & !< section point within the current layer
kStep, & !< step number
kInc !< increment number
character(len=80), intent(in) :: &
cmname !< uses-specified material name, left justified
real(pReal), intent(in) :: &
DTIME, &
TEMP, &
DTEMP, &
CELENT
real(pReal), dimension(1), intent(in) :: &
PREDEF, &
DPRED
real(pReal), dimension(2), intent(in) :: &
TIME !< step time/total time at beginning of the current increment
real(pReal), dimension(3), intent(in) :: &
COORDS
real(pReal), dimension(nTens), intent(in) :: &
STRAN, & !< total strains at beginning of the increment
DSTRAN !< strain increments
real(pReal), dimension(nProps), intent(in) :: &
PROPS
real(pReal), dimension(3,3), intent(in) :: &
DROT, & !< rotation increment matrix
DFGRD0, & !< F at beginning of increment
DFGRD1 !< F at end of increment
real(pReal), intent(inout) :: &
PNEWDT, & !< ratio of suggested new time increment
SSE, & !< specific elastic strain engergy
SPD, & !< specific plastic dissipation
SCD, & !< specific creep dissipation
RPL, & !< volumetric heat generation per unit time at the end of the increment
DRPLDT !< varation of RPL with respect to the temperature
real(pReal), dimension(nTens), intent(inout) :: &
STRESS !< stress tensor at the beginning of the increment, needs to be updated
real(pReal), dimension(nStatV), intent(inout) :: &
STATEV !< solution-dependent state variables
real(pReal), dimension(nTens), intent(out) :: &
DDSDDT, &
DRPLDE
real(pReal), dimension(nTens,nTens), intent(out) :: &
DDSDDE !< Jacobian matrix of the constitutive model
real(pReal) :: temperature ! temp by Abaqus is intent(in)
real(pReal), dimension(6) :: stress_h
real(pReal), dimension(6,6) :: ddsdde_h
integer(pInt) :: computationMode, i, cp_en
logical :: cutBack
#ifdef _OPENMP
integer :: defaultNumThreadsInt !< default value set by Abaqus
include "omp_lib.h"
defaultNumThreadsInt = omp_get_num_threads() ! remember number of threads set by Marc
call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution set by DAMASK_NUM_THREADS
#endif
temperature = temp ! temp is intent(in)
DDSDDT = 0.0_pReal
DRPLDE = 0.0_pReal
if (iand(debug_level(debug_abaqus),debug_levelBasic) /= 0 .and. noel == 1 .and. npt == 1) then
write(6,*) 'el',noel,'ip',npt
write(6,*) 'got kInc as',kInc
write(6,*) 'got dStran',dStran
flush(6)
endif
if (.not. CPFEM_init_done) call CPFEM_initAll(noel,npt)
computationMode = 0
cp_en = mesh_FEasCP('elem',noel)
if (time(2) > theTime .or. kInc /= theInc) then ! reached convergence
terminallyIll = .false.
cycleCounter = -1 ! first calc step increments this to cycle = 0
if (kInc == 1) then ! >> start of analysis <<
lastIncConverged = .false. ! no Jacobian backup
outdatedByNewInc = .false. ! no aging of state
calcMode = .false. ! pretend last step was collection
write (6,'(i8,1x,i2,1x,a)') noel,npt,'<< UMAT >> start of analysis..!';flush(6)
else if (kInc - theInc > 1) then ! >> restart of broken analysis <<
lastIncConverged = .false. ! no Jacobian backup
outdatedByNewInc = .false. ! no aging of state
calcMode = .true. ! pretend last step was calculation
write (6,'(i8,1x,i2,1x,a)') noel,npt,'<< UMAT >> restart of analysis..!';flush(6)
else ! >> just the next inc <<
lastIncConverged = .true. ! request Jacobian backup
outdatedByNewInc = .true. ! request aging of state
calcMode = .true. ! assure last step was calculation
write (6,'(i8,1x,i2,1x,a)') noel,npt,'<< UMAT >> new increment..!';flush(6)
endif
else if ( dtime < theDelta ) then ! >> cutBack <<
lastIncConverged = .false. ! no Jacobian backup
outdatedByNewInc = .false. ! no aging of state
terminallyIll = .false.
cycleCounter = -1 ! first calc step increments this to cycle = 0
calcMode = .true. ! pretend last step was calculation
write(6,'(i8,1x,i2,1x,a)') noel,npt,'<< UMAT >> cutback detected..!';flush(6)
endif ! convergence treatment end
if (usePingPong) then
calcMode(npt,cp_en) = .not. calcMode(npt,cp_en) ! ping pong (calc <--> collect)
if (calcMode(npt,cp_en)) then ! now --- CALC ---
computationMode = CPFEM_CALCRESULTS
if ( lastStep /= kStep ) then ! first after ping pong
call debug_reset() ! resets debugging
outdatedFFN1 = .false.
cycleCounter = cycleCounter + 1_pInt
endif
if(outdatedByNewInc) then
computationMode = ior(computationMode,CPFEM_AGERESULTS) ! calc and age results
outdatedByNewInc = .false. ! reset flag
endif
else ! now --- COLLECT ---
computationMode = CPFEM_COLLECT ! plain collect
if(lastStep /= kStep .and. .not. terminallyIll) &
call debug_info() ! first after ping pong reports (meaningful) debugging
if (lastIncConverged) then
computationMode = ior(computationMode,CPFEM_BACKUPJACOBIAN) ! collect and backup Jacobian after convergence
lastIncConverged = .false. ! reset flag
endif
mesh_ipCoordinates(1:3,npt,cp_en) = mesh_unitlength * COORDS
endif
else ! --- PLAIN MODE ---
computationMode = CPFEM_CALCRESULTS ! always calc
if (lastStep /= kStep) then
if (.not. terminallyIll) &
call debug_info() ! first reports (meaningful) debugging
call debug_reset() ! and resets debugging
outdatedFFN1 = .false.
cycleCounter = cycleCounter + 1_pInt
endif
if (outdatedByNewInc) then
computationMode = ior(computationMode,CPFEM_AGERESULTS)
outdatedByNewInc = .false. ! reset flag
endif
if (lastIncConverged) then
computationMode = ior(computationMode,CPFEM_BACKUPJACOBIAN) ! backup Jacobian after convergence
lastIncConverged = .false. ! reset flag
endif
endif
theTime = time(2) ! record current starting time
theDelta = dtime ! record current time increment
theInc = kInc ! record current increment number
lastStep = kStep ! record step number
if (iand(debug_level(debug_abaqus),debug_levelBasic) /= 0) then
write(6,'(a16,1x,i2,1x,a,i8,a,i8,1x,i5,a)') 'computationMode',computationMode,'(',cp_en,':',noel,npt,')'
flush(6)
endif
call CPFEM_general(computationMode,usePingPong,dfgrd0,dfgrd1,temperature,dtime,noel,npt,stress_h,ddsdde_h)
! Mandel: 11, 22, 33, SQRT(2)*12, SQRT(2)*23, SQRT(2)*13
! straight: 11, 22, 33, 12, 23, 13
! ABAQUS explicit: 11, 22, 33, 12, 23, 13
! ABAQUS implicit: 11, 22, 33, 12, 13, 23
! ABAQUS implicit: 11, 22, 33, 12
forall(i=1:ntens) ddsdde(1:ntens,i) = invnrmMandel(i)*ddsdde_h(1:ntens,i)*invnrmMandel(1:ntens)
stress(1:ntens) = stress_h(1:ntens)*invnrmMandel(1:ntens)
if(symmetricSolver) ddsdde(1:ntens,1:ntens) = 0.5_pReal*(ddsdde(1:ntens,1:ntens) + transpose(ddsdde(1:ntens,1:ntens)))
if(ntens == 6) then
stress_h = stress
stress(5) = stress_h(6)
stress(6) = stress_h(5)
ddsdde_h = ddsdde
ddsdde(:,5) = ddsdde_h(:,6)
ddsdde(:,6) = ddsdde_h(:,5)
ddsdde_h = ddsdde
ddsdde(5,:) = ddsdde_h(6,:)
ddsdde(6,:) = ddsdde_h(5,:)
end if
statev = materialpoint_results(1:min(nstatv,materialpoint_sizeResults),npt,mesh_FEasCP('elem', noel))
if ( terminallyIll ) pnewdt = 0.5_pReal ! force cutback directly ?
!$ call omp_set_num_threads(defaultNumThreadsInt) ! reset number of threads to stored default value
end subroutine UMAT
!--------------------------------------------------------------------------------------------------
!> @brief calls the exit function of Abaqus/Standard
!--------------------------------------------------------------------------------------------------
subroutine quit(mpie_error)
use prec, only: &
pInt
implicit none
integer(pInt) :: mpie_error
flush(6)
call xit
end subroutine quit

View File

@ -1,426 +0,0 @@
#define QUOTE(x) #x
#define PASTE(x,y) x ## y
#ifndef INT
#define INT 4
#endif
#ifndef FLOAT
#define FLOAT 8
#endif
#include "prec.f90"
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Luc Hantcherli, Max-Planck-Institut für Eisenforschung GmbH
!> @author W.A. Counts
!> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Material subroutine for MSC.Marc
!> @details Usage:
!> @details - choose material as hypela2
!> @details - set statevariable 2 to index of homogenization
!> @details - set statevariable 3 to index of microstructure
!> @details - make sure the file "material.config" exists in the working directory
!> @details - make sure the file "numerics.config" exists in the working directory
!> @details - use nonsymmetric option for solver (e.g. direct profile or multifrontal sparse, the latter seems to be faster!)
!> @details - in case of ddm (domain decomposition) a SYMMETRIC solver has to be used, i.e uncheck "non-symmetric"
!> @details Marc subroutines used:
!> @details - hypela2
!> @details - plotv
!> @details - quit
!> @details Marc common blocks included:
!> @details - concom: lovl, inc
!> @details - creeps: timinc
!--------------------------------------------------------------------------------------------------
module DAMASK_interface
implicit none
character(len=4), parameter :: InputFileExtension = '.dat'
character(len=4), parameter :: LogFileExtension = '.log'
contains
!--------------------------------------------------------------------------------------------------
!> @brief only output of current version
!--------------------------------------------------------------------------------------------------
subroutine DAMASK_interface_init
implicit none
integer, dimension(8) :: &
dateAndTime ! type default integer
call date_and_time(values = dateAndTime)
write(6,'(/,a)') ' <<<+- DAMASK_Marc -+>>>'
write(6,'(/,a)') ' Version: '//DAMASKVERSION
write(6,'(a,2(i2.2,a),i4.4)') ' Date: ',dateAndTime(3),'/',&
dateAndTime(2),'/',&
dateAndTime(1)
write(6,'(a,2(i2.2,a),i2.2)') ' Time: ',dateAndTime(5),':',&
dateAndTime(6),':',&
dateAndTime(7)
write(6,'(/,a)') ' <<<+- DAMASK_interface init -+>>>'
#include "compilation_info.f90"
end subroutine DAMASK_interface_init
!--------------------------------------------------------------------------------------------------
!> @brief returns the current workingDir
!--------------------------------------------------------------------------------------------------
function getSolverWorkingDirectoryName()
implicit none
character(1024) getSolverWorkingDirectoryName, inputName
character(len=*), parameter :: pathSep = achar(47)//achar(92) ! forward and backward slash
getSolverWorkingDirectoryName=''
inputName=''
inquire(5, name=inputName) ! determine inputputfile
getSolverWorkingDirectoryName=inputName(1:scan(inputName,pathSep,back=.true.))
end function getSolverWorkingDirectoryName
!--------------------------------------------------------------------------------------------------
!> @brief solver job name (no extension) as combination of geometry and load case name
!--------------------------------------------------------------------------------------------------
function getSolverJobName()
use prec, only: &
pReal, &
pInt
implicit none
character(1024) :: getSolverJobName, inputName
character(len=*), parameter :: pathSep = achar(47)//achar(92) ! forward and backward slash
integer(pInt) :: extPos
getSolverJobName=''
inputName=''
inquire(5, name=inputName) ! determine inputfile
extPos = len_trim(inputName)-4
getSolverJobName=inputName(scan(inputName,pathSep,back=.true.)+1:extPos)
end function getSolverJobName
end module DAMASK_interface
#include "commercialFEM_fileList.f90"
!--------------------------------------------------------------------------------------------------
!> @brief This is the MSC.Marc user subroutine for defining material behavior
!> @details (1) F,R,U are only available for continuum and membrane elements (not for
!> @details shells and beams).
!> @details
!> @details (2) Use the -> 'Plasticity,3' card(=update+finite+large disp+constant d)
!> @details in the parameter section of input deck (updated Lagrangian formulation).
!> @details
!> @details The following operation obtains U (stretch tensor) at t=n+1 :
!> @details
!> @details call scla(un1,0.d0,itel,itel,1)
!> @details do k=1,3
!> @details do i=1,3
!> @details do j=1,3
!> @details un1(i,j)=un1(i,j)+dsqrt(strechn1(k))*eigvn1(i,k)*eigvn1(j,k)
!> @details enddo
!> @details enddo
!> @details enddo
!--------------------------------------------------------------------------------------------------
subroutine hypela2(d,g,e,de,s,t,dt,ngens,m,nn,kcus,matus,ndi,nshear,disp, &
dispt,coord,ffn,frotn,strechn,eigvn,ffn1,frotn1, &
strechn1,eigvn1,ncrd,itel,ndeg,ndm,nnode, &
jtype,lclass,ifr,ifu)
use prec, only: &
pReal, &
pInt
use numerics, only: &
!$ DAMASK_NumThreadsInt, &
numerics_unitlength, &
usePingPong
use FEsolving, only: &
calcMode, &
terminallyIll, &
symmetricSolver
use math, only: &
math_transpose33,&
invnrmMandel
use debug, only: &
debug_level, &
debug_LEVELBASIC, &
debug_MARC, &
debug_info, &
debug_reset
use mesh, only: &
mesh_FEasCP, &
mesh_element, &
mesh_node0, &
mesh_node, &
mesh_Ncellnodes, &
mesh_cellnode, &
mesh_build_cellnodes, &
mesh_build_ipCoordinates, &
FE_Nnodes
use CPFEM, only: &
CPFEM_general, &
CPFEM_init_done, &
CPFEM_initAll, &
CPFEM_CALCRESULTS, &
CPFEM_AGERESULTS, &
CPFEM_COLLECT, &
CPFEM_RESTOREJACOBIAN, &
CPFEM_BACKUPJACOBIAN, &
cycleCounter, &
theInc, &
theTime, &
theDelta, &
lastIncConverged, &
outdatedByNewInc, &
outdatedFFN1, &
lastLovl
implicit none
!$ include "omp_lib.h" ! the openMP function library
integer(pInt), intent(in) :: & ! according to MSC.Marc 2012 Manual D
ngens, & !< size of stress-strain law
nn, & !< integration point number
ndi, & !< number of direct components
nshear, & !< number of shear components
ncrd, & !< number of coordinates
itel, & !< dimension of F and R, either 2 or 3
ndeg, & !< number of degrees of freedom
ndm, & !< not specified in MSC.Marc 2012 Manual D
nnode, & !< number of nodes per element
jtype, & !< element type
ifr, & !< set to 1 if R has been calculated
ifu !< set to 1 if stretch has been calculated
integer(pInt), dimension(2), intent(in) :: & ! according to MSC.Marc 2012 Manual D
m, & !< (1) user element number, (2) internal element number
matus, & !< (1) user material identification number, (2) internal material identification number
kcus, & !< (1) layer number, (2) internal layer number
lclass !< (1) element class, (2) 0: displacement, 1: low order Herrmann, 2: high order Herrmann
real(pReal), dimension(*), intent(in) :: & ! has dimension(1) according to MSC.Marc 2012 Manual D, but according to example hypela2.f dimension(*)
e, & !< total elastic strain
de, & !< increment of strain
dt !< increment of state variables
real(pReal), dimension(itel), intent(in) :: & ! according to MSC.Marc 2012 Manual D
strechn, & !< square of principal stretch ratios, lambda(i) at t=n
strechn1 !< square of principal stretch ratios, lambda(i) at t=n+1
real(pReal), dimension(3,3), intent(in) :: & ! has dimension(itel,*) according to MSC.Marc 2012 Manual D, but we alway assume dimension(3,3)
ffn, & !< deformation gradient at t=n
ffn1 !< deformation gradient at t=n+1
real(pReal), dimension(itel,*), intent(in) :: & ! according to MSC.Marc 2012 Manual D
frotn, & !< rotation tensor at t=n
eigvn, & !< i principal direction components for j eigenvalues at t=n
frotn1, & !< rotation tensor at t=n+1
eigvn1 !< i principal direction components for j eigenvalues at t=n+1
real(pReal), dimension(ndeg,*), intent(in) :: & ! according to MSC.Marc 2012 Manual D
disp, & !< incremental displacements
dispt !< displacements at t=n (at assembly, lovl=4) and displacements at t=n+1 (at stress recovery, lovl=6)
real(pReal), dimension(ncrd,*), intent(in) :: & ! according to MSC.Marc 2012 Manual D
coord !< coordinates
real(pReal), dimension(*), intent(inout) :: & ! according to MSC.Marc 2012 Manual D
t !< state variables (comes in at t=n, must be updated to have state variables at t=n+1)
real(pReal), dimension(ndi+nshear), intent(out) :: & ! has dimension(*) according to MSC.Marc 2012 Manual D, but we need to loop over it
s, & !< stress - should be updated by user
g !< change in stress due to temperature effects
real(pReal), dimension(ngens,ngens), intent(out) :: & ! according to MSC.Marc 2012 Manual D, but according to example hypela2.f dimension(ngens,*)
d !< stress-strain law to be formed
!--------------------------------------------------------------------------------------------------
! Marc common blocks are in fixed format so they have to be reformated to free format (f90)
! Beware of changes in newer Marc versions
#include QUOTE(PASTE(../lib/MarcInclude/concom,Marc4DAMASK)) ! concom is needed for inc, lovl
#include QUOTE(PASTE(../lib/MarcInclude/creeps,Marc4DAMASK)) ! creeps is needed for timinc (time increment)
logical :: cutBack
real(pReal), dimension(6) :: stress
real(pReal), dimension(6,6) :: ddsdde
integer(pInt) :: computationMode, i, cp_en, node, CPnodeID
!$ integer :: defaultNumThreadsInt !< default value set by Marc
if (iand(debug_level(debug_MARC),debug_LEVELBASIC) /= 0_pInt) then
write(6,'(a,/,i8,i8,i2)') ' MSC.MARC information on shape of element(2), IP:', m, nn
write(6,'(a,2(1i))'), ' Jacobian: ', ngens,ngens
write(6,'(a,1i)'), ' Direct stress: ', ndi
write(6,'(a,1i)'), ' Shear stress: ', nshear
write(6,'(a,1i)'), ' DoF: ', ndeg
write(6,'(a,1i)'), ' Coordinates: ', ncrd
write(6,'(a,1i)'), ' Nodes: ', nnode
write(6,'(a,1i)'), ' Deformation gradient: ', itel
write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' Deformation gradient at t=n:', &
math_transpose33(ffn)
write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' Deformation gradient at t=n+1:', &
math_transpose33(ffn1)
endif
!$ defaultNumThreadsInt = omp_get_num_threads() ! remember number of threads set by Marc
if (.not. CPFEM_init_done) call CPFEM_initAll(m(1),nn)
!$ call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution set by DAMASK_NUM_THREADS
computationMode = 0_pInt ! save initialization value, since it does not result in any calculation
if (lovl == 4 ) then ! jacobian requested by marc
if (timinc < theDelta .and. theInc == inc .and. lastLovl /= lovl) & ! first after cutback
computationMode = CPFEM_RESTOREJACOBIAN
elseif (lovl == 6) then ! stress requested by marc
cp_en = mesh_FEasCP('elem',m(1))
if (cptim > theTime .or. inc /= theInc) then ! reached "convergence"
terminallyIll = .false.
cycleCounter = -1 ! first calc step increments this to cycle = 0
if (inc == 0) then ! >> start of analysis <<
lastIncConverged = .false. ! no Jacobian backup
outdatedByNewInc = .false. ! no aging of state
calcMode = .false. ! pretend last step was collection
lastLovl = lovl ! pretend that this is NOT the first after a lovl change
!$OMP CRITICAL (write2out)
write(6,'(a,i6,1x,i2)') '<< HYPELA2 >> start of analysis..! ',m(1),nn
flush(6)
!$OMP END CRITICAL (write2out)
else if (inc - theInc > 1) then ! >> restart of broken analysis <<
lastIncConverged = .false. ! no Jacobian backup
outdatedByNewInc = .false. ! no aging of state
calcMode = .true. ! pretend last step was calculation
!$OMP CRITICAL (write2out)
write(6,'(a,i6,1x,i2)') '<< HYPELA2 >> restart of analysis..! ',m(1),nn
flush(6)
!$OMP END CRITICAL (write2out)
else ! >> just the next inc <<
lastIncConverged = .true. ! request Jacobian backup
outdatedByNewInc = .true. ! request aging of state
calcMode = .true. ! assure last step was calculation
!$OMP CRITICAL (write2out)
write(6,'(a,i6,1x,i2)') '<< HYPELA2 >> new increment..! ',m(1),nn
flush(6)
!$OMP END CRITICAL (write2out)
endif
else if ( timinc < theDelta ) then ! >> cutBack <<
lastIncConverged = .false. ! no Jacobian backup
outdatedByNewInc = .false. ! no aging of state
terminallyIll = .false.
cycleCounter = -1 ! first calc step increments this to cycle = 0
calcMode = .true. ! pretend last step was calculation
!$OMP CRITICAL (write2out)
write(6,'(a,i6,1x,i2)') '<< HYPELA2 >> cutback detected..! ',m(1),nn
flush(6)
!$OMP END CRITICAL (write2out)
endif ! convergence treatment end
if (usePingPong) then
calcMode(nn,cp_en) = .not. calcMode(nn,cp_en) ! ping pong (calc <--> collect)
if (calcMode(nn,cp_en)) then ! now --- CALC ---
computationMode = CPFEM_CALCRESULTS
if (lastLovl /= lovl) then ! first after ping pong
call debug_reset() ! resets debugging
outdatedFFN1 = .false.
cycleCounter = cycleCounter + 1_pInt
mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes) ! update cell node coordinates
call mesh_build_ipCoordinates() ! update ip coordinates
endif
if (outdatedByNewInc) then
computationMode = ior(computationMode,CPFEM_AGERESULTS) ! calc and age results
outdatedByNewInc = .false. ! reset flag
endif
else ! now --- COLLECT ---
computationMode = CPFEM_COLLECT ! plain collect
if (lastLovl /= lovl .and. & .not. terminallyIll) &
call debug_info() ! first after ping pong reports (meaningful) debugging
if (lastIncConverged) then
computationMode = ior(computationMode,CPFEM_BACKUPJACOBIAN) ! collect and backup Jacobian after convergence
lastIncConverged = .false. ! reset flag
endif
do node = 1,FE_Nnodes(mesh_element(2,cp_en))
CPnodeID = mesh_element(4_pInt+node,cp_en)
mesh_node(1:ndeg,CPnodeID) = mesh_node0(1:ndeg,CPnodeID) + numerics_unitlength * dispt(1:ndeg,node)
enddo
endif
else ! --- PLAIN MODE ---
computationMode = CPFEM_CALCRESULTS ! always calc
if (lastLovl /= lovl) then
if (.not. terminallyIll) &
call debug_info() ! first reports (meaningful) debugging
call debug_reset() ! and resets debugging
outdatedFFN1 = .false.
cycleCounter = cycleCounter + 1_pInt
mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes) ! update cell node coordinates
call mesh_build_ipCoordinates() ! update ip coordinates
endif
if (outdatedByNewInc) then
computationMode = ior(computationMode,CPFEM_AGERESULTS)
outdatedByNewInc = .false. ! reset flag
endif
if (lastIncConverged) then
computationMode = ior(computationMode,CPFEM_BACKUPJACOBIAN) ! backup Jacobian after convergence
lastIncConverged = .false. ! reset flag
endif
endif
theTime = cptim ! record current starting time
theDelta = timinc ! record current time increment
theInc = inc ! record current increment number
endif
lastLovl = lovl ! record lovl
call CPFEM_general(computationMode,usePingPong,ffn,ffn1,t(1),timinc,m(1),nn,stress,ddsdde)
! Mandel: 11, 22, 33, SQRT(2)*12, SQRT(2)*23, SQRT(2)*13
! Marc: 11, 22, 33, 12, 23, 13
! Marc: 11, 22, 33, 12
forall(i=1:ngens) d(1:ngens,i) = invnrmMandel(i)*ddsdde(1:ngens,i)*invnrmMandel(1:ngens)
s(1:ndi+nshear) = stress(1:ndi+nshear)*invnrmMandel(1:ndi+nshear)
g = 0.0_pReal
if(symmetricSolver) d = 0.5_pReal*(d+transpose(d))
!$ call omp_set_num_threads(defaultNumThreadsInt) ! reset number of threads to stored default value
end subroutine hypela2
!--------------------------------------------------------------------------------------------------
!> @brief sets user defined output variables for Marc
!> @details select a variable contour plotting (user subroutine).
!--------------------------------------------------------------------------------------------------
subroutine plotv(v,s,sp,etot,eplas,ecreep,t,m,nn,layer,ndi,nshear,jpltcd)
use prec, only: &
pReal, &
pInt
use mesh, only: &
mesh_FEasCP
use IO, only: &
IO_error
use homogenization, only: &
materialpoint_results,&
materialpoint_sizeResults
implicit none
integer(pInt), intent(in) :: &
m, & !< element number
nn, & !< integration point number
layer, & !< layer number
ndi, & !< number of direct stress components
nshear, & !< number of shear stress components
jpltcd !< user variable index
real(pReal), dimension(*), intent(in) :: &
s, & !< stress array
sp, & !< stresses in preferred direction
etot, & !< total strain (generalized)
eplas, & !< total plastic strain
ecreep, & !< total creep strain
t !< current temperature
real(pReal), intent(out) :: &
v !< variable
if (jpltcd > materialpoint_sizeResults) call IO_error(700_pInt,jpltcd) ! complain about out of bounds error
v = materialpoint_results(jpltcd,nn,mesh_FEasCP('elem', m))
end subroutine plotv

View File

@ -1 +0,0 @@
DAMASK_marc.f90

View File

@ -1 +0,0 @@
DAMASK_marc.f90

View File

@ -1 +0,0 @@
DAMASK_marc.f90

View File

@ -1 +0,0 @@
DAMASK_marc.f90

View File

@ -1 +0,0 @@
DAMASK_marc.f90

View File

@ -1 +0,0 @@
DAMASK_marc.f90

View File

@ -1 +0,0 @@
DAMASK_marc.f90

View File

@ -1,751 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Driver controlling inner and outer load case looping of the various spectral solvers
!> @details doing cutbacking, forwarding in case of restart, reporting statistics, writing
!> results
!--------------------------------------------------------------------------------------------------
program DAMASK_spectral
use, intrinsic :: &
iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use prec, only: &
pInt, &
pLongInt, &
pReal, &
tol_math_check
use DAMASK_interface, only: &
DAMASK_interface_init, &
loadCaseFile, &
geometryFile, &
getSolverWorkingDirectoryName, &
getSolverJobName, &
appendToOutFile
use IO, only: &
IO_read, &
IO_isBlank, &
IO_open_file, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_error, &
IO_lc, &
IO_intOut, &
IO_warning, &
IO_timeStamp, &
IO_EOF
use debug, only: &
debug_level, &
debug_spectral, &
debug_levelBasic
use math ! need to include the whole module for FFTW
use mesh, only: &
grid, &
geomSize
use CPFEM2, only: &
CPFEM_initAll
use FEsolving, only: &
restartWrite, &
restartInc
use numerics, only: &
worldrank, &
worldsize, &
stagItMax, &
maxCutBack, &
spectral_solver, &
continueCalculation
use homogenization, only: &
materialpoint_sizeResults, &
materialpoint_results, &
materialpoint_postResults
use material, only: &
thermal_type, &
damage_type, &
THERMAL_conduction_ID, &
DAMAGE_nonlocal_ID
use spectral_utilities, only: &
utilities_init, &
utilities_destroy, &
tSolutionState, &
tLoadCase, &
cutBack, &
nActiveFields, &
FIELD_UNDEFINED_ID, &
FIELD_MECH_ID, &
FIELD_THERMAL_ID, &
FIELD_DAMAGE_ID
use spectral_mech_Basic
use spectral_mech_AL
use spectral_mech_Polarisation
use spectral_damage
use spectral_thermal
implicit none
#include <petsc/finclude/petscsys.h>
!--------------------------------------------------------------------------------------------------
! variables related to information from load case and geom file
real(pReal), dimension(9) :: temp_valueVector = 0.0_pReal !< temporarily from loadcase file when reading in tensors (initialize to 0.0)
logical, dimension(9) :: temp_maskVector = .false. !< temporarily from loadcase file when reading in tensors
integer(pInt), parameter :: FILEUNIT = 234_pInt !< file unit, DAMASK IO does not support newunit feature
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: &
N_t = 0_pInt, & !< # of time indicators found in load case file
N_n = 0_pInt, & !< # of increment specifiers found in load case file
N_def = 0_pInt !< # of rate of deformation specifiers found in load case file
character(len=65536) :: &
line
!--------------------------------------------------------------------------------------------------
! loop variables, convergence etc.
real(pReal), dimension(3,3), parameter :: &
ones = 1.0_pReal, &
zeros = 0.0_pReal
integer(pInt), parameter :: &
subStepFactor = 2_pInt !< for each substep, divide the last time increment by 2.0
real(pReal) :: &
time = 0.0_pReal, & !< elapsed time
time0 = 0.0_pReal, & !< begin of interval
timeinc = 1.0_pReal, & !< current time interval
timeIncOld = 0.0_pReal, & !< previous time interval
remainingLoadCaseTime = 0.0_pReal !< remaining time of current load case
logical :: &
guess, & !< guess along former trajectory
stagIterate
integer(pInt) :: &
i, j, k, l, field, &
errorID, &
cutBackLevel = 0_pInt, & !< cut back level \f$ t = \frac{t_{inc}}{2^l} \f$
stepFraction = 0_pInt !< fraction of current time interval
integer(pInt) :: &
currentLoadcase = 0_pInt, & !< current load case
inc, & !< current increment in current load case
totalIncsCounter = 0_pInt, & !< total # of increments
convergedCounter = 0_pInt, & !< # of converged increments
notConvergedCounter = 0_pInt, & !< # of non-converged increments
resUnit = 0_pInt, & !< file unit for results writing
statUnit = 0_pInt, & !< file unit for statistics output
lastRestartWritten = 0_pInt, & !< total increment # at which last restart information was written
stagIter
character(len=6) :: loadcase_string
character(len=1024) :: incInfo !< string parsed to solution with information about current load case
type(tLoadCase), allocatable, dimension(:) :: loadCases !< array of all load cases
type(tSolutionState), allocatable, dimension(:) :: solres
integer(MPI_OFFSET_KIND) :: fileOffset
integer(MPI_OFFSET_KIND), dimension(:), allocatable :: outputSize
integer(pInt), parameter :: maxByteOut = 2147483647-4096 !< limit of one file output write https://trac.mpich.org/projects/mpich/ticket/1742
integer(pLongInt), dimension(2) :: outputIndex
PetscErrorCode :: ierr
external :: &
quit, &
MPI_file_open, &
MPI_file_close, &
MPI_file_seek, &
MPI_file_get_position, &
MPI_file_write, &
MPI_allreduce
!--------------------------------------------------------------------------------------------------
! init DAMASK (all modules)
call CPFEM_initAll(el = 1_pInt, ip = 1_pInt)
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- DAMASK_spectral init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
!--------------------------------------------------------------------------------------------------
! initialize field solver information
nActiveFields = 1
if (any(thermal_type == THERMAL_conduction_ID )) nActiveFields = nActiveFields + 1
if (any(damage_type == DAMAGE_nonlocal_ID )) nActiveFields = nActiveFields + 1
allocate(solres(nActiveFields))
!--------------------------------------------------------------------------------------------------
! reading basic information from load case file and allocate data structure containing load cases
call IO_open_file(FILEUNIT,trim(loadCaseFile))
rewind(FILEUNIT)
do
line = IO_read(FILEUNIT)
if (trim(line) == IO_EOF) exit
if (IO_isBlank(line)) cycle ! skip empty lines
chunkPos = IO_stringPos(line)
do i = 1_pInt, chunkPos(1) ! reading compulsory parameters for loadcase
select case (IO_lc(IO_stringValue(line,chunkPos,i)))
case('l','velocitygrad','velgrad','velocitygradient','fdot','dotf','f')
N_def = N_def + 1_pInt
case('t','time','delta')
N_t = N_t + 1_pInt
case('n','incs','increments','steps','logincs','logincrements','logsteps')
N_n = N_n + 1_pInt
end select
enddo ! count all identifiers to allocate memory and do sanity check
enddo
if ((N_def /= N_n) .or. (N_n /= N_t) .or. N_n < 1_pInt) & ! sanity check
call IO_error(error_ID=837_pInt,ext_msg = trim(loadCaseFile)) ! error message for incomplete loadcase
allocate (loadCases(N_n)) ! array of load cases
loadCases%P%myType='p'
do i = 1, size(loadCases)
allocate(loadCases(i)%ID(nActiveFields))
field = 1
loadCases(i)%ID(field) = FIELD_MECH_ID ! mechanical active by default
if (any(thermal_type == THERMAL_conduction_ID)) then ! thermal field active
field = field + 1
loadCases(i)%ID(field) = FIELD_THERMAL_ID
endif
if (any(damage_type == DAMAGE_nonlocal_ID)) then ! damage field active
field = field + 1
loadCases(i)%ID(field) = FIELD_DAMAGE_ID
endif
enddo
!--------------------------------------------------------------------------------------------------
! reading the load case and assign values to the allocated data structure
rewind(FILEUNIT)
do
line = IO_read(FILEUNIT)
if (trim(line) == IO_EOF) exit
if (IO_isBlank(line)) cycle ! skip empty lines
currentLoadCase = currentLoadCase + 1_pInt
chunkPos = IO_stringPos(line)
do i = 1_pInt, chunkPos(1)
select case (IO_lc(IO_stringValue(line,chunkPos,i)))
case('fdot','dotf','l','velocitygrad','velgrad','velocitygradient','f') ! assign values for the deformation BC matrix
temp_valueVector = 0.0_pReal
if (IO_lc(IO_stringValue(line,chunkPos,i)) == 'fdot'.or. & ! in case of Fdot, set type to fdot
IO_lc(IO_stringValue(line,chunkPos,i)) == 'dotf') then
loadCases(currentLoadCase)%deformation%myType = 'fdot'
else if (IO_lc(IO_stringValue(line,chunkPos,i)) == 'f') then
loadCases(currentLoadCase)%deformation%myType = 'f'
else
loadCases(currentLoadCase)%deformation%myType = 'l'
endif
do j = 1_pInt, 9_pInt
temp_maskVector(j) = IO_stringValue(line,chunkPos,i+j) /= '*' ! true if not a *
enddo
do j = 1_pInt,9_pInt
if (temp_maskVector(j)) temp_valueVector(j) = IO_floatValue(line,chunkPos,i+j) ! read value where applicable
enddo
loadCases(currentLoadCase)%deformation%maskLogical = & ! logical mask in 3x3 notation
transpose(reshape(temp_maskVector,[ 3,3]))
loadCases(currentLoadCase)%deformation%maskFloat = & ! float (1.0/0.0) mask in 3x3 notation
merge(ones,zeros,loadCases(currentLoadCase)%deformation%maskLogical)
loadCases(currentLoadCase)%deformation%values = math_plain9to33(temp_valueVector) ! values in 3x3 notation
case('p','pk1','piolakirchhoff','stress', 's')
temp_valueVector = 0.0_pReal
do j = 1_pInt, 9_pInt
temp_maskVector(j) = IO_stringValue(line,chunkPos,i+j) /= '*' ! true if not an asterisk
enddo
do j = 1_pInt,9_pInt
if (temp_maskVector(j)) temp_valueVector(j) = IO_floatValue(line,chunkPos,i+j) ! read value where applicable
enddo
loadCases(currentLoadCase)%P%maskLogical = transpose(reshape(temp_maskVector,[ 3,3]))
loadCases(currentLoadCase)%P%maskFloat = merge(ones,zeros,&
loadCases(currentLoadCase)%P%maskLogical)
loadCases(currentLoadCase)%P%values = math_plain9to33(temp_valueVector)
case('t','time','delta') ! increment time
loadCases(currentLoadCase)%time = IO_floatValue(line,chunkPos,i+1_pInt)
case('n','incs','increments','steps') ! number of increments
loadCases(currentLoadCase)%incs = IO_intValue(line,chunkPos,i+1_pInt)
case('logincs','logincrements','logsteps') ! number of increments (switch to log time scaling)
loadCases(currentLoadCase)%incs = IO_intValue(line,chunkPos,i+1_pInt)
loadCases(currentLoadCase)%logscale = 1_pInt
case('freq','frequency','outputfreq') ! frequency of result writings
loadCases(currentLoadCase)%outputfrequency = IO_intValue(line,chunkPos,i+1_pInt)
case('r','restart','restartwrite') ! frequency of writing restart information
loadCases(currentLoadCase)%restartfrequency = &
max(0_pInt,IO_intValue(line,chunkPos,i+1_pInt))
case('guessreset','dropguessing')
loadCases(currentLoadCase)%followFormerTrajectory = .false. ! do not continue to predict deformation along former trajectory
case('euler') ! rotation of currentLoadCase given in euler angles
temp_valueVector = 0.0_pReal
l = 1_pInt ! assuming values given in degrees
k = 1_pInt ! assuming keyword indicating degree/radians present
select case (IO_lc(IO_stringValue(line,chunkPos,i+1_pInt)))
case('deg','degree')
case('rad','radian') ! don't convert from degree to radian
l = 0_pInt
case default
k = 0_pInt
end select
do j = 1_pInt, 3_pInt
temp_valueVector(j) = IO_floatValue(line,chunkPos,i+k+j)
enddo
if (l == 1_pInt) temp_valueVector(1:3) = temp_valueVector(1:3) * inRad ! convert to rad
loadCases(currentLoadCase)%rotation = math_EulerToR(temp_valueVector(1:3)) ! convert rad Eulers to rotation matrix
case('rotation','rot') ! assign values for the rotation of currentLoadCase matrix
temp_valueVector = 0.0_pReal
do j = 1_pInt, 9_pInt
temp_valueVector(j) = IO_floatValue(line,chunkPos,i+j)
enddo
loadCases(currentLoadCase)%rotation = math_plain9to33(temp_valueVector)
end select
enddo; enddo
close(FILEUNIT)
!--------------------------------------------------------------------------------------------------
! consistency checks and output of load case
loadCases(1)%followFormerTrajectory = .false. ! cannot guess along trajectory for first inc of first currentLoadCase
errorID = 0_pInt
if (worldrank == 0) then
checkLoadcases: do currentLoadCase = 1_pInt, size(loadCases)
write (loadcase_string, '(i6)' ) currentLoadCase
write(6,'(1x,a,i6)') 'load case: ', currentLoadCase
if (.not. loadCases(currentLoadCase)%followFormerTrajectory) &
write(6,'(2x,a)') 'drop guessing along trajectory'
if (loadCases(currentLoadCase)%deformation%myType=='l') then
do j = 1_pInt, 3_pInt
if (any(loadCases(currentLoadCase)%deformation%maskLogical(j,1:3) .eqv. .true.) .and. &
any(loadCases(currentLoadCase)%deformation%maskLogical(j,1:3) .eqv. .false.)) &
errorID = 832_pInt ! each row should be either fully or not at all defined
enddo
write(6,'(2x,a)') 'velocity gradient:'
else if (loadCases(currentLoadCase)%deformation%myType=='f') then
write(6,'(2x,a)') 'deformation gradient at end of load case:'
else
write(6,'(2x,a)') 'deformation gradient rate:'
endif
do i = 1_pInt, 3_pInt; do j = 1_pInt, 3_pInt
if(loadCases(currentLoadCase)%deformation%maskLogical(i,j)) then
write(6,'(2x,f12.7)',advance='no') loadCases(currentLoadCase)%deformation%values(i,j)
else
write(6,'(2x,12a)',advance='no') ' * '
endif
enddo; write(6,'(/)',advance='no')
enddo
if (any(loadCases(currentLoadCase)%P%maskLogical .eqv. &
loadCases(currentLoadCase)%deformation%maskLogical)) errorID = 831_pInt ! exclusive or masking only
if (any(loadCases(currentLoadCase)%P%maskLogical .and. &
transpose(loadCases(currentLoadCase)%P%maskLogical) .and. &
reshape([ .false.,.true.,.true.,.true.,.false.,.true.,.true.,.true.,.false.],[ 3,3]))) &
errorID = 838_pInt ! no rotation is allowed by stress BC
write(6,'(2x,a)') 'stress / GPa:'
do i = 1_pInt, 3_pInt; do j = 1_pInt, 3_pInt
if(loadCases(currentLoadCase)%deformation%maskLogical(i,j)) then
write(6,'(2x,f12.7)',advance='no') loadCases(currentLoadCase)%P%values(i,j)*1e-9_pReal
else
write(6,'(2x,12a)',advance='no') ' * '
endif
enddo; write(6,'(/)',advance='no')
enddo
if (any(abs(math_mul33x33(loadCases(currentLoadCase)%rotation, &
math_transpose33(loadCases(currentLoadCase)%rotation))-math_I3) >&
reshape(spread(tol_math_check,1,9),[ 3,3]))&
.or. abs(math_det33(loadCases(currentLoadCase)%rotation)) > &
1.0_pReal + tol_math_check) errorID = 846_pInt ! given rotation matrix contains strain
if (any(loadCases(currentLoadCase)%rotation /= math_I3)) &
write(6,'(2x,a,/,3(3(3x,f12.7,1x)/))',advance='no') 'rotation of loadframe:',&
math_transpose33(loadCases(currentLoadCase)%rotation)
if (loadCases(currentLoadCase)%time < 0.0_pReal) errorID = 834_pInt ! negative time increment
write(6,'(2x,a,f12.6)') 'time: ', loadCases(currentLoadCase)%time
if (loadCases(currentLoadCase)%incs < 1_pInt) errorID = 835_pInt ! non-positive incs count
write(6,'(2x,a,i5)') 'increments: ', loadCases(currentLoadCase)%incs
if (loadCases(currentLoadCase)%outputfrequency < 1_pInt) errorID = 836_pInt ! non-positive result frequency
write(6,'(2x,a,i5)') 'output frequency: ', &
loadCases(currentLoadCase)%outputfrequency
write(6,'(2x,a,i5,/)') 'restart frequency: ', &
loadCases(currentLoadCase)%restartfrequency
if (errorID > 0_pInt) call IO_error(error_ID = errorID, ext_msg = loadcase_string) ! exit with error message
enddo checkLoadcases
endif
!--------------------------------------------------------------------------------------------------
! doing initialization depending on selected solver
call Utilities_init()
do field = 1, nActiveFields
select case (loadCases(1)%ID(field))
case(FIELD_MECH_ID)
select case (spectral_solver)
case (DAMASK_spectral_SolverBasicPETSc_label)
call basicPETSc_init
case (DAMASK_spectral_SolverAL_label)
if(iand(debug_level(debug_spectral),debug_levelBasic)/= 0 .and. worldrank == 0_pInt) &
call IO_warning(42_pInt, ext_msg='debug Divergence')
call AL_init
case (DAMASK_spectral_SolverPolarisation_label)
if(iand(debug_level(debug_spectral),debug_levelBasic)/= 0 .and. worldrank == 0_pInt) &
call IO_warning(42_pInt, ext_msg='debug Divergence')
call Polarisation_init
case default
call IO_error(error_ID = 891, ext_msg = trim(spectral_solver))
end select
case(FIELD_THERMAL_ID)
call spectral_thermal_init
case(FIELD_DAMAGE_ID)
call spectral_damage_init()
end select
enddo
!--------------------------------------------------------------------------------------------------
! write header of output file
if (worldrank == 0) then
if (.not. appendToOutFile) then ! after restart, append to existing results file
open(newunit=resUnit,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//&
'.spectralOut',form='UNFORMATTED',status='REPLACE')
write(resUnit) 'load:', trim(loadCaseFile) ! ... and write header
write(resUnit) 'workingdir:', trim(getSolverWorkingDirectoryName())
write(resUnit) 'geometry:', trim(geometryFile)
write(resUnit) 'grid:', grid
write(resUnit) 'size:', geomSize
write(resUnit) 'materialpoint_sizeResults:', materialpoint_sizeResults
write(resUnit) 'loadcases:', size(loadCases)
write(resUnit) 'frequencies:', loadCases%outputfrequency ! one entry per LoadCase
write(resUnit) 'times:', loadCases%time ! one entry per LoadCase
write(resUnit) 'logscales:', loadCases%logscale
write(resUnit) 'increments:', loadCases%incs ! one entry per LoadCase
write(resUnit) 'startingIncrement:', restartInc - 1_pInt ! start with writing out the previous inc
write(resUnit) 'eoh'
close(resUnit) ! end of header
open(newunit=statUnit,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//&
'.sta',form='FORMATTED',status='REPLACE')
write(statUnit,'(a)') 'Increment Time CutbackLevel Converged IterationsNeeded' ! statistics file
if (iand(debug_level(debug_spectral),debug_levelBasic) /= 0) &
write(6,'(/,a)') ' header of result and statistics file written out'
flush(6)
else ! open new files ...
open(newunit=statUnit,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//&
'.sta',form='FORMATTED', position='APPEND', status='OLD')
endif
endif
!--------------------------------------------------------------------------------------------------
! prepare MPI parallel out (including opening of file)
allocate(outputSize(worldsize), source = 0_MPI_OFFSET_KIND)
outputSize(worldrank+1) = int(size(materialpoint_results)*pReal,MPI_OFFSET_KIND)
call MPI_allreduce(MPI_IN_PLACE,outputSize,worldsize,MPI_INT,MPI_SUM,PETSC_COMM_WORLD,ierr) ! get total output size over each process
call MPI_file_open(PETSC_COMM_WORLD, &
trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//'.spectralOut', &
MPI_MODE_WRONLY + MPI_MODE_APPEND, &
MPI_INFO_NULL, &
resUnit, &
ierr)
call MPI_file_get_position(resUnit,fileOffset,ierr) ! get offset from header
fileOffset = fileOffset + sum(outputSize(1:worldrank)) ! offset of my process in file (header + processes before me)
call MPI_file_seek (resUnit,fileOffset,MPI_SEEK_SET,ierr)
if (.not. appendToOutFile) then ! if not restarting, write 0th increment
do i=1, size(materialpoint_results,3)/(maxByteOut/(materialpoint_sizeResults*pReal))+1 ! slice the output of my process in chunks not exceeding the limit for one output
outputIndex=[(i-1)*((maxByteOut/pReal)/materialpoint_sizeResults)+1, &
min(i*((maxByteOut/pReal)/materialpoint_sizeResults),size(materialpoint_results,3))]
call MPI_file_write(resUnit,reshape(materialpoint_results(:,:,outputIndex(1):outputIndex(2)),&
[(outputIndex(2)-outputIndex(1)+1)*materialpoint_sizeResults]), &
(outputIndex(2)-outputIndex(1)+1)*materialpoint_sizeResults,&
MPI_DOUBLE, MPI_STATUS_IGNORE, ierr)
fileOffset = fileOffset + sum(outputSize) ! forward to current file position
enddo
if (worldrank == 0) &
write(6,'(1/,a)') ' ... writing initial configuration to file ........................'
endif
!--------------------------------------------------------------------------------------------------
! loopping over loadcases
loadCaseLooping: do currentLoadCase = 1_pInt, size(loadCases)
time0 = time ! currentLoadCase start time
guess = loadCases(currentLoadCase)%followFormerTrajectory ! change of load case? homogeneous guess for the first inc
!--------------------------------------------------------------------------------------------------
! loop oper incs defined in input file for current currentLoadCase
incLooping: do inc = 1_pInt, loadCases(currentLoadCase)%incs
totalIncsCounter = totalIncsCounter + 1_pInt
!--------------------------------------------------------------------------------------------------
! forwarding time
timeIncOld = timeinc
if (loadCases(currentLoadCase)%logscale == 0_pInt) then ! linear scale
timeinc = loadCases(currentLoadCase)%time/loadCases(currentLoadCase)%incs ! only valid for given linear time scale. will be overwritten later in case loglinear scale is used
else
if (currentLoadCase == 1_pInt) then ! 1st currentLoadCase of logarithmic scale
if (inc == 1_pInt) then ! 1st inc of 1st currentLoadCase of logarithmic scale
timeinc = loadCases(1)%time*(2.0_pReal**real( 1_pInt-loadCases(1)%incs ,pReal)) ! assume 1st inc is equal to 2nd
else ! not-1st inc of 1st currentLoadCase of logarithmic scale
timeinc = loadCases(1)%time*(2.0_pReal**real(inc-1_pInt-loadCases(1)%incs ,pReal))
endif
else ! not-1st currentLoadCase of logarithmic scale
timeinc = time0 * &
( (1.0_pReal + loadCases(currentLoadCase)%time/time0 )**(real( inc,pReal)/&
real(loadCases(currentLoadCase)%incs ,pReal))&
-(1.0_pReal + loadCases(currentLoadCase)%time/time0 )**(real( (inc-1_pInt),pReal)/&
real(loadCases(currentLoadCase)%incs ,pReal)))
endif
endif
timeinc = timeinc / 2.0_pReal**real(cutBackLevel,pReal) ! depending on cut back level, decrease time step
forwarding: if(totalIncsCounter >= restartInc) then
stepFraction = 0_pInt
!--------------------------------------------------------------------------------------------------
! loop over sub incs
subIncLooping: do while (stepFraction/subStepFactor**cutBackLevel <1_pInt)
time = time + timeinc ! forward time
stepFraction = stepFraction + 1_pInt
remainingLoadCaseTime = time0 - time + loadCases(currentLoadCase)%time + timeInc
!--------------------------------------------------------------------------------------------------
! report begin of new increment
if (worldrank == 0) then
write(6,'(/,a)') ' ###########################################################################'
write(6,'(1x,a,es12.5'//&
',a,'//IO_intOut(inc)//',a,'//IO_intOut(loadCases(currentLoadCase)%incs)//&
',a,'//IO_intOut(stepFraction)//',a,'//IO_intOut(subStepFactor**cutBackLevel)//&
',a,'//IO_intOut(currentLoadCase)//',a,'//IO_intOut(size(loadCases))//')') &
'Time', time, &
's: Increment ', inc, '/', loadCases(currentLoadCase)%incs,&
'-', stepFraction, '/', subStepFactor**cutBackLevel,&
' of load case ', currentLoadCase,'/',size(loadCases)
flush(6)
write(incInfo,'(a,'//IO_intOut(totalIncsCounter)//',a,'//IO_intOut(sum(loadCases%incs))//&
',a,'//IO_intOut(stepFraction)//',a,'//IO_intOut(subStepFactor**cutBackLevel)//')') &
'Increment ',totalIncsCounter,'/',sum(loadCases%incs),&
'-',stepFraction, '/', subStepFactor**cutBackLevel
endif
!--------------------------------------------------------------------------------------------------
! forward fields
do field = 1, nActiveFields
select case(loadCases(currentLoadCase)%ID(field))
case(FIELD_MECH_ID)
select case (spectral_solver)
case (DAMASK_spectral_SolverBasicPETSc_label)
call BasicPETSc_forward (&
guess,timeinc,timeIncOld,remainingLoadCaseTime, &
F_BC = loadCases(currentLoadCase)%deformation, &
P_BC = loadCases(currentLoadCase)%P, &
rotation_BC = loadCases(currentLoadCase)%rotation)
case (DAMASK_spectral_SolverAL_label)
call AL_forward (&
guess,timeinc,timeIncOld,remainingLoadCaseTime, &
F_BC = loadCases(currentLoadCase)%deformation, &
P_BC = loadCases(currentLoadCase)%P, &
rotation_BC = loadCases(currentLoadCase)%rotation)
case (DAMASK_spectral_SolverPolarisation_label)
call Polarisation_forward (&
guess,timeinc,timeIncOld,remainingLoadCaseTime, &
F_BC = loadCases(currentLoadCase)%deformation, &
P_BC = loadCases(currentLoadCase)%P, &
rotation_BC = loadCases(currentLoadCase)%rotation)
end select
case(FIELD_THERMAL_ID)
call spectral_thermal_forward (&
guess,timeinc,timeIncOld,remainingLoadCaseTime)
case(FIELD_DAMAGE_ID)
call spectral_damage_forward (&
guess,timeinc,timeIncOld,remainingLoadCaseTime)
end select
enddo
!--------------------------------------------------------------------------------------------------
! solve fields
stagIter = 0_pInt
stagIterate = .true.
do while (stagIterate)
do field = 1, nActiveFields
select case(loadCases(currentLoadCase)%ID(field))
case(FIELD_MECH_ID)
select case (spectral_solver)
case (DAMASK_spectral_SolverBasicPETSc_label)
solres(field) = BasicPETSC_solution (&
incInfo,guess,timeinc,timeIncOld,remainingLoadCaseTime, &
P_BC = loadCases(currentLoadCase)%P, &
F_BC = loadCases(currentLoadCase)%deformation, &
rotation_BC = loadCases(currentLoadCase)%rotation)
case (DAMASK_spectral_SolverAL_label)
solres(field) = AL_solution (&
incInfo,guess,timeinc,timeIncOld,remainingLoadCaseTime, &
P_BC = loadCases(currentLoadCase)%P, &
F_BC = loadCases(currentLoadCase)%deformation, &
rotation_BC = loadCases(currentLoadCase)%rotation)
case (DAMASK_spectral_SolverPolarisation_label)
solres(field) = Polarisation_solution (&
incInfo,guess,timeinc,timeIncOld,remainingLoadCaseTime, &
P_BC = loadCases(currentLoadCase)%P, &
F_BC = loadCases(currentLoadCase)%deformation, &
rotation_BC = loadCases(currentLoadCase)%rotation)
end select
case(FIELD_THERMAL_ID)
solres(field) = spectral_thermal_solution (&
guess,timeinc,timeIncOld,remainingLoadCaseTime)
case(FIELD_DAMAGE_ID)
solres(field) = spectral_damage_solution (&
guess,timeinc,timeIncOld,remainingLoadCaseTime)
end select
if(.not. solres(field)%converged) exit ! no solution found
enddo
stagIter = stagIter + 1_pInt
stagIterate = stagIter < stagItMax .and. &
all(solres(:)%converged) .and. &
.not. all(solres(:)%stagConverged)
enddo
!--------------------------------------------------------------------------------------------------
! check solution
cutBack = .False.
if(solres(1)%termIll .or. .not. all(solres(:)%converged .and. solres(:)%stagConverged)) then ! no solution found
if (cutBackLevel < maxCutBack) then ! do cut back
if (worldrank == 0) write(6,'(/,a)') ' cut back detected'
cutBack = .True.
stepFraction = (stepFraction - 1_pInt) * subStepFactor ! adjust to new denominator
cutBackLevel = cutBackLevel + 1_pInt
time = time - timeinc ! rewind time
timeinc = timeinc/2.0_pReal
elseif (solres(1)%termIll) then ! material point model cannot find a solution, exit in any casy
call IO_warning(850_pInt)
call quit(-1_pInt*(lastRestartWritten+1_pInt)) ! quit and provide information about last restart inc written (e.g. for regridding)
elseif (continueCalculation == 1_pInt) then
guess = .true. ! accept non converged BVP solution
else ! default behavior, exit if spectral solver does not converge
call IO_warning(850_pInt)
call quit(-1_pInt*(lastRestartWritten+1_pInt)) ! quit and provide information about last restart inc written (e.g. for regridding)
endif
else
guess = .true. ! start guessing after first converged (sub)inc
endif
if (.not. cutBack) then
if (worldrank == 0) then
write(statUnit,*) totalIncsCounter, time, cutBackLevel, &
solres%converged, solres%iterationsNeeded ! write statistics about accepted solution
flush(statUnit)
endif
endif
enddo subIncLooping
cutBackLevel = max(0_pInt, cutBackLevel - 1_pInt) ! try half number of subincs next inc
if(all(solres(:)%converged)) then ! report converged inc
convergedCounter = convergedCounter + 1_pInt
if (worldrank == 0) &
write(6,'(/,a,'//IO_intOut(totalIncsCounter)//',a)') &
' increment ', totalIncsCounter, ' converged'
else
if (worldrank == 0) &
write(6,'(/,a,'//IO_intOut(totalIncsCounter)//',a)') & ! report non-converged inc
' increment ', totalIncsCounter, ' NOT converged'
notConvergedCounter = notConvergedCounter + 1_pInt
endif; flush(6)
if (mod(inc,loadCases(currentLoadCase)%outputFrequency) == 0_pInt) then ! at output frequency
if (worldrank == 0) &
write(6,'(1/,a)') ' ... writing results to file ......................................'
call materialpoint_postResults()
call MPI_file_seek (resUnit,fileOffset,MPI_SEEK_SET,ierr)
do i=1, size(materialpoint_results,3)/(maxByteOut/(materialpoint_sizeResults*pReal))+1 ! slice the output of my process in chunks not exceeding the limit for one output
outputIndex=[(i-1)*maxByteOut/pReal/materialpoint_sizeResults+1, &
min(i*maxByteOut/pReal/materialpoint_sizeResults,size(materialpoint_results,3))]
call MPI_file_write(resUnit,reshape(materialpoint_results(:,:,outputIndex(1):outputIndex(2)),&
[(outputIndex(2)-outputIndex(1)+1)*materialpoint_sizeResults]), &
(outputIndex(2)-outputIndex(1)+1)*materialpoint_sizeResults,&
MPI_DOUBLE, MPI_STATUS_IGNORE, ierr)
fileOffset = fileOffset + sum(outputSize) ! forward to current file position
enddo
endif
if( loadCases(currentLoadCase)%restartFrequency > 0_pInt .and. & ! at frequency of writing restart information set restart parameter for FEsolving
mod(inc,loadCases(currentLoadCase)%restartFrequency) == 0_pInt) then ! first call to CPFEM_general will write?
restartWrite = .true.
lastRestartWritten = inc
endif
else forwarding
time = time + timeinc
guess = .true.
endif forwarding
enddo incLooping
enddo loadCaseLooping
!--------------------------------------------------------------------------------------------------
! report summary of whole calculation
if (worldrank == 0) then
write(6,'(/,a)') ' ###########################################################################'
write(6,'(1x,i6.6,a,i6.6,a,f5.1,a)') convergedCounter, ' out of ', &
notConvergedCounter + convergedCounter, ' (', &
real(convergedCounter, pReal)/&
real(notConvergedCounter + convergedCounter,pReal)*100.0_pReal, &
' %) increments converged!'
endif
call MPI_file_close(resUnit,ierr)
close(statUnit)
do field = 1, nActiveFields
select case(loadCases(1)%ID(field))
case(FIELD_MECH_ID)
select case (spectral_solver)
case (DAMASK_spectral_SolverBasicPETSc_label)
call BasicPETSC_destroy()
case (DAMASK_spectral_SolverAL_label)
call AL_destroy()
case (DAMASK_spectral_SolverPolarisation_label)
call Polarisation_destroy()
end select
case(FIELD_THERMAL_ID)
call spectral_thermal_destroy()
case(FIELD_DAMAGE_ID)
call spectral_damage_destroy()
end select
enddo
call utilities_destroy()
call PetscFinalize(ierr); CHKERRQ(ierr)
if (notConvergedCounter > 0_pInt) call quit(3_pInt) ! error if some are not converged
call quit(0_pInt) ! no complains ;)
end program DAMASK_spectral
!--------------------------------------------------------------------------------------------------
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief quit subroutine to mimic behavior of FEM solvers
!> @details exits the Spectral solver and reports time and duration. Exit code 0 signals
!> everything went fine. Exit code 1 signals an error, message according to IO_error. Exit code
!> 2 signals request for regridding, increment of last saved restart information is written to
!> stderr. Exit code 3 signals no severe problems, but some increments did not converge
!--------------------------------------------------------------------------------------------------
subroutine quit(stop_id)
use prec, only: &
pInt
use numerics, only: &
worldrank
implicit none
integer(pInt), intent(in) :: stop_id
integer, dimension(8) :: dateAndTime ! type default integer
if (worldrank == 0_pInt) then
call date_and_time(values = dateAndTime)
write(6,'(/,a)') 'DAMASK terminated on:'
write(6,'(a,2(i2.2,a),i4.4)') 'Date: ',dateAndTime(3),'/',&
dateAndTime(2),'/',&
dateAndTime(1)
write(6,'(a,2(i2.2,a),i2.2)') 'Time: ',dateAndTime(5),':',&
dateAndTime(6),':',&
dateAndTime(7)
endif
if (stop_id == 0_pInt) stop 0 ! normal termination
if (stop_id < 0_pInt) then ! trigger regridding
if (worldrank == 0_pInt) &
write(0,'(a,i6)') 'restart information available at ', stop_id*(-1_pInt)
stop 2
endif
if (stop_id == 3_pInt) stop 3 ! not all incs converged
stop 1 ! error (message from IO_error)
end subroutine quit

View File

@ -1,171 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief triggering reading in of restart information when doing a restart
!> @todo Descriptions for public variables needed
!--------------------------------------------------------------------------------------------------
module FEsolving
use prec, only: &
pInt, &
pReal
implicit none
private
integer(pInt), public :: &
restartInc = 1_pInt !< needs description
logical, public :: &
symmetricSolver = .false., & !< use a symmetric FEM solver
restartWrite = .false., & !< write current state to enable restart
restartRead = .false., & !< restart information to continue calculation from saved state
terminallyIll = .false. !< at least one material point is terminally ill
integer(pInt), dimension(:,:), allocatable, public :: &
FEsolving_execIP !< for ping-pong scheme always range to max IP, otherwise one specific IP
integer(pInt), dimension(2), public :: &
FEsolving_execElem !< for ping-pong scheme always whole range, otherwise one specific element
character(len=1024), public :: &
modelName !< needs description
logical, dimension(:,:), allocatable, public :: &
calcMode !< do calculation or simply collect when using ping pong scheme
public :: FE_init
contains
!--------------------------------------------------------------------------------------------------
!> @brief determine whether a symmetric solver is used and whether restart is requested
!> @details restart information is found in input file in case of FEM solvers, in case of spectal
!> solver the information is provided by the interface module
!--------------------------------------------------------------------------------------------------
subroutine FE_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level, &
debug_FEsolving, &
debug_levelBasic
use IO, only: &
IO_stringPos, &
IO_stringValue, &
IO_intValue, &
IO_lc, &
#if defined(Marc4DAMASK) || defined(Abaqus)
IO_open_inputFile, &
IO_open_logFile, &
#endif
IO_warning, &
IO_timeStamp
use DAMASK_interface
use numerics, only: &
worldrank
implicit none
#if defined(Marc4DAMASK) || defined(Abaqus)
integer(pInt), parameter :: &
FILEUNIT = 222_pInt
integer(pInt) :: j
character(len=65536) :: tag, line
integer(pInt), allocatable, dimension(:) :: chunkPos
#endif
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- FEsolving init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
modelName = getSolverJobName()
#ifdef Spectral
restartInc = spectralRestartInc
if(restartInc <= 0_pInt) then
call IO_warning(warning_ID=34_pInt)
restartInc = 1_pInt
endif
restartRead = restartInc > 1_pInt ! only read in if "true" restart requested
#elif defined FEM
restartInc = FEMRestartInc
if(restartInc <= 0_pInt) then
call IO_warning(warning_ID=34_pInt)
restartInc = 1_pInt
endif
restartRead = restartInc > 1_pInt
#else
call IO_open_inputFile(FILEUNIT,modelName)
rewind(FILEUNIT)
do
read (FILEUNIT,'(a1024)',END=100) line
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('solver')
read (FILEUNIT,'(a1024)',END=100) line ! next line
chunkPos = IO_stringPos(line)
symmetricSolver = (IO_intValue(line,chunkPos,2_pInt) /= 1_pInt)
case ('restart')
read (FILEUNIT,'(a1024)',END=100) line ! next line
chunkPos = IO_stringPos(line)
restartWrite = iand(IO_intValue(line,chunkPos,1_pInt),1_pInt) > 0_pInt
restartRead = iand(IO_intValue(line,chunkPos,1_pInt),2_pInt) > 0_pInt
case ('*restart')
do j=2_pInt,chunkPos(1)
restartWrite = (IO_lc(IO_StringValue(line,chunkPos,j)) == 'write') .or. restartWrite
restartRead = (IO_lc(IO_StringValue(line,chunkPos,j)) == 'read') .or. restartRead
enddo
if(restartWrite) then
do j=2_pInt,chunkPos(1)
restartWrite = (IO_lc(IO_StringValue(line,chunkPos,j)) /= 'frequency=0') .and. restartWrite
enddo
endif
end select
enddo
100 close(FILEUNIT)
if (restartRead) then
#ifdef Marc4DAMASK
call IO_open_logFile(FILEUNIT)
rewind(FILEUNIT)
do
read (FILEUNIT,'(a1024)',END=200) line
chunkPos = IO_stringPos(line)
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == 'restart' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) == 'file' .and. &
IO_lc(IO_stringValue(line,chunkPos,3_pInt)) == 'job' .and. &
IO_lc(IO_stringValue(line,chunkPos,4_pInt)) == 'id' ) &
modelName = IO_StringValue(line,chunkPos,6_pInt)
enddo
#else
call IO_open_inputFile(FILEUNIT,modelName)
rewind(FILEUNIT)
do
read (FILEUNIT,'(a1024)',END=200) line
chunkPos = IO_stringPos(line)
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt))=='*heading') then
read (FILEUNIT,'(a1024)',END=200) line
chunkPos = IO_stringPos(line)
modelName = IO_StringValue(line,chunkPos,1_pInt)
endif
enddo
#endif
200 close(FILEUNIT)
endif
!--------------------------------------------------------------------------------------------------
! the following array are allocated by mesh.f90 and need to be deallocated in case of regridding
if (allocated(calcMode)) deallocate(calcMode)
if (allocated(FEsolving_execIP)) deallocate(FEsolving_execIP)
#endif
if (iand(debug_level(debug_FEsolving),debug_levelBasic) /= 0_pInt) then
write(6,'(a21,l1)') ' restart writing: ', restartWrite
write(6,'(a21,l1)') ' restart reading: ', restartRead
if (restartRead) write(6,'(a,/)') ' restart Job: '//trim(modelName)
endif
end subroutine FE_init
end module FEsolving

File diff suppressed because it is too large Load Diff

View File

@ -1,701 +0,0 @@
SHELL = /bin/sh
########################################################################################
# Makefile to compile the Material subroutine for BVP solution using spectral method
########################################################################################
# Be sure to remove all files compiled with different options by using "make clean"
########################################################################################
# OPTIONS = standard (alternative): meaning
#-------------------------------------------------------------
# F90 = ifort (gfortran): compiler type, choose Intel or GNU
# COMPILERNAME = name of the compiler executable (if not the same as the ype), e.g. using mpich-g90 instead of ifort
# PORTABLE = TRUE (FALSE): decision, if executable is optimized for the machine on which it was built.
# OPTIMIZATION = DEFENSIVE (OFF,AGGRESSIVE,ULTRA): Optimization mode: O2, O0, O3 + further options for most files, O3 + further options for all files
# OPENMP = TRUE (FALSE): OpenMP multiprocessor support
# PREFIX = arbitrary prefix (before compilername)
# OPTION = arbitrary option (just before file to compile)
# SUFFIX = arbitrary suffix (after file to compile)
# STANDARD_CHECK = checking for Fortran 2008, compiler dependend
########################################################################################
# including PETSc files. PETSC_ARCH is loaded from these files.
DAMASKVERSION :=$(shell cat ../VERSION)
include ${PETSC_DIR}/lib/petsc/conf/variables
include ${PETSC_DIR}/lib/petsc/conf/rules
INCLUDE_DIRS := $(PETSC_FC_INCLUDES) -DPETSc -I../lib
LIBRARIES := $(PETSC_WITH_EXTERNAL_LIB)
COMPILERNAME ?= $(FC)
LINKERNAME ?= $(FLINKER)
#
# setting up for HDF5 support (hard link for now)
# 1. Location of HDF5 binaries (with include/ and lib/ underneath)
HDF5 = /mnt/research/CMM/opt/hdf5
# 2. Location of External Libraries (missing in the 1.8.12 version)
LIBZ = /mnt/research/CMM/opt/hdf5/lib/libz.a
LIBSZ = /mnt/research/CMM/opt/hdf5/lib/libszip.a
# 3. Set libraries for HDF5 (LIBS: shared lib, LIBZ: external lib)
HDFLIBS = -I$(HDF5)/include -L$(HDF5)/lib
HDFLIBZ = -L$(LIBZ) -L$(LIBSZ)
# MPI compiler wrappers will tell if they are pointing to ifort or gfortran
COMPILEROUT :=$(shell $(FC) -show)
# search in FC or COMPILEROUT for gfortran/ifort if not defined
ifeq ($(strip $(F90)),)
F90 :=$(findstring gfortran,$(FC) $(COMPILEROUT))
endif
ifeq ($(strip $(F90)),)
F90 :=$(findstring ifort,$(FC) $(COMPILEROUT))
endif
OPENMP ?= ON
OPTIMIZATION ?= DEFENSIVE
ifeq "$(OPTIMIZATION)" "OFF"
OPTI := OFF
MAXOPTI := OFF
endif
ifeq "$(OPTIMIZATION)" "DEFENSIVE"
OPTI := DEFENSIVE
MAXOPTI := DEFENSIVE
endif
ifeq "$(OPTIMIZATION)" "AGGRESSIVE"
OPTI := AGGRESSIVE
MAXOPTI := DEFENSIVE
endif
ifeq "$(OPTIMIZATION)" "ULTRA"
OPTI := AGGRESSIVE
MAXOPTI := AGGRESSIVE
endif
ifndef OPTI
OPTI := DEFENSIVE
MAXOPTI := DEFENSIVE
endif
# settings for shared memory multicore support
ifeq "$(OPENMP)" "ON"
OPENMP_FLAG_ifort =-openmp -openmp-report0 -parallel
OPENMP_FLAG_gfortran =-fopenmp
endif
ifdef STANDARD_CHECK
STANDARD_CHECK_ifort =$(STANDARD_CHECK)
STANDARD_CHECK_gfortran =$(STANDARD_CHECK)
endif
STANDARD_CHECK_ifort ?=-stand f08 -standard-semantics
STANDARD_CHECK_gfortran ?=-std=f2008ts -pedantic-errors
#-pedantic: more strict on standard, enables some warnings
# -pedantic-errors: like pedantic, but errors instead of warnings
OPTIMIZATION_OFF_ifort :=-O0 -no-ip
OPTIMIZATION_OFF_gfortran :=-O0
OPTIMIZATION_DEFENSIVE_ifort :=-O2
OPTIMIZATION_DEFENSIVE_gfortran :=-O2
OPTIMIZATION_AGGRESSIVE_ifort :=-ipo -O3 -no-prec-div -fp-model fast=2 -xHost #-fast = -ipo, -O3, -no-prec-div, -static, -fp-model fast=2, and -xHost
OPTIMIZATION_AGGRESSIVE_gfortran :=-O3 -ffast-math -funroll-loops -ftree-vectorize
LINK_OPTIONS_ifort :=-shared-intel
COMPILE_OPTIONS_ifort :=-DDAMASKVERSION=\"${DAMASKVERSION}\"\
-fpp\
-ftz\
-assume byterecl,fpe_summary\
-diag-disable 5268\
-warn declarations\
-warn general\
-warn usage\
-warn interfaces\
-warn ignore_loc\
-warn alignments\
-warn unused
###################################################################################################
#COMPILE SWITCHES
#-shared-intel: Link against shared Intel libraries instead of static ones
#-fpp: preprocessor
#-ftz: flush unterflow to zero, automatically set if O<0,1,2,3> >0
#-assume byterecl record length is given in bytes (also set by -standard-semantics)
# fpe_summary print list of floating point exceptions occured during execution
#-fimplicit-none: assume "implicit-none" even if not present in source
#-diag-disable: disables warnings, where
# warning ID 5268: the text exceeds right hand column allowed on the line (we have only comments there)
#-warn: enables warnings, where
# declarations: any undeclared names (alternative name: -implicitnone)
# general: warning messages and informational messages are issued by the compiler
# usage: questionable programming practices
# interfaces: checks the interfaces of all SUBROUTINEs called and FUNCTIONs invoked in your compilation against an external set of interface blocks
# ignore_loc: %LOC is stripped from an actual argument
# alignments: data that is not naturally aligned
# unused: declared variables that are never used
# stderrors: warnings about Fortran standard violations are changed to errors (STANDARD_CHECK)
#
###################################################################################################
#MORE OPTIONS FOR DEBUGGING DURING COMPILATION
#-warn: enables warnings, where
# truncated_source: Determines whether warnings occur when source exceeds the maximum column width in fixed-format files. (too many warnings because we have comments beyond character 132)
# uncalled: Determines whether warnings occur when a statement function is never called
# all:
# -name as_is: case sensitive Fortran!
DEBUG_OPTIONS_ifort :=-g\
-traceback\
-gen-interfaces\
-fp-stack-check\
-fp-model strict\
-check bounds,format,output_conversion,pointers,uninit\
-ftrapuv\
-fpe-all0\
-warn errors\
-warn stderrors\
-debug-parameters all
###################################################################################################
#COMPILE SWITCHES FOR RUNTIME DEBUGGING
#-g: Generate symbolic debugging information in the object file
#-traceback: Generate extra information in the object file to provide source file traceback information when a severe error occurs at run time.
#-gen-interfaces: Generate an interface block for each routine. http://software.intel.com/en-us/blogs/2012/01/05/doctor-fortran-gets-explicit-again/
#-fp-stack-check: Generate extra code after every function call to ensure that the floating-point (FP) stack is in the expected state.
#-ftrapuv Trap uninitalized variables
#-check: checks at runtime, where
# bounds: check if an array index is too small (<1) or too large!
# format: Checking for the data type of an item being formatted for output.
# output_conversion: Checking for the fit of data items within a designated format descriptor field.
# pointers: Checking for certain disassociated or uninitialized pointers or unallocated allocatable objects.
# uninit: Checking for uninitialized variables.
#-fpe-all0 capture all floating-point exceptions, sets -ftz automatically
#-warn: enables warnings, where
# errors: warnings are changed to errors
# stderrors: warnings about Fortran standard violations are changed to errors
# information on http://software.intel.com/en-us/articles/determining-root-cause-of-sigsegv-or-sigbus-errors/
###################################################################################################
#MORE OPTIONS FOR RUNTIME DEBUGGING
#-heap-arrays: should not be done for OpenMP, but set "ulimit -s unlimited" on shell. Probably it helps also to unlimit other limits
#-check: checks at runtime, where
# arg_temp_created: will cause a lot of warnings because we create a bunch of temporary arrays (performance?)
# stack:
LINK_OPTIONS_gfortran :=-Wl,-undefined,dynamic_lookup
COMPILE_OPTIONS_gfortran :=-DDAMASKVERSION=\"${DAMASKVERSION}\"\
-xf95-cpp-input\
-ffree-line-length-132\
-fimplicit-none\
-fmodule-private\
-Wall\
-Wextra\
-Wcharacter-truncation\
-Wunderflow\
-Wsuggest-attribute=pure\
-Wsuggest-attribute=noreturn\
-Wconversion-extra\
-Wimplicit-procedure\
-Wno-unused-parameter
#-ffpe-summary=all only for newer gfortran
###################################################################################################
#COMPILE SWITCHES
#-shared
#-Wl,-undefined,dynamic_lookup:ensure to link against dynamic libraries
#-xf95-cpp-input: preprocessor
#-ffree-line-length-132: restrict line length to the standard 132 characters
#-ffpe-summary: print summary of floating point exeptions (invalid, zero, overflow, underflow, inexact and denormal)
#-fimplicit-none: assume "implicit-none" even if not present in source
#-fmodule-private: assume "private" even if not present in source
#-Wcharacter-truncation: warn if character expressions (strings) are truncated
#-Wunderflow: produce a warning when numerical constant expressions are encountered, which yield an UNDERFLOW during compilation
#-Wsuggest-attribute=pure:
#-Wsuggest-attribute=noreturn:
#-Wconversion-extra
#-Wimplicit-procedure
#-Wall: sets the following Fortran options:
# -Waliasing: warn about possible aliasing of dummy arguments. Specifically, it warns if the same actual argument is associated with a dummy argument with "INTENT(IN)" and a dummy argument with "INTENT(OUT)" in a call with an explicit interface.
# -Wampersand: checks if a character expression is continued proberly by an ampersand at the end of the line and at the beginning of the new line
# -Warray-bounds: checks if array reference is out of bounds at compile time. use -fcheck-bounds to also check during runtime
# -Wconversion: warn about implicit conversions between different type
# -Wsurprising: warn when "suspicious" code constructs are encountered. While technically legal these usually indicate that an error has been made.
# -Wc-binding-type:
# -Wintrinsics-std: only standard intrisics are available, e.g. "call flush(6)" will cause an error
# -Wno-tabs: do not allow tabs in source
# -Wintrinsic-shadow: warn if a user-defined procedure or module procedure has the same name as an intrinsic
# -Wline-truncation:
# -Wtarget-lifetime:
# -Wreal-q-constant: warn about real-literal-constants with 'q' exponent-letter
# -Wunused: a number of unused-xxx warnings
# these are general (non -Fortran options) implied by -Wall
# -Waddress
# -Warray-bounds (only with -O2)
# -Wc++11-compat
# -Wchar-subscripts
# -Wcomment
# -Wformat
# -Wmaybe-uninitialized
# -Wnonnull
# -Wparentheses
# -Wpointer-sign
# -Wreorder
# -Wreturn-type
# -Wsequence-point
# -Wstrict-aliasing
# -Wstrict-overflow=1
# -Wswitch
# -Wtrigraphs
# -Wuninitialized
# -Wunknown-pragmas
# -Wunused-function
# -Wunused-label
# -Wunused-value
# -Wunused-variable
# -Wvolatile-register-var
#-Wextra: sets the following Fortran options:
# -Wunuses-parameter:
# -Wcompare-reals:
# these are general (non -Fortran options) implied by -Wextra
# -Wclobbered
# -Wempty-body
# -Wignored-qualifiers
# -Wmissing-field-initializers
# -Woverride-init
# -Wsign-compare
# -Wtype-limits
# -Wuninitialized
# -Wunused-but-set-parameter (only with -Wunused or -Wall)
# -Wno-globals
###################################################################################################
#MORE OPTIONS FOR DEBUGGING DURING COMPILATION
#-Warray-temporarieswarnings: because we have many temporary arrays (performance issue?):
#-Wimplicit-interface: no interfaces for lapack routines
#-Wunsafe-loop-optimizations: warn if the loop cannot be optimized due to nontrivial assumptions.
#-Wstrict-overflow:
DEBUG_OPTIONS_gfortran :=-g\
-fbacktrace\
-fdump-core\
-fcheck=all\
-ffpe-trap=invalid,zero,overflow
###################################################################################################
#COMPILE SWITCHES FOR RUNTIME DEBUGGING
#-ffpe-trap=invalid,\ stop execution if floating point exception is detected (NaN is silent)
# zero,\
# overflow
#-fcheck=all: sets the following Fortran options:
#array-temps
#bounds
#do
#mem
#pointer
#recursion
###################################################################################################
#MORE OPTIONS FOR RUNTIME DEBUGGING
#-ffpe-trap=precision,\
# denormal, \
# underflow
ifeq "$(DEBUG)" "ON"
COMPILE_OPTIONS_$(F90) +=$(DEBUG_OPTIONS_$(F90))
LINK_OPTIONS_$(F90) +=$(DEBUG_OPTIONS_$(F90))
endif
LINK_OPTIONS_$(F90) += $(OPTIMIZATION_$(MAXOPTI)_$(F90))
PRECISION_ifort :=-real-size 64 -integer-size 32 -DFLOAT=8 -DINT=4
#-real-size 32: set precision to one of those 32/64/128 (= 4/8/16 bytes) for standard real (=8 for pReal)
#-integer-size 16: set precision to one of those 16/32/64 (= 2/4/8 bytes) for standard integer (=4 for pInt)
PRECISION_gfortran :=-fdefault-real-8 -fdefault-double-8 -DFLOAT=8 -DINT=4
#-fdefault-real-8: set precision to 8 bytes for standard real (=8 for pReal). Will set size of double to 16 bytes as long as -fdefault-double-8 is not set
#-fdefault-double-8: set precision to 8 bytes for double real, would be 16 bytes because -fdefault-real-8 is used
#-fdefault-integer-8: Use it to set precision to 8 bytes for integer, don't use it for the standard case of pInt=4 (there is no -fdefault-integer-4)
###################################################################################################
COMPILE =$(OPENMP_FLAG_$(F90)) $(STANDARD_CHECK_$(F90)) $(OPTIMIZATION_$(OPTI)_$(F90)) $(COMPILE_OPTIONS_$(F90)) $(INCLUDE_DIRS) $(PRECISION_$(F90))
COMPILE_MAXOPTI =$(OPENMP_FLAG_$(F90)) $(STANDARD_CHECK_$(F90)) $(OPTIMIZATION_$(MAXOPTI)_$(F90)) $(COMPILE_OPTIONS_$(F90)) $(INCLUDE_DIRS) $(PRECISION_$(F90))
###################################################################################################
SOURCE_FILES = \
source_thermal_dissipation.o source_thermal_externalheat.o \
source_damage_isoBrittle.o source_damage_isoDuctile.o source_damage_anisoBrittle.o source_damage_anisoDuctile.o \
source_vacancy_phenoplasticity.o source_vacancy_irradiation.o source_vacancy_thermalfluc.o
KINEMATICS_FILES = \
kinematics_cleavage_opening.o kinematics_slipplane_opening.o \
kinematics_thermal_expansion.o \
kinematics_vacancy_strain.o kinematics_hydrogen_strain.o
PLASTIC_FILES = \
plastic_dislotwin.o plastic_disloUCLA.o plastic_isotropic.o plastic_j2.o \
plastic_phenopowerlaw.o plastic_titanmod.o plastic_nonlocal.o plastic_none.o \
plastic_phenoplus.o
THERMAL_FILES = \
thermal_isothermal.o thermal_adiabatic.o thermal_conduction.o
DAMAGE_FILES = \
damage_none.o damage_local.o damage_nonlocal.o
VACANCYFLUX_FILES = \
vacancyflux_isoconc.o vacancyflux_isochempot.o vacancyflux_cahnhilliard.o
POROSITY_FILES = \
porosity_none.o porosity_phasefield.o
HYDROGENFLUX_FILES = \
hydrogenflux_isoconc.o hydrogenflux_cahnhilliard.o
HOMOGENIZATION_FILES = \
homogenization_RGC.o homogenization_isostrain.o homogenization_none.o
#####################
# Spectral Solver
#####################
DAMASK_spectral.exe: IGNORE := \#
DAMASK_spectral.exe: COMPILE += -DSpectral
DAMASK_spectral.exe: COMPILE_MAXOPTI += -DSpectral
DAMASK_spectral.exe: MESHNAME := mesh.f90
DAMASK_spectral.exe: INTERFACENAME := spectral_interface.f90
DAMASK_spectral.o: IGNORE := \#
DAMASK_spectral.o: COMPILE += -DSpectral
DAMASK_spectral.o: COMPILE_MAXOPTI += -DSpectral
DAMASK_spectral.o: MESHNAME := mesh.f90
DAMASK_spectral.o: INTERFACENAME := spectral_interface.f90
SPECTRAL_SOLVER_FILES = spectral_mech_AL.o spectral_mech_Basic.o spectral_mech_Polarisation.o \
spectral_thermal.o spectral_damage.o
SPECTRAL_FILES = prec.o DAMASK_interface.o IO.o libs.o numerics.o debug.o math.o damask_hdf5.o \
FEsolving.o mesh.o material.o lattice.o \
$(SOURCE_FILES) $(KINEMATICS_FILES) $(PLASTIC_FILES) constitutive.o \
crystallite.o \
$(THERMAL_FILES) $(DAMAGE_FILES) $(VACANCYFLUX_FILES) $(HYDROGENFLUX_FILES) $(POROSITY_FILES) \
$(HOMOGENIZATION_FILES) homogenization.o \
CPFEM2.o \
spectral_utilities.o \
$(SPECTRAL_SOLVER_FILES)
DAMASK_spectral.exe: DAMASK_spectral.o \
$(SPECTRAL_FILES)
$(PREFIX) $(LINKERNAME) $(OPENMP_FLAG_$(F90)) $(LINK_OPTIONS_$(F90)) $(STANDARD_CHECK_$(F90)) $(OPTIMIZATION_$(MAXOPTI)_$(F90)) \
-o DAMASK_spectral.exe DAMASK_spectral.o \
$(SPECTRAL_FILES) $(LIBRARIES) $(HDFLIBS) $(HDFLIBZ) $(SUFFIX)
DAMASK_spectral.o: DAMASK_spectral.f90 \
$(SPECTRAL_SOLVER_FILES)
$(PREFIX) $(COMPILERNAME) $(COMPILE_MAXOPTI) -c DAMASK_spectral.f90 $(SUFFIX)
spectral_mech_AL.o: spectral_mech_AL.f90 \
spectral_utilities.o
spectral_mech_Polarisation.o: spectral_mech_Polarisation.f90 \
spectral_utilities.o
spectral_mech_Basic.o: spectral_mech_Basic.f90 \
spectral_utilities.o
spectral_thermal.o: spectral_thermal.f90 \
spectral_utilities.o
spectral_damage.o: spectral_damage.f90 \
spectral_utilities.o
spectral_utilities.o: spectral_utilities.f90 \
CPFEM2.o
#####################
# FEM Solver
#####################
VPATH := ../private/FEM/code
DAMASK_FEM.exe: COMPILE += -DFEM
DAMASK_FEM.exe: COMPILE_MAXOPTI += -DFEM
DAMASK_FEM.exe: MESHNAME := ../private/FEM/code/meshFEM.f90
DAMASK_FEM.exe: INTERFACENAME := ../private/FEM/code/DAMASK_FEM_interface.f90
DAMASK_FEM.exe: INCLUDE_DIRS += -I./
FEM_SOLVER_FILES = FEM_mech.o FEM_thermal.o FEM_damage.o FEM_vacancyflux.o FEM_porosity.o FEM_hydrogenflux.o
FEM_FILES = prec.o DAMASK_interface.o FEZoo.o IO.o libs.o numerics.o debug.o math.o \
FEsolving.o mesh.o material.o lattice.o \
$(SOURCE_FILES) $(KINEMATICS_FILES) $(PLASTIC_FILES) constitutive.o \
crystallite.o \
$(THERMAL_FILES) $(DAMAGE_FILES) $(VACANCYFLUX_FILES) $(HYDROGENFLUX_FILES) $(POROSITY_FILES) \
$(HOMOGENIZATION_FILES) homogenization.o \
CPFEM.o \
FEM_utilities.o $(FEM_SOLVER_FILES)
DAMASK_FEM.exe: DAMASK_FEM_driver.o
$(PREFIX) $(LINKERNAME) $(OPENMP_FLAG_$(F90)) $(LINK_OPTIONS_$(F90)) $(STANDARD_CHECK_$(F90)) $(OPTIMIZATION_$(MAXOPTI)_$(F90)) \
-o DAMASK_FEM.exe DAMASK_FEM_driver.o \
$(FEM_FILES) $(LIBRARIES) $(HDFLIBS) $(HDFLIBZ) $(SUFFIX)
DAMASK_FEM_driver.o: DAMASK_FEM_driver.f90 $(FEM_SOLVER_FILES)
$(PREFIX) $(COMPILERNAME) $(COMPILE_MAXOPTI) -c ../private/FEM/code/DAMASK_FEM_driver.f90 $(SUFFIX)
FEM_mech.o: FEM_mech.f90 \
FEM_utilities.o
FEM_thermal.o: FEM_thermal.f90 \
FEM_utilities.o
FEM_damage.o: FEM_damage.f90 \
FEM_utilities.o
FEM_vacancyflux.o: FEM_vacancyflux.f90 \
FEM_utilities.o
FEM_porosity.o: FEM_porosity.f90 \
FEM_utilities.o
FEM_hydrogenflux.o: FEM_hydrogenflux.f90 \
FEM_utilities.o
FEM_utilities.o: FEM_utilities.f90 \
CPFEM.o
FEZoo.o: $(wildcard FEZoo.f90) \
IO.o
$(IGNORE) $(PREFIX) $(COMPILERNAME) $(COMPILE) -c ../private/FEM/code/FEZoo.f90 $(SUFFIX)
touch FEZoo.o
CPFEM.o: CPFEM.f90 \
homogenization.o
CPFEM2.o: CPFEM2.f90 \
homogenization.o
homogenization.o: homogenization.f90 \
$(THERMAL_FILES) \
$(DAMAGE_FILES) \
$(VACANCYFLUX_FILES) \
$(POROSITY_FILES) \
$(HYDROGENFLUX_FILES) \
$(HOMOGENIZATION_FILES)
thermal_isothermal.o: thermal_isothermal.f90 \
crystallite.o
thermal_adiabatic.o: thermal_adiabatic.f90 \
crystallite.o
thermal_conduction.o: thermal_conduction.f90 \
crystallite.o
damage_none.o: damage_none.f90 \
crystallite.o
damage_local.o: damage_local.f90 \
crystallite.o
damage_nonlocal.o: damage_nonlocal.f90 \
crystallite.o
thermal_conduction.o: thermal_conduction.f90 \
crystallite.o
vacancyflux_isoconc.o: vacancyflux_isoconc.f90 \
crystallite.o
vacancyflux_isochempot.o: vacancyflux_isochempot.f90 \
crystallite.o
vacancyflux_cahnhilliard.o: vacancyflux_cahnhilliard.f90 \
crystallite.o
porosity_none.o: porosity_none.f90 \
crystallite.o
porosity_phasefield.o: porosity_phasefield.f90 \
crystallite.o
hydrogenflux_isoconc.o: hydrogenflux_isoconc.f90 \
crystallite.o
hydrogenflux_cahnhilliard.o: hydrogenflux_cahnhilliard.f90 \
crystallite.o
homogenization_RGC.o: homogenization_RGC.f90 \
crystallite.o
homogenization_isostrain.o: homogenization_isostrain.f90 \
crystallite.o
homogenization_none.o: homogenization_none.f90 \
crystallite.o
crystallite.o: crystallite.f90 \
constitutive.o
constitutive.o: constitutive.f90 \
$(SOURCE_FILES) \
$(KINEMATICS_FILES) \
$(PLASTIC_FILES)
source_thermal_dissipation.o: source_thermal_dissipation.f90 \
lattice.o
source_thermal_externalheat.o: source_thermal_externalheat.f90 \
lattice.o
source_damage_isoBrittle.o: source_damage_isoBrittle.f90 \
lattice.o
source_damage_isoDuctile.o: source_damage_isoDuctile.f90 \
lattice.o
source_damage_anisoBrittle.o: source_damage_anisoBrittle.f90 \
lattice.o
source_damage_anisoDuctile.o: source_damage_anisoDuctile.f90 \
lattice.o
source_vacancy_phenoplasticity.o: source_vacancy_phenoplasticity.f90 \
lattice.o
source_vacancy_irradiation.o: source_vacancy_irradiation.f90 \
lattice.o
source_vacancy_thermalfluc.o: source_vacancy_thermalfluc.f90 \
lattice.o
kinematics_cleavage_opening.o: kinematics_cleavage_opening.f90 \
lattice.o
kinematics_slipplane_opening.o: kinematics_slipplane_opening.f90 \
lattice.o
kinematics_thermal_expansion.o: kinematics_thermal_expansion.f90 \
lattice.o
kinematics_vacancy_strain.o: kinematics_vacancy_strain.f90 \
lattice.o
kinematics_hydrogen_strain.o: kinematics_hydrogen_strain.f90 \
lattice.o
plastic_nonlocal.o: plastic_nonlocal.f90 \
lattice.o
plastic_titanmod.o: plastic_titanmod.f90 \
lattice.o
plastic_disloUCLA.o: plastic_disloUCLA.f90 \
lattice.o
plastic_dislotwin.o: plastic_dislotwin.f90 \
lattice.o
plastic_phenopowerlaw.o: plastic_phenopowerlaw.f90 \
lattice.o
plastic_phenoplus.o: plastic_phenoplus.f90 \
lattice.o
plastic_isotropic.o: plastic_isotropic.f90 \
lattice.o
plastic_j2.o: plastic_j2.f90 \
lattice.o
plastic_none.o: plastic_none.f90 \
lattice.o
ifeq "$(F90)" "gfortran"
lattice.o: lattice.f90 \
material.o
$(PREFIX) $(COMPILERNAME) $(COMPILE) -ffree-line-length-240 -c lattice.f90 $(SUFFIX)
# long lines for interaction matrix
else
lattice.o: lattice.f90 \
material.o
endif
material.o: material.f90 \
mesh.o
mesh.o: mesh.f90 \
$(wildcard meshFEM.f90) \
FEsolving.o \
math.o \
FEZoo.o
$(PREFIX) $(COMPILERNAME) $(COMPILE) -c $(MESHNAME) -o mesh.o $(SUFFIX)
FEsolving.o: FEsolving.f90 \
debug.o
math.o: math.f90 \
debug.o
debug.o: debug.f90 \
numerics.o
numerics.o: numerics.f90 \
libs.o
libs.o: libs.f90 \
IO.o
damask_hdf5.o: damask_hdf5.f90 \
prec.o \
IO.o
$(PREFIX) $(COMPILERNAME) $(HDFLIBS) $(HDFLIBZ) -c damask_hdf5.f90 $(SUFFIX) -lm
IO.o: IO.f90 \
DAMASK_interface.o
ifeq "$(F90)" "gfortran"
DAMASK_interface.o: spectral_interface.f90 \
$(wildcard DAMASK_FEM_interface.f90) \
prec.o
$(PREFIX) $(COMPILERNAME) $(COMPILE) -c $(INTERFACENAME) -fall-intrinsics -o DAMASK_interface.o $(SUFFIX)
#-fall-intrinsics: all intrinsic procedures (including the GNU-specific extensions) are accepted. -Wintrinsics-std will be ignored
# and no user-defined procedure with the same name as any intrinsic will be called except when it is explicitly declared external
# --> allows the use of 'getcwd'
prec.o: prec.f90
$(PREFIX) $(COMPILERNAME) $(COMPILE) -c prec.f90 -fno-range-check -fall-intrinsics -fno-fast-math $(SUFFIX)
# fno-range-check: Disable range checking on results of simplification of constant expressions during compilation
# --> allows the definition of DAMASK_NaN
#-fall-intrinsics: all intrinsic procedures (including the GNU-specific extensions) are accepted. -Wintrinsics-std will be ignored
# and no user-defined procedure with the same name as any intrinsic will be called except when it is explicitly declared external
# --> allows the use of 'isnan'
#-fno-fast-math:
# --> otherwise, when setting -ffast-math, isnan always evaluates to false (I would call it a bug)
else
DAMASK_interface.o: spectral_interface.f90 \
$(wildcard DAMASK_FEM_interface.f90) \
prec.o
$(PREFIX) $(COMPILERNAME) $(COMPILE) -c $(INTERFACENAME) -diag-remark 7410 -stand none -warn nostderrors -o DAMASK_interface.o $(SUFFIX)
# -diag-disable 7410 should disable warning about directory statement in inquire function, but does not work. hence the other 2 statements
prec.o: prec.f90
$(PREFIX) $(COMPILERNAME) $(COMPILE) -c prec.f90 $(SUFFIX)
endif
%.o : %.f90
$(PREFIX) $(COMPILERNAME) $(COMPILE) -c $< $(SUFFIX)
.PHONY: tidy
tidy:
@rm -rf *.o
@rm -rf *.mod
@rm -rf *.inst.f90 # for instrumentation
@rm -rf *.pomp.f90 # for instrumentation
@rm -rf *.pp.f90 # for instrumentation
@rm -rf *.pdb # for instrumnentation
@rm -rf *.opari.inc # for instrumnentation
.PHONY: cleanDAMASK
cleanDAMASK:
@rm -rf *.exe
@rm -rf *.marc
@rm -rf *.o
@rm -rf *.mod
@rm -rf *.inst.f90 # for instrumentation
@rm -rf *.pomp.f90 # for instrumentation
@rm -rf *.pp.f90 # for instrumentation
@rm -rf *.pdb # for instrumentation
@rm -rf *.opari.inc # for instrumentation
.PHONY: help
help:
F90="$(F90)"
COMPILERNAME="$(COMPILERNAME)"
COMPILEROUT="$(COMPILEROUT)"

View File

@ -1,59 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief all DAMASK files without solver
!> @details List of files needed by MSC.Marc, Abaqus/Explicit, and Abaqus/Standard
!--------------------------------------------------------------------------------------------------
#include "IO.f90"
#include "libs.f90"
#include "numerics.f90"
#include "debug.f90"
#include "math.f90"
#include "FEsolving.f90"
#include "mesh.f90"
#include "material.f90"
#include "lattice.f90"
#include "source_thermal_dissipation.f90"
#include "source_thermal_externalheat.f90"
#include "source_damage_isoBrittle.f90"
#include "source_damage_isoDuctile.f90"
#include "source_damage_anisoBrittle.f90"
#include "source_damage_anisoDuctile.f90"
#include "source_vacancy_phenoplasticity.f90"
#include "source_vacancy_irradiation.f90"
#include "source_vacancy_thermalfluc.f90"
#include "kinematics_cleavage_opening.f90"
#include "kinematics_slipplane_opening.f90"
#include "kinematics_thermal_expansion.f90"
#include "kinematics_vacancy_strain.f90"
#include "kinematics_hydrogen_strain.f90"
#include "plastic_none.f90"
#include "plastic_isotropic.f90"
#include "plastic_j2.f90"
#include "plastic_phenopowerlaw.f90"
#include "plastic_phenoplus.f90"
#include "plastic_titanmod.f90"
#include "plastic_dislotwin.f90"
#include "plastic_disloUCLA.f90"
#include "plastic_nonlocal.f90"
#include "constitutive.f90"
#include "crystallite.f90"
#include "homogenization_none.f90"
#include "homogenization_isostrain.f90"
#include "homogenization_RGC.f90"
#include "thermal_isothermal.f90"
#include "thermal_adiabatic.f90"
#include "thermal_conduction.f90"
#include "damage_none.f90"
#include "damage_local.f90"
#include "damage_nonlocal.f90"
#include "vacancyflux_isoconc.f90"
#include "vacancyflux_isochempot.f90"
#include "vacancyflux_cahnhilliard.f90"
#include "porosity_none.f90"
#include "porosity_phasefield.f90"
#include "hydrogenflux_isoconc.f90"
#include "hydrogenflux_cahnhilliard.f90"
#include "homogenization.f90"
#include "CPFEM.f90"

View File

@ -1,13 +0,0 @@
!##############################################################
!$Id$
#ifdef __GFORTRAN__
write(6,*) 'Compiled with ', compiler_version() !not supported by and ifort <= 15 (and old gfortran)
write(6,*) 'With options ', compiler_options()
#endif
#ifdef __INTEL_COMPILER
write(6,'(a,i4.4,a,i8.8)') ' Compiled with Intel fortran version ', __INTEL_COMPILER,&
', build date ', __INTEL_COMPILER_BUILD_DATE
#endif
write(6,*) 'Compiled on ', __DATE__,' at ',__TIME__
write(6,*)
flush(6)

File diff suppressed because it is too large Load Diff

View File

@ -1,15 +0,0 @@
!##################################################################################################
! $Id$
!##################################################################################################
!********************************************************************
! quit subroutine to satisfy IO_error for core module
!
!********************************************************************
subroutine quit(stop_id)
use prec, only: &
pInt
implicit none
integer(pInt), intent(in) :: stop_id
end subroutine

File diff suppressed because it is too large Load Diff

View File

@ -1,327 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for locally evolving damage field
!--------------------------------------------------------------------------------------------------
module damage_local
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
damage_local_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
damage_local_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
damage_local_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
damage_local_Noutput !< number of outputs per instance of this damage
enum, bind(c)
enumerator :: undefined_ID, &
damage_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
damage_local_outputID !< ID of each post result output
public :: &
damage_local_init, &
damage_local_updateState, &
damage_local_postResults
private :: &
damage_local_getSourceAndItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields, reads information from material configuration file
!--------------------------------------------------------------------------------------------------
subroutine damage_local_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
damage_type, &
damage_typeInstance, &
homogenization_Noutput, &
DAMAGE_local_label, &
DAMAGE_local_ID, &
material_homog, &
mappingHomogenization, &
damageState, &
damageMapping, &
damage, &
damage_initialPhi, &
material_partHomogenization
use numerics,only: &
worldrank
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,mySize=0_pInt,homog,instance,o
integer(pInt) :: sizeState
integer(pInt) :: NofMyHomog
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- damage_'//DAMAGE_local_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(damage_type == DAMAGE_local_ID),pInt)
if (maxNinstance == 0_pInt) return
allocate(damage_local_sizePostResults(maxNinstance), source=0_pInt)
allocate(damage_local_sizePostResult (maxval(homogenization_Noutput),maxNinstance),source=0_pInt)
allocate(damage_local_output (maxval(homogenization_Noutput),maxNinstance))
damage_local_output = ''
allocate(damage_local_outputID (maxval(homogenization_Noutput),maxNinstance),source=undefined_ID)
allocate(damage_local_Noutput (maxNinstance), source=0_pInt)
rewind(fileUnit)
homog = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to <homogenization>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of homog part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next homog section
homog = homog + 1_pInt ! advance homog section counter
cycle ! skip to next line
endif
if (homog > 0_pInt ) then; if (damage_type(homog) == DAMAGE_local_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = damage_typeInstance(homog) ! which instance of my damage is present homog
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('damage')
damage_local_Noutput(instance) = damage_local_Noutput(instance) + 1_pInt
damage_local_outputID(damage_local_Noutput(instance),instance) = damage_ID
damage_local_output(damage_local_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
end select
endif; endif
enddo parsingFile
initializeInstances: do homog = 1_pInt, size(damage_type)
myhomog: if (damage_type(homog) == DAMAGE_local_ID) then
NofMyHomog = count(material_homog == homog)
instance = damage_typeInstance(homog)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,damage_local_Noutput(instance)
select case(damage_local_outputID(o,instance))
case(damage_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
damage_local_sizePostResult(o,instance) = mySize
damage_local_sizePostResults(instance) = damage_local_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! allocate state arrays
sizeState = 1_pInt
damageState(homog)%sizeState = sizeState
damageState(homog)%sizePostResults = damage_local_sizePostResults(instance)
allocate(damageState(homog)%state0 (sizeState,NofMyHomog), source=damage_initialPhi(homog))
allocate(damageState(homog)%subState0(sizeState,NofMyHomog), source=damage_initialPhi(homog))
allocate(damageState(homog)%state (sizeState,NofMyHomog), source=damage_initialPhi(homog))
nullify(damageMapping(homog)%p)
damageMapping(homog)%p => mappingHomogenization(1,:,:)
deallocate(damage(homog)%p)
damage(homog)%p => damageState(homog)%state(1,:)
endif myhomog
enddo initializeInstances
end subroutine damage_local_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates local change in damage field
!--------------------------------------------------------------------------------------------------
function damage_local_updateState(subdt, ip, el)
use numerics, only: &
residualStiffness, &
err_damage_tolAbs, &
err_damage_tolRel
use material, only: &
mappingHomogenization, &
damageState
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
subdt
logical, dimension(2) :: &
damage_local_updateState
integer(pInt) :: &
homog, &
offset
real(pReal) :: &
phi, phiDot, dPhiDot_dPhi
homog = mappingHomogenization(2,ip,el)
offset = mappingHomogenization(1,ip,el)
phi = damageState(homog)%subState0(1,offset)
call damage_local_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ip, el)
phi = max(residualStiffness,min(1.0_pReal,phi + subdt*phiDot))
damage_local_updateState = [ abs(phi - damageState(homog)%state(1,offset)) &
<= err_damage_tolAbs &
.or. abs(phi - damageState(homog)%state(1,offset)) &
<= err_damage_tolRel*abs(damageState(homog)%state(1,offset)), &
.true.]
damageState(homog)%state(1,offset) = phi
end function damage_local_updateState
!--------------------------------------------------------------------------------------------------
!> @brief calculates homogenized local damage driving forces
!--------------------------------------------------------------------------------------------------
subroutine damage_local_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ip, el)
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
phaseAt, phasememberAt, &
phase_source, &
phase_Nsources, &
SOURCE_damage_isoBrittle_ID, &
SOURCE_damage_isoDuctile_ID, &
SOURCE_damage_anisoBrittle_ID, &
SOURCE_damage_anisoDuctile_ID
use source_damage_isoBrittle, only: &
source_damage_isobrittle_getRateAndItsTangent
use source_damage_isoDuctile, only: &
source_damage_isoductile_getRateAndItsTangent
use source_damage_anisoBrittle, only: &
source_damage_anisobrittle_getRateAndItsTangent
use source_damage_anisoDuctile, only: &
source_damage_anisoductile_getRateAndItsTangent
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
phi
integer(pInt) :: &
phase, &
grain, &
source
real(pReal) :: &
phiDot, dPhiDot_dPhi, localphiDot, dLocalphiDot_dPhi
phiDot = 0.0_pReal
dPhiDot_dPhi = 0.0_pReal
do grain = 1, homogenization_Ngrains(mappingHomogenization(2,ip,el))
phase = phaseAt(grain,ip,el)
do source = 1, phase_Nsources(phase)
select case(phase_source(source,phase))
case (SOURCE_damage_isoBrittle_ID)
call source_damage_isobrittle_getRateAndItsTangent (localphiDot, dLocalphiDot_dPhi, phi, grain, ip, el)
case (SOURCE_damage_isoDuctile_ID)
call source_damage_isoductile_getRateAndItsTangent (localphiDot, dLocalphiDot_dPhi, phi, grain, ip, el)
case (SOURCE_damage_anisoBrittle_ID)
call source_damage_anisobrittle_getRateAndItsTangent(localphiDot, dLocalphiDot_dPhi, phi, grain, ip, el)
case (SOURCE_damage_anisoDuctile_ID)
call source_damage_anisoductile_getRateAndItsTangent(localphiDot, dLocalphiDot_dPhi, phi, grain, ip, el)
case default
localphiDot = 0.0_pReal
dLocalphiDot_dPhi = 0.0_pReal
end select
phiDot = phiDot + localphiDot
dPhiDot_dPhi = dPhiDot_dPhi + dLocalphiDot_dPhi
enddo
enddo
phiDot = phiDot/homogenization_Ngrains(mappingHomogenization(2,ip,el))
dPhiDot_dPhi = dPhiDot_dPhi/homogenization_Ngrains(mappingHomogenization(2,ip,el))
end subroutine damage_local_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief return array of damage results
!--------------------------------------------------------------------------------------------------
function damage_local_postResults(ip,el)
use material, only: &
mappingHomogenization, &
damage_typeInstance, &
damageMapping, &
damage
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point
el !< element
real(pReal), dimension(damage_local_sizePostResults(damage_typeInstance(mappingHomogenization(2,ip,el)))) :: &
damage_local_postResults
integer(pInt) :: &
instance, homog, offset, o, c
homog = mappingHomogenization(2,ip,el)
offset = damageMapping(homog)%p(ip,el)
instance = damage_typeInstance(homog)
c = 0_pInt
damage_local_postResults = 0.0_pReal
do o = 1_pInt,damage_local_Noutput(instance)
select case(damage_local_outputID(o,instance))
case (damage_ID)
damage_local_postResults(c+1_pInt) = damage(homog)%p(offset)
c = c + 1
end select
enddo
end function damage_local_postResults
end module damage_local

View File

@ -1,60 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for constant damage field
!--------------------------------------------------------------------------------------------------
module damage_none
implicit none
private
public :: &
damage_none_init
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields, reads information from material configuration file
!--------------------------------------------------------------------------------------------------
subroutine damage_none_init()
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use prec, only: &
pInt
use IO, only: &
IO_timeStamp
use material
use numerics, only: &
worldrank
implicit none
integer(pInt) :: &
homog, &
NofMyHomog
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- damage_'//DAMAGE_none_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
initializeInstances: do homog = 1_pInt, material_Nhomogenization
myhomog: if (damage_type(homog) == DAMAGE_none_ID) then
NofMyHomog = count(material_homog == homog)
damageState(homog)%sizeState = 0_pInt
damageState(homog)%sizePostResults = 0_pInt
allocate(damageState(homog)%state0 (0_pInt,NofMyHomog))
allocate(damageState(homog)%subState0(0_pInt,NofMyHomog))
allocate(damageState(homog)%state (0_pInt,NofMyHomog))
deallocate(damage(homog)%p)
allocate (damage(homog)%p(1), source=damage_initialPhi(homog))
endif myhomog
enddo initializeInstances
end subroutine damage_none_init
end module damage_none

View File

@ -1,380 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for non-locally evolving damage field
!> @details to be done
!--------------------------------------------------------------------------------------------------
module damage_nonlocal
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
damage_nonlocal_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
damage_nonlocal_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
damage_nonlocal_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
damage_nonlocal_Noutput !< number of outputs per instance of this damage
enum, bind(c)
enumerator :: undefined_ID, &
damage_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
damage_nonlocal_outputID !< ID of each post result output
public :: &
damage_nonlocal_init, &
damage_nonlocal_getSourceAndItsTangent, &
damage_nonlocal_getDiffusion33, &
damage_nonlocal_getMobility, &
damage_nonlocal_putNonLocalDamage, &
damage_nonlocal_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine damage_nonlocal_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
damage_type, &
damage_typeInstance, &
homogenization_Noutput, &
DAMAGE_nonlocal_label, &
DAMAGE_nonlocal_ID, &
material_homog, &
mappingHomogenization, &
damageState, &
damageMapping, &
damage, &
damage_initialPhi, &
material_partHomogenization
use numerics,only: &
worldrank
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,mySize=0_pInt,section,instance,o
integer(pInt) :: sizeState
integer(pInt) :: NofMyHomog
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- damage_'//DAMAGE_nonlocal_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(damage_type == DAMAGE_nonlocal_ID),pInt)
if (maxNinstance == 0_pInt) return
allocate(damage_nonlocal_sizePostResults(maxNinstance), source=0_pInt)
allocate(damage_nonlocal_sizePostResult (maxval(homogenization_Noutput),maxNinstance),source=0_pInt)
allocate(damage_nonlocal_output (maxval(homogenization_Noutput),maxNinstance))
damage_nonlocal_output = ''
allocate(damage_nonlocal_outputID (maxval(homogenization_Noutput),maxNinstance),source=undefined_ID)
allocate(damage_nonlocal_Noutput (maxNinstance), source=0_pInt)
rewind(fileUnit)
section = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to <homogenization>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of homog part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next homog section
section = section + 1_pInt ! advance homog section counter
cycle ! skip to next line
endif
if (section > 0_pInt ) then; if (damage_type(section) == DAMAGE_nonlocal_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = damage_typeInstance(section) ! which instance of my damage is present homog
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('damage')
damage_nonlocal_Noutput(instance) = damage_nonlocal_Noutput(instance) + 1_pInt
damage_nonlocal_outputID(damage_nonlocal_Noutput(instance),instance) = damage_ID
damage_nonlocal_output(damage_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
end select
endif; endif
enddo parsingFile
initializeInstances: do section = 1_pInt, size(damage_type)
if (damage_type(section) == DAMAGE_nonlocal_ID) then
NofMyHomog=count(material_homog==section)
instance = damage_typeInstance(section)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,damage_nonlocal_Noutput(instance)
select case(damage_nonlocal_outputID(o,instance))
case(damage_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
damage_nonlocal_sizePostResult(o,instance) = mySize
damage_nonlocal_sizePostResults(instance) = damage_nonlocal_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! allocate state arrays
sizeState = 0_pInt
damageState(section)%sizeState = sizeState
damageState(section)%sizePostResults = damage_nonlocal_sizePostResults(instance)
allocate(damageState(section)%state0 (sizeState,NofMyHomog))
allocate(damageState(section)%subState0(sizeState,NofMyHomog))
allocate(damageState(section)%state (sizeState,NofMyHomog))
nullify(damageMapping(section)%p)
damageMapping(section)%p => mappingHomogenization(1,:,:)
deallocate(damage(section)%p)
allocate(damage(section)%p(NofMyHomog), source=damage_initialPhi(section))
endif
enddo initializeInstances
end subroutine damage_nonlocal_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates homogenized damage driving forces
!--------------------------------------------------------------------------------------------------
subroutine damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ip, el)
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
phaseAt, phasememberAt, &
phase_source, &
phase_Nsources, &
SOURCE_damage_isoBrittle_ID, &
SOURCE_damage_isoDuctile_ID, &
SOURCE_damage_anisoBrittle_ID, &
SOURCE_damage_anisoDuctile_ID
use source_damage_isoBrittle, only: &
source_damage_isobrittle_getRateAndItsTangent
use source_damage_isoDuctile, only: &
source_damage_isoductile_getRateAndItsTangent
use source_damage_anisoBrittle, only: &
source_damage_anisobrittle_getRateAndItsTangent
use source_damage_anisoDuctile, only: &
source_damage_anisoductile_getRateAndItsTangent
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
phi
integer(pInt) :: &
phase, &
grain, &
source
real(pReal) :: &
phiDot, dPhiDot_dPhi, localphiDot, dLocalphiDot_dPhi
phiDot = 0.0_pReal
dPhiDot_dPhi = 0.0_pReal
do grain = 1, homogenization_Ngrains(mappingHomogenization(2,ip,el))
phase = phaseAt(grain,ip,el)
do source = 1_pInt, phase_Nsources(phase)
select case(phase_source(source,phase))
case (SOURCE_damage_isoBrittle_ID)
call source_damage_isobrittle_getRateAndItsTangent (localphiDot, dLocalphiDot_dPhi, phi, grain, ip, el)
case (SOURCE_damage_isoDuctile_ID)
call source_damage_isoductile_getRateAndItsTangent (localphiDot, dLocalphiDot_dPhi, phi, grain, ip, el)
case (SOURCE_damage_anisoBrittle_ID)
call source_damage_anisobrittle_getRateAndItsTangent(localphiDot, dLocalphiDot_dPhi, phi, grain, ip, el)
case (SOURCE_damage_anisoDuctile_ID)
call source_damage_anisoductile_getRateAndItsTangent(localphiDot, dLocalphiDot_dPhi, phi, grain, ip, el)
case default
localphiDot = 0.0_pReal
dLocalphiDot_dPhi = 0.0_pReal
end select
phiDot = phiDot + localphiDot
dPhiDot_dPhi = dPhiDot_dPhi + dLocalphiDot_dPhi
enddo
enddo
phiDot = phiDot/homogenization_Ngrains(mappingHomogenization(2,ip,el))
dPhiDot_dPhi = dPhiDot_dPhi/homogenization_Ngrains(mappingHomogenization(2,ip,el))
end subroutine damage_nonlocal_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized non local damage diffusion tensor in reference configuration
!--------------------------------------------------------------------------------------------------
function damage_nonlocal_getDiffusion33(ip,el)
use numerics, only: &
charLength
use lattice, only: &
lattice_DamageDiffusion33
use material, only: &
homogenization_Ngrains, &
material_phase, &
mappingHomogenization
use crystallite, only: &
crystallite_push33ToRef
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
damage_nonlocal_getDiffusion33
integer(pInt) :: &
homog, &
grain
homog = mappingHomogenization(2,ip,el)
damage_nonlocal_getDiffusion33 = 0.0_pReal
do grain = 1, homogenization_Ngrains(homog)
damage_nonlocal_getDiffusion33 = damage_nonlocal_getDiffusion33 + &
crystallite_push33ToRef(grain,ip,el,lattice_DamageDiffusion33(1:3,1:3,material_phase(grain,ip,el)))
enddo
damage_nonlocal_getDiffusion33 = &
charLength*charLength* &
damage_nonlocal_getDiffusion33/ &
homogenization_Ngrains(homog)
end function damage_nonlocal_getDiffusion33
!--------------------------------------------------------------------------------------------------
!> @brief Returns homogenized nonlocal damage mobility
!--------------------------------------------------------------------------------------------------
real(pReal) function damage_nonlocal_getMobility(ip,el)
use mesh, only: &
mesh_element
use lattice, only: &
lattice_damageMobility
use material, only: &
material_phase, &
homogenization_Ngrains
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
integer(pInt) :: &
ipc
damage_nonlocal_getMobility = 0.0_pReal
do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
damage_nonlocal_getMobility = damage_nonlocal_getMobility + lattice_DamageMobility(material_phase(ipc,ip,el))
enddo
damage_nonlocal_getMobility = damage_nonlocal_getMobility /homogenization_Ngrains(mesh_element(3,el))
end function damage_nonlocal_getMobility
!--------------------------------------------------------------------------------------------------
!> @brief updated nonlocal damage field with solution from damage phase field PDE
!--------------------------------------------------------------------------------------------------
subroutine damage_nonlocal_putNonLocalDamage(phi,ip,el)
use material, only: &
material_homog, &
damageMapping, &
damage
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
phi
integer(pInt) :: &
homog, &
offset
homog = material_homog(ip,el)
offset = damageMapping(homog)%p(ip,el)
damage(homog)%p(offset) = phi
end subroutine damage_nonlocal_putNonLocalDamage
!--------------------------------------------------------------------------------------------------
!> @brief return array of damage results
!--------------------------------------------------------------------------------------------------
function damage_nonlocal_postResults(ip,el)
use material, only: &
mappingHomogenization, &
damage_typeInstance, &
damage
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point
el !< element
real(pReal), dimension(damage_nonlocal_sizePostResults(damage_typeInstance(mappingHomogenization(2,ip,el)))) :: &
damage_nonlocal_postResults
integer(pInt) :: &
instance, homog, offset, o, c
homog = mappingHomogenization(2,ip,el)
offset = mappingHomogenization(1,ip,el)
instance = damage_typeInstance(homog)
c = 0_pInt
damage_nonlocal_postResults = 0.0_pReal
do o = 1_pInt,damage_nonlocal_Noutput(instance)
select case(damage_nonlocal_outputID(o,instance))
case (damage_ID)
damage_nonlocal_postResults(c+1_pInt) = damage(homog)%p(offset)
c = c + 1
end select
enddo
end function damage_nonlocal_postResults
end module damage_nonlocal

View File

@ -1,126 +0,0 @@
! $Id$
! -*- f90 -*-
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Note: the syntax of this file is case sensitive.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! This file was auto-generated with f2py (version:2_5972).
! See http://cens.ioc.ee/projects/f2py2e/
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! The auto-generated file is quite heavily corrected
! For modifying, notice the following hints:
! - if the dimension of an array depend on a array that is itself an input, use the C-Syntax: (1) becomes [0] etc.
! - be sure that the precision defined is integer, real*8, and complex*16
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
python module core ! in
interface ! in :core
module prec
subroutine prec_init
end subroutine prec_init
end module prec
module damask_interface ! in :damask_interface:DAMASK_spectral_interface.f90
subroutine DAMASK_interface_init(loadcaseParameterIn,geometryParameterIn) ! in :damask_interface:DAMASK_spectral_interface.f90
character(len=1024), intent(in) :: loadcaseParameterIn
character(len=1024), intent(in) :: geometryParameterIn
end subroutine DAMASK_interface_init
end module damask_interface
module io
subroutine IO_init
end subroutine IO_init
end module io
module numerics
subroutine numerics_init
end subroutine numerics_init
end module numerics
module debug
subroutine debug_init
end subroutine debug_init
end module debug
module math ! in :math:math.f90
subroutine math_init
end subroutine math_init
function math_tensorAvg(field) ! in :math:math.f90
! input variables
real*8 dimension(:,:,:,:,:), intent(in), :: field
! function definition
real*8 dimension(3,3), :: math_tensorAvg
end function math_tensorAvg
end module math
module fesolving
subroutine FE_init
end subroutine FE_init
end module fesolving
module mesh ! in :mesh:mesh.f90
subroutine mesh_init(ip,element)
integer, parameter :: ip = 1
integer, parameter :: element = 1
end subroutine mesh_init
function mesh_nodesAroundCentres(gDim,Favg,centres) ! in :mesh:mesh.f90
real*8, dimension(:,:,:,:), intent(in) :: centres
real*8, dimension(3), intent(in) :: gDim
real*8, dimension(3,3), intent(in) :: Favg
real*8, dimension(3,size(centres,2)+1,size(centres,3)+1,size(centres,4)+1), depend(centres) :: mesh_nodesAroundCentres
real*8, dimension(3,size(centres,2)+1,size(centres,3)+1,size(centres,4)+1), depend(centres) :: wrappedCentres
end function mesh_nodesAroundCentres
function mesh_deformedCoordsFFT(gDim,F,FavgIn,scalingIn) ! in :mesh:mesh.f90
real*8, dimension(:,:,:,:,:), intent(in) :: F
real*8, dimension(3), intent(in) :: gDim
real*8, dimension(3,3), intent(in), optional :: FavgIn = -1.0
real*8, dimension(3), intent(in), optional :: scalingIn = -1.0
real*8, dimension(3,size(F,3),size(F,4),size(F,5)), depend(F) :: mesh_deformedCoordsFFT
end function mesh_deformedCoordsFFT
function mesh_volumeMismatch(gDim,F,nodes) ! in :mesh:mesh.f90
real*8, dimension(:,:,:,:,:), intent(in) :: F
real*8, dimension(:,:,:,:), intent(in) :: nodes
real*8, dimension(3), intent(in) :: gDim
real*8, dimension(size(F,3),size(F,4),size(F,5)), depend(F) :: mesh_volumeMismatch
end function mesh_volumeMismatch
function mesh_shapeMismatch(gDim,F,nodes,centres) ! in :mesh:mesh.f90
real*8, dimension(:,:,:,:,:), intent(in) :: F
real*8, dimension(:,:,:,:), intent(in) :: nodes
real*8, dimension(:,:,:,:), intent(in) :: centres
real*8, dimension(3), intent(in) :: gDim
real*8, dimension(size(F,3),size(F,4),size(F,5)), depend(F) :: mesh_shapeMismatch
end function mesh_shapeMismatch
function mesh_init_postprocessing(filepath) ! in :mesh:mesh.f90
character(len=*), intent(in) :: filepath
end function mesh_init_postprocessing
function mesh_build_cellnodes(nodes,Ncellnodes) ! in :mesh:mesh.f90
integer, intent(in) :: Ncellnodes
real*8, dimension(3,:), intent(in) :: nodes
real*8, dimension(3,Ncellnodes), depend(Ncellnodes) :: mesh_build_cellnodes
end function mesh_build_cellnodes
function mesh_get_Ncellnodes() ! in :mesh:mesh.f90
integer :: mesh_get_Ncellnodes
end function mesh_get_Ncellnodes
function mesh_get_unitlength() ! in :mesh:mesh.f90
real*8 :: mesh_get_unitlength
end function mesh_get_unitlength
function mesh_get_nodeAtIP(elemtypeFE,ip) ! in :mesh:mesh.f90
character(len=*), intent(in) :: elemtypeFE
integer, intent(in) :: ip
integer :: mesh_get_nodeAtIP
end function mesh_get_nodeAtIP
end module mesh
end interface
end python module core

View File

@ -1,16 +0,0 @@
module HDF5_io
use prec
use IO
use hdf5
contains
subroutine HDF5_init(filename, total_inc, total_time)
integer(pInt), intent(in) :: total_inc
real(pReal), intent(in) :: total_time
write(6,*) 'pretend to write something'
end subroutine HDF5_init
end module HDF5_io

View File

@ -1,476 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Reading in and interpretating the debugging settings for the various modules
!--------------------------------------------------------------------------------------------------
module debug
use prec, only: &
pInt, &
pReal, &
pLongInt
implicit none
private
integer(pInt), parameter, public :: &
debug_LEVELSELECTIVE = 2_pInt**0_pInt, &
debug_LEVELBASIC = 2_pInt**1_pInt, &
debug_LEVELEXTENSIVE = 2_pInt**2_pInt
integer(pInt), parameter, private :: &
debug_MAXGENERAL = debug_LEVELEXTENSIVE ! must be set to the last bitcode used by (potentially) all debug types
integer(pInt), parameter, public :: &
debug_SPECTRALRESTART = debug_MAXGENERAL*2_pInt**1_pInt, &
debug_SPECTRALFFTW = debug_MAXGENERAL*2_pInt**2_pInt, &
debug_SPECTRALDIVERGENCE = debug_MAXGENERAL*2_pInt**3_pInt, &
debug_SPECTRALROTATION = debug_MAXGENERAL*2_pInt**4_pInt, &
debug_SPECTRALPETSC = debug_MAXGENERAL*2_pInt**5_pInt
integer(pInt), parameter, public :: &
debug_DEBUG = 1_pInt, &
debug_MATH = 2_pInt, &
debug_FESOLVING = 3_pInt, &
debug_MESH = 4_pInt, & !< stores debug level for mesh part of DAMASK bitwise coded
debug_MATERIAL = 5_pInt, & !< stores debug level for material part of DAMASK bitwise coded
debug_LATTICE = 6_pInt, & !< stores debug level for lattice part of DAMASK bitwise coded
debug_CONSTITUTIVE = 7_pInt, & !< stores debug level for constitutive part of DAMASK bitwise coded
debug_CRYSTALLITE = 8_pInt, &
debug_HOMOGENIZATION = 9_pInt, &
debug_CPFEM = 10_pInt, &
debug_SPECTRAL = 11_pInt, &
debug_MARC = 12_pInt, &
debug_ABAQUS = 13_pInt
integer(pInt), parameter, private :: &
debug_MAXNTYPE = debug_ABAQUS !< must be set to the maximum defined debug type
integer(pInt),protected, dimension(debug_maxNtype+2_pInt), public :: & ! specific ones, and 2 for "all" and "other"
debug_level = 0_pInt
integer(pInt), public :: &
debug_cumLpCalls = 0_pInt, & !< total number of calls to LpAndItsTangent
debug_cumDeltaStateCalls = 0_pInt, & !< total number of calls to deltaState
debug_cumDotStateCalls = 0_pInt !< total number of calls to dotState
integer(pInt), protected, public :: &
debug_e = 1_pInt, &
debug_i = 1_pInt, &
debug_g = 1_pInt
integer(pLongInt), public :: &
debug_cumLpTicks = 0_pLongInt, & !< total cpu ticks spent in LpAndItsTangent
debug_cumDeltaStateTicks = 0_pLongInt, & !< total cpu ticks spent in deltaState
debug_cumDotStateTicks = 0_pLongInt !< total cpu ticks spent in dotState
integer(pInt), dimension(2), public :: &
debug_stressMaxLocation = 0_pInt, &
debug_stressMinLocation = 0_pInt, &
debug_jacobianMaxLocation = 0_pInt, &
debug_jacobianMinLocation = 0_pInt
integer(pInt), dimension(:), allocatable, public :: &
debug_CrystalliteLoopDistribution, & !< distribution of crystallite cutbacks
debug_MaterialpointStateLoopDistribution, &
debug_MaterialpointLoopDistribution
integer(pInt), dimension(:,:), allocatable, public :: &
debug_StressLoopLiDistribution, & !< distribution of stress iterations until convergence
debug_StressLoopLpDistribution, & !< distribution of stress iterations until convergence
debug_StateLoopDistribution !< distribution of state iterations until convergence
real(pReal), public :: &
debug_stressMax = -huge(1.0_pReal), &
debug_stressMin = huge(1.0_pReal), &
debug_jacobianMax = -huge(1.0_pReal), &
debug_jacobianMin = huge(1.0_pReal)
character(len=64), parameter, private :: &
debug_CONFIGFILE = 'debug.config' !< name of configuration file
#ifdef PETSc
character(len=1024), parameter, public :: &
PETSCDEBUG = ' -snes_view -snes_monitor '
#endif
public :: debug_init, &
debug_reset, &
debug_info
contains
!--------------------------------------------------------------------------------------------------
!> @brief reads in parameters from debug.config and allocates arrays
!--------------------------------------------------------------------------------------------------
subroutine debug_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use numerics, only: &
worldrank, &
nStress, &
nState, &
nCryst, &
nMPstate, &
nHomog
use IO, only: &
IO_read, &
IO_error, &
IO_open_file_stat, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_lc, &
IO_floatValue, &
IO_intValue, &
IO_timeStamp, &
IO_EOF
implicit none
integer(pInt), parameter :: FILEUNIT = 300_pInt
integer(pInt) :: i, what
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=65536) :: tag, line
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- debug init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
if (allocated(debug_StressLoopLpDistribution)) &
deallocate(debug_StressLoopLpDistribution)
allocate(debug_StressLoopLpDistribution(nStress+1,2))
debug_StressLoopLpDistribution = 0_pInt
if (allocated(debug_StressLoopLiDistribution)) &
deallocate(debug_StressLoopLiDistribution)
allocate(debug_StressLoopLiDistribution(nStress+1,2))
debug_StressLoopLiDistribution = 0_pInt
if (allocated(debug_StateLoopDistribution)) &
deallocate(debug_StateLoopDistribution)
allocate(debug_StateLoopDistribution(nState+1,2))
debug_StateLoopDistribution = 0_pInt
if (allocated(debug_CrystalliteLoopDistribution)) &
deallocate(debug_CrystalliteLoopDistribution)
allocate(debug_CrystalliteLoopDistribution(nCryst+1))
debug_CrystalliteLoopDistribution = 0_pInt
if (allocated(debug_MaterialpointStateLoopDistribution)) &
deallocate(debug_MaterialpointStateLoopDistribution)
allocate(debug_MaterialpointStateLoopDistribution(nMPstate))
debug_MaterialpointStateLoopDistribution = 0_pInt
if (allocated(debug_MaterialpointLoopDistribution)) &
deallocate(debug_MaterialpointLoopDistribution)
allocate(debug_MaterialpointLoopDistribution(nHomog+1))
debug_MaterialpointLoopDistribution = 0_pInt
!--------------------------------------------------------------------------------------------------
! try to open the config file
line = ''
fileExists: if(IO_open_file_stat(FILEUNIT,debug_configFile)) then
do while (trim(line) /= IO_EOF) ! read thru sections of phase part
line = IO_read(FILEUNIT)
if (IO_isBlank(line)) cycle ! skip empty lines
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('element','e','el')
debug_e = IO_intValue(line,chunkPos,2_pInt)
case ('integrationpoint','i','ip')
debug_i = IO_intValue(line,chunkPos,2_pInt)
case ('grain','g','gr')
debug_g = IO_intValue(line,chunkPos,2_pInt)
end select
what = 0_pInt
select case(tag)
case ('debug')
what = debug_DEBUG
case ('math')
what = debug_MATH
case ('fesolving', 'fe')
what = debug_FESOLVING
case ('mesh')
what = debug_MESH
case ('material')
what = debug_MATERIAL
case ('lattice')
what = debug_LATTICE
case ('constitutive')
what = debug_CONSTITUTIVE
case ('crystallite')
what = debug_CRYSTALLITE
case ('homogenization')
what = debug_HOMOGENIZATION
case ('cpfem')
what = debug_CPFEM
case ('spectral')
what = debug_SPECTRAL
case ('marc')
what = debug_MARC
case ('abaqus')
what = debug_ABAQUS
case ('all')
what = debug_MAXNTYPE + 1_pInt
case ('other')
what = debug_MAXNTYPE + 2_pInt
end select
if (what /= 0) then
do i = 2_pInt, chunkPos(1)
select case(IO_lc(IO_stringValue(line,chunkPos,i)))
case('basic')
debug_level(what) = ior(debug_level(what), debug_LEVELBASIC)
case('extensive')
debug_level(what) = ior(debug_level(what), debug_LEVELEXTENSIVE)
case('selective')
debug_level(what) = ior(debug_level(what), debug_LEVELSELECTIVE)
case('restart')
debug_level(what) = ior(debug_level(what), debug_SPECTRALRESTART)
case('fft','fftw')
debug_level(what) = ior(debug_level(what), debug_SPECTRALFFTW)
case('divergence')
debug_level(what) = ior(debug_level(what), debug_SPECTRALDIVERGENCE)
case('rotation')
debug_level(what) = ior(debug_level(what), debug_SPECTRALROTATION)
case('petsc')
debug_level(what) = ior(debug_level(what), debug_SPECTRALPETSC)
end select
enddo
endif
enddo
close(FILEUNIT)
do i = 1_pInt, debug_maxNtype
if (debug_level(i) == 0) &
debug_level(i) = ior(debug_level(i), debug_level(debug_MAXNTYPE + 2_pInt)) ! fill undefined debug types with levels specified by "other"
debug_level(i) = ior(debug_level(i), debug_level(debug_MAXNTYPE + 1_pInt)) ! fill all debug types with levels specified by "all"
enddo
if (iand(debug_level(debug_debug),debug_LEVELBASIC) /= 0) &
write(6,'(a,/)') ' using values from config file'
else fileExists
if (iand(debug_level(debug_debug),debug_LEVELBASIC) /= 0) &
write(6,'(a,/)') ' using standard values'
endif fileExists
!--------------------------------------------------------------------------------------------------
! output switched on (debug level for debug must be extensive)
if (iand(debug_level(debug_debug),debug_LEVELEXTENSIVE) /= 0) then
do i = 1_pInt, debug_MAXNTYPE
select case(i)
case (debug_DEBUG)
tag = ' Debug'
case (debug_MATH)
tag = ' Math'
case (debug_FESOLVING)
tag = ' FEsolving'
case (debug_MESH)
tag = ' Mesh'
case (debug_MATERIAL)
tag = ' Material'
case (debug_LATTICE)
tag = ' Lattice'
case (debug_CONSTITUTIVE)
tag = ' Constitutive'
case (debug_CRYSTALLITE)
tag = ' Crystallite'
case (debug_HOMOGENIZATION)
tag = ' Homogenizaiton'
case (debug_CPFEM)
tag = ' CPFEM'
case (debug_SPECTRAL)
tag = ' Spectral solver'
case (debug_MARC)
tag = ' MSC.MARC FEM solver'
case (debug_ABAQUS)
tag = ' ABAQUS FEM solver'
end select
if(debug_level(i) /= 0) then
write(6,'(3a)') ' debug level for ', trim(tag), ':'
if(iand(debug_level(i),debug_LEVELBASIC) /= 0) write(6,'(a)') ' basic'
if(iand(debug_level(i),debug_LEVELEXTENSIVE) /= 0) write(6,'(a)') ' extensive'
if(iand(debug_level(i),debug_LEVELSELECTIVE) /= 0) then
write(6,'(a)') ' selective on:'
write(6,'(a24,1x,i8)') ' element: ',debug_e
write(6,'(a24,1x,i8)') ' ip: ',debug_i
write(6,'(a24,1x,i8)') ' grain: ',debug_g
endif
if(iand(debug_level(i),debug_SPECTRALRESTART) /= 0) write(6,'(a)') ' restart'
if(iand(debug_level(i),debug_SPECTRALFFTW) /= 0) write(6,'(a)') ' FFTW'
if(iand(debug_level(i),debug_SPECTRALDIVERGENCE)/= 0) write(6,'(a)') ' divergence'
if(iand(debug_level(i),debug_SPECTRALROTATION) /= 0) write(6,'(a)') ' rotation'
if(iand(debug_level(i),debug_SPECTRALPETSC) /= 0) write(6,'(a)') ' PETSc'
endif
enddo
endif
end subroutine debug_init
!--------------------------------------------------------------------------------------------------
!> @brief resets all debug values
!--------------------------------------------------------------------------------------------------
subroutine debug_reset
implicit none
debug_StressLoopLpDistribution = 0_pInt
debug_StressLoopLiDistribution = 0_pInt
debug_StateLoopDistribution = 0_pInt
debug_CrystalliteLoopDistribution = 0_pInt
debug_MaterialpointStateLoopDistribution = 0_pInt
debug_MaterialpointLoopDistribution = 0_pInt
debug_cumLpTicks = 0_pLongInt
debug_cumDeltaStateTicks = 0_pLongInt
debug_cumDotStateTicks = 0_pLongInt
debug_cumLpCalls = 0_pInt
debug_cumDeltaStateCalls = 0_pInt
debug_cumDotStateCalls = 0_pInt
debug_stressMaxLocation = 0_pInt
debug_stressMinLocation = 0_pInt
debug_jacobianMaxLocation = 0_pInt
debug_jacobianMinLocation = 0_pInt
debug_stressMax = -huge(1.0_pReal)
debug_stressMin = huge(1.0_pReal)
debug_jacobianMax = -huge(1.0_pReal)
debug_jacobianMin = huge(1.0_pReal)
end subroutine debug_reset
!--------------------------------------------------------------------------------------------------
!> @brief writes debug statements to standard out
!--------------------------------------------------------------------------------------------------
subroutine debug_info
use numerics, only: &
nStress, &
nState, &
nCryst, &
nMPstate, &
nHomog
implicit none
integer(pInt) :: j,integral
integer(pLongInt) :: tickrate
character(len=1) :: exceed
call system_clock(count_rate=tickrate)
!$OMP CRITICAL (write2out)
debugOutputCryst: if (iand(debug_level(debug_CRYSTALLITE),debug_LEVELBASIC) /= 0) then
write(6,'(/,a,/)') ' DEBUG Info (from previous cycle)'
write(6,'(a33,1x,i12)') 'total calls to LpAndItsTangent :',debug_cumLpCalls
if (debug_cumLpCalls > 0_pInt) then
write(6,'(a33,1x,f12.3)') 'total CPU time/s :',&
real(debug_cumLpTicks,pReal)/real(tickrate,pReal)
write(6,'(a33,1x,f12.6)') 'avg CPU time/microsecs per call :',&
real(debug_cumLpTicks,pReal)*1.0e6_pReal/real(tickrate*debug_cumLpCalls,pReal)
endif
write(6,'(/,a33,1x,i12)') 'total calls to collectDotState :',debug_cumDotStateCalls
if (debug_cumdotStateCalls > 0_pInt) then
write(6,'(a33,1x,f12.3)') 'total CPU time/s :',&
real(debug_cumDotStateTicks,pReal)/real(tickrate,pReal)
write(6,'(a33,1x,f12.6)') 'avg CPU time/microsecs per call :',&
real(debug_cumDotStateTicks,pReal)*1.0e6_pReal/real(tickrate*debug_cumDotStateCalls,pReal)
endif
write(6,'(/,a33,1x,i12)') 'total calls to collectDeltaState:',debug_cumDeltaStateCalls
if (debug_cumDeltaStateCalls > 0_pInt) then
write(6,'(a33,1x,f12.3)') 'total CPU time/s :',&
real(debug_cumDeltaStateTicks,pReal)/real(tickrate,pReal)
write(6,'(a33,1x,f12.6)') 'avg CPU time/microsecs per call :',&
real(debug_cumDeltaStateTicks,pReal)*1.0e6_pReal/real(tickrate*debug_cumDeltaStateCalls,pReal)
endif
integral = 0_pInt
write(6,'(3/,a)') 'distribution_StressLoopLp : stress stiffness'
do j=1_pInt,nStress+1_pInt
if (any(debug_StressLoopLpDistribution(j,:) /= 0_pInt )) then
integral = integral + j*(debug_StressLoopLpDistribution(j,1) + debug_StressLoopLpDistribution(j,2))
exceed = ' '
if (j > nStress) exceed = '+' ! last entry gets "+"
write(6,'(i25,a1,i10,1x,i10)') min(nStress,j),exceed,debug_StressLoopLpDistribution(j,1),&
debug_StressLoopLpDistribution(j,2)
endif
enddo
write(6,'(a15,i10,2(1x,i10))') ' total',integral,sum(debug_StressLoopLpDistribution(:,1)), &
sum(debug_StressLoopLpDistribution(:,2))
integral = 0_pInt
write(6,'(3/,a)') 'distribution_StressLoopLi : stress stiffness'
do j=1_pInt,nStress+1_pInt
if (any(debug_StressLoopLiDistribution(j,:) /= 0_pInt )) then
integral = integral + j*(debug_StressLoopLiDistribution(j,1) + debug_StressLoopLiDistribution(j,2))
exceed = ' '
if (j > nStress) exceed = '+' ! last entry gets "+"
write(6,'(i25,a1,i10,1x,i10)') min(nStress,j),exceed,debug_StressLoopLiDistribution(j,1),&
debug_StressLoopLiDistribution(j,2)
endif
enddo
write(6,'(a15,i10,2(1x,i10))') ' total',integral,sum(debug_StressLoopLiDistribution(:,1)), &
sum(debug_StressLoopLiDistribution(:,2))
integral = 0_pInt
write(6,'(2/,a)') 'distribution_CrystalliteStateLoop :'
do j=1_pInt,nState+1_pInt
if (any(debug_StateLoopDistribution(j,:) /= 0)) then
integral = integral + j*(debug_StateLoopDistribution(j,1) + debug_StateLoopDistribution(j,2))
exceed = ' '
if (j > nState) exceed = '+' ! last entry gets "+"
write(6,'(i25,a1,i10,1x,i10)') min(nState,j),exceed,debug_StateLoopDistribution(j,1),&
debug_StateLoopDistribution(j,2)
endif
enddo
write(6,'(a15,i10,2(1x,i10))') ' total',integral,sum(debug_StateLoopDistribution(:,1)), &
sum(debug_StateLoopDistribution(:,2))
integral = 0_pInt
write(6,'(2/,a)') 'distribution_CrystalliteCutbackLoop :'
do j=1_pInt,nCryst+1_pInt
if (debug_CrystalliteLoopDistribution(j) /= 0) then
integral = integral + j*debug_CrystalliteLoopDistribution(j)
exceed = ' '
if (j > nCryst) exceed = '+'
write(6,'(i25,a1,i10)') min(nCryst,j),exceed,debug_CrystalliteLoopDistribution(j)
endif
enddo
write(6,'(a15,i10,1x,i10)') ' total',integral,sum(debug_CrystalliteLoopDistribution)
endif debugOutputCryst
debugOutputHomog: if (iand(debug_level(debug_HOMOGENIZATION),debug_LEVELBASIC) /= 0) then
integral = 0_pInt
write(6,'(2/,a)') 'distribution_MaterialpointStateLoop :'
do j=1_pInt,nMPstate
if (debug_MaterialpointStateLoopDistribution(j) /= 0) then
integral = integral + j*debug_MaterialpointStateLoopDistribution(j)
write(6,'(i25,1x,i10)') j,debug_MaterialpointStateLoopDistribution(j)
endif
enddo
write(6,'(a15,i10,1x,i10)') ' total',integral,sum(debug_MaterialpointStateLoopDistribution)
integral = 0_pInt
write(6,'(2/,a)') 'distribution_MaterialpointCutbackLoop :'
do j=1_pInt,nHomog+1_pInt
if (debug_MaterialpointLoopDistribution(j) /= 0) then
integral = integral + j*debug_MaterialpointLoopDistribution(j)
exceed = ' '
if (j > nHomog) exceed = '+'
write(6,'(i25,a1,i10)') min(nHomog,j),exceed,debug_MaterialpointLoopDistribution(j)
endif
enddo
write(6,'(a15,i10,1x,i10)') ' total',integral,sum(debug_MaterialpointLoopDistribution)
endif debugOutputHomog
debugOutputCPFEM: if (iand(debug_level(debug_CPFEM),debug_LEVELBASIC) /= 0) then
write(6,'(2/,a,/)') ' Extreme values of returned stress and jacobian'
write(6,'(a39)') ' value el ip'
write(6,'(a14,1x,e12.3,1x,i6,1x,i4)') ' stress min :', debug_stressMin, debug_stressMinLocation
write(6,'(a14,1x,e12.3,1x,i6,1x,i4)') ' max :', debug_stressMax, debug_stressMaxLocation
write(6,'(a14,1x,e12.3,1x,i6,1x,i4)') ' jacobian min :', debug_jacobianMin, debug_jacobianMinLocation
write(6,'(a14,1x,e12.3,1x,i6,1x,i4,/)') ' max :', debug_jacobianMax, debug_jacobianMaxLocation
endif debugOutputCPFEM
!$OMP END CRITICAL (write2out)
end subroutine debug_info
end module debug

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,317 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Isostrain (full constraint Taylor assuption) homogenization scheme
!--------------------------------------------------------------------------------------------------
module homogenization_isostrain
use prec, only: &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
homogenization_isostrain_sizePostResults
integer(pInt), dimension(:,:), allocatable, target, public :: &
homogenization_isostrain_sizePostResult
character(len=64), dimension(:,:), allocatable, target, public :: &
homogenization_isostrain_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
homogenization_isostrain_Noutput !< number of outputs per homog instance
integer(pInt), dimension(:), allocatable, private :: &
homogenization_isostrain_Ngrains
enum, bind(c)
enumerator :: undefined_ID, &
nconstituents_ID, &
ipcoords_ID, &
avgdefgrad_ID, &
avgfirstpiola_ID
end enum
enum, bind(c)
enumerator :: parallel_ID, &
average_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
homogenization_isostrain_outputID !< ID of each post result output
integer(kind(average_ID)), dimension(:), allocatable, private :: &
homogenization_isostrain_mapping !< mapping type
public :: &
homogenization_isostrain_init, &
homogenization_isostrain_partitionDeformation, &
homogenization_isostrain_averageStressAndItsTangent, &
homogenization_isostrain_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields, reads information from material configuration file
!--------------------------------------------------------------------------------------------------
subroutine homogenization_isostrain_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use prec, only: &
pReal
use debug, only: &
debug_HOMOGENIZATION, &
debug_level, &
debug_levelBasic
use IO
use material
use numerics, only: &
worldrank
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: &
section = 0_pInt, i, mySize, o
integer :: &
maxNinstance, &
homog, &
instance
integer :: &
NofMyHomog ! no pInt (stores a system dependen value from 'count'
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- homogenization_'//HOMOGENIZATION_ISOSTRAIN_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = count(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID)
if (maxNinstance == 0) return
if (iand(debug_level(debug_HOMOGENIZATION),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(homogenization_isostrain_sizePostResults(maxNinstance), source=0_pInt)
allocate(homogenization_isostrain_sizePostResult(maxval(homogenization_Noutput),maxNinstance), &
source=0_pInt)
allocate(homogenization_isostrain_Noutput(maxNinstance), source=0_pInt)
allocate(homogenization_isostrain_Ngrains(maxNinstance), source=0_pInt)
allocate(homogenization_isostrain_mapping(maxNinstance), source=average_ID)
allocate(homogenization_isostrain_output(maxval(homogenization_Noutput),maxNinstance))
homogenization_isostrain_output = ''
allocate(homogenization_isostrain_outputID(maxval(homogenization_Noutput),maxNinstance), &
source=undefined_ID)
rewind(fileUnit)
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to <homogenization>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of homogenization part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
cycle
endif
if (section > 0_pInt ) then ! do not short-circuit here (.and. with next if-statement). It's not safe in Fortran
if (homogenization_type(section) == HOMOGENIZATION_ISOSTRAIN_ID) then ! one of my sections
i = homogenization_typeInstance(section) ! which instance of my type is present homogenization
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case('nconstituents','ngrains')
homogenization_isostrain_Noutput(i) = homogenization_isostrain_Noutput(i) + 1_pInt
homogenization_isostrain_outputID(homogenization_isostrain_Noutput(i),i) = nconstituents_ID
homogenization_isostrain_output(homogenization_isostrain_Noutput(i),i) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case('ipcoords')
homogenization_isostrain_Noutput(i) = homogenization_isostrain_Noutput(i) + 1_pInt
homogenization_isostrain_outputID(homogenization_isostrain_Noutput(i),i) = ipcoords_ID
homogenization_isostrain_output(homogenization_isostrain_Noutput(i),i) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case('avgdefgrad','avgf')
homogenization_isostrain_Noutput(i) = homogenization_isostrain_Noutput(i) + 1_pInt
homogenization_isostrain_outputID(homogenization_isostrain_Noutput(i),i) = avgdefgrad_ID
homogenization_isostrain_output(homogenization_isostrain_Noutput(i),i) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case('avgp','avgfirstpiola','avg1stpiola')
homogenization_isostrain_Noutput(i) = homogenization_isostrain_Noutput(i) + 1_pInt
homogenization_isostrain_outputID(homogenization_isostrain_Noutput(i),i) = avgfirstpiola_ID
homogenization_isostrain_output(homogenization_isostrain_Noutput(i),i) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
case ('nconstituents','ngrains')
homogenization_isostrain_Ngrains(i) = IO_intValue(line,chunkPos,2_pInt)
case ('mapping')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('parallel','sum')
homogenization_isostrain_mapping(i) = parallel_ID
case ('average','mean','avg')
homogenization_isostrain_mapping(i) = average_ID
case default
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//HOMOGENIZATION_isostrain_label//')')
end select
end select
endif
endif
enddo parsingFile
initializeInstances: do homog = 1_pInt, material_Nhomogenization
myHomog: if (homogenization_type(homog) == HOMOGENIZATION_ISOSTRAIN_ID) then
NofMyHomog = count(material_homog == homog)
instance = homogenization_typeInstance(homog)
! * Determine size of postResults array
outputsLoop: do o = 1_pInt, homogenization_isostrain_Noutput(instance)
select case(homogenization_isostrain_outputID(o,instance))
case(nconstituents_ID)
mySize = 1_pInt
case(ipcoords_ID)
mySize = 3_pInt
case(avgdefgrad_ID, avgfirstpiola_ID)
mySize = 9_pInt
case default
mySize = 0_pInt
end select
outputFound: if (mySize > 0_pInt) then
homogenization_isostrain_sizePostResult(o,instance) = mySize
homogenization_isostrain_sizePostResults(instance) = &
homogenization_isostrain_sizePostResults(instance) + mySize
endif outputFound
enddo outputsLoop
! allocate state arrays
homogState(homog)%sizeState = 0_pInt
homogState(homog)%sizePostResults = homogenization_isostrain_sizePostResults(instance)
allocate(homogState(homog)%state0 (0_pInt,NofMyHomog), source=0.0_pReal)
allocate(homogState(homog)%subState0(0_pInt,NofMyHomog), source=0.0_pReal)
allocate(homogState(homog)%state (0_pInt,NofMyHomog), source=0.0_pReal)
endif myHomog
enddo initializeInstances
end subroutine homogenization_isostrain_init
!--------------------------------------------------------------------------------------------------
!> @brief partitions the deformation gradient onto the constituents
!--------------------------------------------------------------------------------------------------
subroutine homogenization_isostrain_partitionDeformation(F,avgF,el)
use prec, only: &
pReal
use mesh, only: &
mesh_element
use material, only: &
homogenization_maxNgrains, &
homogenization_Ngrains
implicit none
real(pReal), dimension (3,3,homogenization_maxNgrains), intent(out) :: F !< partioned def grad per grain
real(pReal), dimension (3,3), intent(in) :: avgF !< my average def grad
integer(pInt), intent(in) :: &
el !< element number
F=0.0_pReal
F(1:3,1:3,1:homogenization_Ngrains(mesh_element(3,el)))= &
spread(avgF,3,homogenization_Ngrains(mesh_element(3,el)))
end subroutine homogenization_isostrain_partitionDeformation
!--------------------------------------------------------------------------------------------------
!> @brief derive average stress and stiffness from constituent quantities
!--------------------------------------------------------------------------------------------------
subroutine homogenization_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,el)
use prec, only: &
pReal
use mesh, only: &
mesh_element
use material, only: &
homogenization_maxNgrains, &
homogenization_Ngrains, &
homogenization_typeInstance
implicit none
real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point
real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point
real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: P !< array of current grain stresses
real(pReal), dimension (3,3,3,3,homogenization_maxNgrains), intent(in) :: dPdF !< array of current grain stiffnesses
integer(pInt), intent(in) :: el !< element number
integer(pInt) :: &
homID, &
Ngrains
homID = homogenization_typeInstance(mesh_element(3,el))
Ngrains = homogenization_Ngrains(mesh_element(3,el))
select case (homogenization_isostrain_mapping(homID))
case (parallel_ID)
avgP = sum(P,3)
dAvgPdAvgF = sum(dPdF,5)
case (average_ID)
avgP = sum(P,3) /real(Ngrains,pReal)
dAvgPdAvgF = sum(dPdF,5)/real(Ngrains,pReal)
end select
end subroutine homogenization_isostrain_averageStressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief return array of homogenization results for post file inclusion
!--------------------------------------------------------------------------------------------------
pure function homogenization_isostrain_postResults(ip,el,avgP,avgF)
use prec, only: &
pReal
use mesh, only: &
mesh_element, &
mesh_ipCoordinates
use material, only: &
homogenization_typeInstance, &
homogenization_Noutput
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3), intent(in) :: &
avgP, & !< average stress at material point
avgF !< average deformation gradient at material point
real(pReal), dimension(homogenization_isostrain_sizePostResults &
(homogenization_typeInstance(mesh_element(3,el)))) :: &
homogenization_isostrain_postResults
integer(pInt) :: &
homID, &
o, c
c = 0_pInt
homID = homogenization_typeInstance(mesh_element(3,el))
homogenization_isostrain_postResults = 0.0_pReal
do o = 1_pInt,homogenization_Noutput(mesh_element(3,el))
select case(homogenization_isostrain_outputID(o,homID))
case (nconstituents_ID)
homogenization_isostrain_postResults(c+1_pInt) = real(homogenization_isostrain_Ngrains(homID),pReal)
c = c + 1_pInt
case (avgdefgrad_ID)
homogenization_isostrain_postResults(c+1_pInt:c+9_pInt) = reshape(avgF,[9])
c = c + 9_pInt
case (avgfirstpiola_ID)
homogenization_isostrain_postResults(c+1_pInt:c+9_pInt) = reshape(avgP,[9])
c = c + 9_pInt
case (ipcoords_ID)
homogenization_isostrain_postResults(c+1_pInt:c+3_pInt) = mesh_ipCoordinates(1:3,ip,el) ! current ip coordinates
c = c + 3_pInt
end select
enddo
end function homogenization_isostrain_postResults
end module homogenization_isostrain

View File

@ -1,60 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief dummy homogenization homogenization scheme
!--------------------------------------------------------------------------------------------------
module homogenization_none
implicit none
private
public :: &
homogenization_none_init
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields, reads information from material configuration file
!--------------------------------------------------------------------------------------------------
subroutine homogenization_none_init()
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use prec, only: &
pReal, &
pInt
use IO, only: &
IO_timeStamp
use material
use numerics, only: &
worldrank
implicit none
integer(pInt) :: &
homog, &
NofMyHomog
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- homogenization_'//HOMOGENIZATION_NONE_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
initializeInstances: do homog = 1_pInt, material_Nhomogenization
myhomog: if (homogenization_type(homog) == HOMOGENIZATION_none_ID) then
NofMyHomog = count(material_homog == homog)
homogState(homog)%sizeState = 0_pInt
homogState(homog)%sizePostResults = 0_pInt
allocate(homogState(homog)%state0 (0_pInt,NofMyHomog), source=0.0_pReal)
allocate(homogState(homog)%subState0(0_pInt,NofMyHomog), source=0.0_pReal)
allocate(homogState(homog)%state (0_pInt,NofMyHomog), source=0.0_pReal)
endif myhomog
enddo initializeInstances
end subroutine homogenization_none_init
end module homogenization_none

View File

@ -1,513 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for conservative transport of solute hydrogen
!> @details to be done
!--------------------------------------------------------------------------------------------------
module hydrogenflux_cahnhilliard
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
hydrogenflux_cahnhilliard_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
hydrogenflux_cahnhilliard_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
hydrogenflux_cahnhilliard_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
hydrogenflux_cahnhilliard_Noutput !< number of outputs per instance of this damage
real(pReal), parameter, private :: &
kB = 1.3806488e-23_pReal !< Boltzmann constant in J/Kelvin
enum, bind(c)
enumerator :: undefined_ID, &
hydrogenConc_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
hydrogenflux_cahnhilliard_outputID !< ID of each post result output
public :: &
hydrogenflux_cahnhilliard_init, &
hydrogenflux_cahnhilliard_getMobility33, &
hydrogenflux_cahnhilliard_getDiffusion33, &
hydrogenflux_cahnhilliard_getFormationEnergy, &
hydrogenflux_cahnhilliard_KinematicChemPotAndItsTangent, &
hydrogenflux_cahnhilliard_getChemPotAndItsTangent, &
hydrogenflux_cahnhilliard_putHydrogenConcAndItsRate, &
hydrogenflux_cahnhilliard_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine hydrogenflux_cahnhilliard_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
hydrogenflux_type, &
hydrogenflux_typeInstance, &
homogenization_Noutput, &
HYDROGENFLUX_cahnhilliard_label, &
HYDROGENFLUX_cahnhilliard_ID, &
material_homog, &
mappingHomogenization, &
hydrogenfluxState, &
hydrogenfluxMapping, &
hydrogenConc, &
hydrogenConcRate, &
hydrogenflux_initialCh, &
material_partHomogenization, &
material_partPhase
use numerics,only: &
worldrank
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,mySize=0_pInt,section,instance,o
integer(pInt) :: sizeState
integer(pInt) :: NofMyHomog
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- hydrogenflux_'//HYDROGENFLUX_cahnhilliard_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(hydrogenflux_type == HYDROGENFLUX_cahnhilliard_ID),pInt)
if (maxNinstance == 0_pInt) return
allocate(hydrogenflux_cahnhilliard_sizePostResults(maxNinstance), source=0_pInt)
allocate(hydrogenflux_cahnhilliard_sizePostResult (maxval(homogenization_Noutput),maxNinstance),source=0_pInt)
allocate(hydrogenflux_cahnhilliard_output (maxval(homogenization_Noutput),maxNinstance))
hydrogenflux_cahnhilliard_output = ''
allocate(hydrogenflux_cahnhilliard_outputID (maxval(homogenization_Noutput),maxNinstance),source=undefined_ID)
allocate(hydrogenflux_cahnhilliard_Noutput (maxNinstance), source=0_pInt)
rewind(fileUnit)
section = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to <homogenization>
line = IO_read(fileUnit)
enddo
parsingHomog: do while (trim(line) /= IO_EOF) ! read through sections of homog part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next homog section
section = section + 1_pInt ! advance homog section counter
cycle ! skip to next line
endif
if (section > 0_pInt ) then; if (hydrogenflux_type(section) == HYDROGENFLUX_cahnhilliard_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = hydrogenflux_typeInstance(section) ! which instance of my hydrogenflux is present homog
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('hydrogenconc')
hydrogenflux_cahnhilliard_Noutput(instance) = hydrogenflux_cahnhilliard_Noutput(instance) + 1_pInt
hydrogenflux_cahnhilliard_outputID(hydrogenflux_cahnhilliard_Noutput(instance),instance) = hydrogenConc_ID
hydrogenflux_cahnhilliard_output(hydrogenflux_cahnhilliard_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
end select
endif; endif
enddo parsingHomog
rewind(fileUnit)
section = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partPhase) ! wind forward to <homogenization>
line = IO_read(fileUnit)
enddo
initializeInstances: do section = 1_pInt, size(hydrogenflux_type)
if (hydrogenflux_type(section) == HYDROGENFLUX_cahnhilliard_ID) then
NofMyHomog=count(material_homog==section)
instance = hydrogenflux_typeInstance(section)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,hydrogenflux_cahnhilliard_Noutput(instance)
select case(hydrogenflux_cahnhilliard_outputID(o,instance))
case(hydrogenConc_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
hydrogenflux_cahnhilliard_sizePostResult(o,instance) = mySize
hydrogenflux_cahnhilliard_sizePostResults(instance) = hydrogenflux_cahnhilliard_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! allocate state arrays
sizeState = 0_pInt
hydrogenfluxState(section)%sizeState = sizeState
hydrogenfluxState(section)%sizePostResults = hydrogenflux_cahnhilliard_sizePostResults(instance)
allocate(hydrogenfluxState(section)%state0 (sizeState,NofMyHomog))
allocate(hydrogenfluxState(section)%subState0(sizeState,NofMyHomog))
allocate(hydrogenfluxState(section)%state (sizeState,NofMyHomog))
nullify(hydrogenfluxMapping(section)%p)
hydrogenfluxMapping(section)%p => mappingHomogenization(1,:,:)
deallocate(hydrogenConc (section)%p)
deallocate(hydrogenConcRate(section)%p)
allocate (hydrogenConc (section)%p(NofMyHomog), source=hydrogenflux_initialCh(section))
allocate (hydrogenConcRate(section)%p(NofMyHomog), source=0.0_pReal)
endif
enddo initializeInstances
end subroutine hydrogenflux_cahnhilliard_init
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized solute mobility tensor in reference configuration
!--------------------------------------------------------------------------------------------------
function hydrogenflux_cahnhilliard_getMobility33(ip,el)
use lattice, only: &
lattice_hydrogenfluxMobility33
use material, only: &
homogenization_Ngrains, &
material_phase
use mesh, only: &
mesh_element
use crystallite, only: &
crystallite_push33ToRef
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
hydrogenflux_cahnhilliard_getMobility33
integer(pInt) :: &
grain
hydrogenflux_cahnhilliard_getMobility33 = 0.0_pReal
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
hydrogenflux_cahnhilliard_getMobility33 = hydrogenflux_cahnhilliard_getMobility33 + &
crystallite_push33ToRef(grain,ip,el,lattice_hydrogenfluxMobility33(:,:,material_phase(grain,ip,el)))
enddo
hydrogenflux_cahnhilliard_getMobility33 = &
hydrogenflux_cahnhilliard_getMobility33/ &
homogenization_Ngrains(mesh_element(3,el))
end function hydrogenflux_cahnhilliard_getMobility33
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized solute nonlocal diffusion tensor in reference configuration
!--------------------------------------------------------------------------------------------------
function hydrogenflux_cahnhilliard_getDiffusion33(ip,el)
use lattice, only: &
lattice_hydrogenfluxDiffusion33
use material, only: &
homogenization_Ngrains, &
material_phase
use mesh, only: &
mesh_element
use crystallite, only: &
crystallite_push33ToRef
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
hydrogenflux_cahnhilliard_getDiffusion33
integer(pInt) :: &
grain
hydrogenflux_cahnhilliard_getDiffusion33 = 0.0_pReal
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
hydrogenflux_cahnhilliard_getDiffusion33 = hydrogenflux_cahnhilliard_getDiffusion33 + &
crystallite_push33ToRef(grain,ip,el,lattice_hydrogenfluxDiffusion33(:,:,material_phase(grain,ip,el)))
enddo
hydrogenflux_cahnhilliard_getDiffusion33 = &
hydrogenflux_cahnhilliard_getDiffusion33/ &
homogenization_Ngrains(mesh_element(3,el))
end function hydrogenflux_cahnhilliard_getDiffusion33
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized solution energy
!--------------------------------------------------------------------------------------------------
function hydrogenflux_cahnhilliard_getFormationEnergy(ip,el)
use lattice, only: &
lattice_hydrogenFormationEnergy, &
lattice_hydrogenVol, &
lattice_hydrogenSurfaceEnergy
use material, only: &
homogenization_Ngrains, &
material_phase
use mesh, only: &
mesh_element
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
hydrogenflux_cahnhilliard_getFormationEnergy
integer(pInt) :: &
grain
hydrogenflux_cahnhilliard_getFormationEnergy = 0.0_pReal
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
hydrogenflux_cahnhilliard_getFormationEnergy = hydrogenflux_cahnhilliard_getFormationEnergy + &
lattice_hydrogenFormationEnergy(material_phase(grain,ip,el))/ &
lattice_hydrogenVol(material_phase(grain,ip,el))/ &
lattice_hydrogenSurfaceEnergy(material_phase(grain,ip,el))
enddo
hydrogenflux_cahnhilliard_getFormationEnergy = &
hydrogenflux_cahnhilliard_getFormationEnergy/ &
homogenization_Ngrains(mesh_element(3,el))
end function hydrogenflux_cahnhilliard_getFormationEnergy
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized hydrogen entropy coefficient
!--------------------------------------------------------------------------------------------------
function hydrogenflux_cahnhilliard_getEntropicCoeff(ip,el)
use lattice, only: &
lattice_hydrogenVol, &
lattice_hydrogenSurfaceEnergy
use material, only: &
homogenization_Ngrains, &
material_homog, &
material_phase, &
temperature, &
thermalMapping
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
hydrogenflux_cahnhilliard_getEntropicCoeff
integer(pInt) :: &
grain
hydrogenflux_cahnhilliard_getEntropicCoeff = 0.0_pReal
do grain = 1, homogenization_Ngrains(material_homog(ip,el))
hydrogenflux_cahnhilliard_getEntropicCoeff = hydrogenflux_cahnhilliard_getEntropicCoeff + &
kB/ &
lattice_hydrogenVol(material_phase(grain,ip,el))/ &
lattice_hydrogenSurfaceEnergy(material_phase(grain,ip,el))
enddo
hydrogenflux_cahnhilliard_getEntropicCoeff = &
hydrogenflux_cahnhilliard_getEntropicCoeff* &
temperature(material_homog(ip,el))%p(thermalMapping(material_homog(ip,el))%p(ip,el))/ &
homogenization_Ngrains(material_homog(ip,el))
end function hydrogenflux_cahnhilliard_getEntropicCoeff
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized kinematic contribution to chemical potential
!--------------------------------------------------------------------------------------------------
subroutine hydrogenflux_cahnhilliard_KinematicChemPotAndItsTangent(KPot, dKPot_dCh, Ch, ip, el)
use lattice, only: &
lattice_hydrogenSurfaceEnergy
use material, only: &
homogenization_Ngrains, &
material_homog, &
phase_kinematics, &
phase_Nkinematics, &
material_phase, &
KINEMATICS_hydrogen_strain_ID
use crystallite, only: &
crystallite_Tstar_v, &
crystallite_Fi0, &
crystallite_Fi
use kinematics_hydrogen_strain, only: &
kinematics_hydrogen_strain_ChemPotAndItsTangent
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
Ch
real(pReal), intent(out) :: &
KPot, dKPot_dCh
real(pReal) :: &
my_KPot, my_dKPot_dCh
integer(pInt) :: &
grain, kinematics
KPot = 0.0_pReal
dKPot_dCh = 0.0_pReal
do grain = 1_pInt,homogenization_Ngrains(material_homog(ip,el))
do kinematics = 1_pInt, phase_Nkinematics(material_phase(grain,ip,el))
select case (phase_kinematics(kinematics,material_phase(grain,ip,el)))
case (KINEMATICS_hydrogen_strain_ID)
call kinematics_hydrogen_strain_ChemPotAndItsTangent(my_KPot, my_dKPot_dCh, &
crystallite_Tstar_v(1:6,grain,ip,el), &
crystallite_Fi0(1:3,1:3,grain,ip,el), &
crystallite_Fi (1:3,1:3,grain,ip,el), &
grain,ip, el)
case default
my_KPot = 0.0_pReal
my_dKPot_dCh = 0.0_pReal
end select
KPot = KPot + my_KPot/lattice_hydrogenSurfaceEnergy(material_phase(grain,ip,el))
dKPot_dCh = dKPot_dCh + my_dKPot_dCh/lattice_hydrogenSurfaceEnergy(material_phase(grain,ip,el))
enddo
enddo
KPot = KPot/homogenization_Ngrains(material_homog(ip,el))
dKPot_dCh = dKPot_dCh/homogenization_Ngrains(material_homog(ip,el))
end subroutine hydrogenflux_cahnhilliard_KinematicChemPotAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized chemical potential
!--------------------------------------------------------------------------------------------------
subroutine hydrogenflux_cahnhilliard_getChemPotAndItsTangent(ChemPot,dChemPot_dCh,Ch,ip,el)
use numerics, only: &
hydrogenBoundPenalty, &
hydrogenPolyOrder
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
Ch
real(pReal), intent(out) :: &
ChemPot, &
dChemPot_dCh
real(pReal) :: &
kBT, KPot, dKPot_dCh
integer(pInt) :: &
o
ChemPot = hydrogenflux_cahnhilliard_getFormationEnergy(ip,el)
dChemPot_dCh = 0.0_pReal
kBT = hydrogenflux_cahnhilliard_getEntropicCoeff(ip,el)
do o = 1_pInt, hydrogenPolyOrder
ChemPot = ChemPot + kBT*((2.0_pReal*Ch - 1.0_pReal)**real(2_pInt*o-1_pInt,pReal))/ &
real(2_pInt*o-1_pInt,pReal)
dChemPot_dCh = dChemPot_dCh + 2.0_pReal*kBT*(2.0_pReal*Ch - 1.0_pReal)**real(2_pInt*o-2_pInt,pReal)
enddo
call hydrogenflux_cahnhilliard_KinematicChemPotAndItsTangent(KPot, dKPot_dCh, Ch, ip, el)
ChemPot = ChemPot + KPot
dChemPot_dCh = dChemPot_dCh + dKPot_dCh
if (Ch < 0.0_pReal) then
ChemPot = ChemPot - 3.0_pReal*hydrogenBoundPenalty*Ch*Ch
dChemPot_dCh = dChemPot_dCh - 6.0_pReal*hydrogenBoundPenalty*Ch
elseif (Ch > 1.0_pReal) then
ChemPot = ChemPot + 3.0_pReal*hydrogenBoundPenalty*(1.0_pReal - Ch)*(1.0_pReal - Ch)
dChemPot_dCh = dChemPot_dCh - 6.0_pReal*hydrogenBoundPenalty*(1.0_pReal - Ch)
endif
end subroutine hydrogenflux_cahnhilliard_getChemPotAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief updates hydrogen concentration with solution from Cahn-Hilliard PDE for solute transport
!--------------------------------------------------------------------------------------------------
subroutine hydrogenflux_cahnhilliard_putHydrogenConcAndItsRate(Ch,Chdot,ip,el)
use material, only: &
mappingHomogenization, &
hydrogenConc, &
hydrogenConcRate, &
hydrogenfluxMapping
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
Ch, &
Chdot
integer(pInt) :: &
homog, &
offset
homog = mappingHomogenization(2,ip,el)
offset = hydrogenfluxMapping(homog)%p(ip,el)
hydrogenConc (homog)%p(offset) = Ch
hydrogenConcRate(homog)%p(offset) = Chdot
end subroutine hydrogenflux_cahnhilliard_putHydrogenConcAndItsRate
!--------------------------------------------------------------------------------------------------
!> @brief return array of hydrogen transport results
!--------------------------------------------------------------------------------------------------
function hydrogenflux_cahnhilliard_postResults(ip,el)
use material, only: &
mappingHomogenization, &
hydrogenflux_typeInstance, &
hydrogenConc, &
hydrogenfluxMapping
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point
el !< element
real(pReal), dimension(hydrogenflux_cahnhilliard_sizePostResults(hydrogenflux_typeInstance(mappingHomogenization(2,ip,el)))) :: &
hydrogenflux_cahnhilliard_postResults
integer(pInt) :: &
instance, homog, offset, o, c
homog = mappingHomogenization(2,ip,el)
offset = hydrogenfluxMapping(homog)%p(ip,el)
instance = hydrogenflux_typeInstance(homog)
c = 0_pInt
hydrogenflux_cahnhilliard_postResults = 0.0_pReal
do o = 1_pInt,hydrogenflux_cahnhilliard_Noutput(instance)
select case(hydrogenflux_cahnhilliard_outputID(o,instance))
case (hydrogenConc_ID)
hydrogenflux_cahnhilliard_postResults(c+1_pInt) = hydrogenConc(homog)%p(offset)
c = c + 1
end select
enddo
end function hydrogenflux_cahnhilliard_postResults
end module hydrogenflux_cahnhilliard

View File

@ -1,63 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for constant hydrogen concentration
!--------------------------------------------------------------------------------------------------
module hydrogenflux_isoconc
implicit none
private
public :: &
hydrogenflux_isoconc_init
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields, reads information from material configuration file
!--------------------------------------------------------------------------------------------------
subroutine hydrogenflux_isoconc_init()
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use prec, only: &
pReal, &
pInt
use IO, only: &
IO_timeStamp
use material
use numerics, only: &
worldrank
implicit none
integer(pInt) :: &
homog, &
NofMyHomog
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- hydrogenflux_'//HYDROGENFLUX_isoconc_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
initializeInstances: do homog = 1_pInt, material_Nhomogenization
myhomog: if (hydrogenflux_type(homog) == HYDROGENFLUX_isoconc_ID) then
NofMyHomog = count(material_homog == homog)
hydrogenfluxState(homog)%sizeState = 0_pInt
hydrogenfluxState(homog)%sizePostResults = 0_pInt
allocate(hydrogenfluxState(homog)%state0 (0_pInt,NofMyHomog), source=0.0_pReal)
allocate(hydrogenfluxState(homog)%subState0(0_pInt,NofMyHomog), source=0.0_pReal)
allocate(hydrogenfluxState(homog)%state (0_pInt,NofMyHomog), source=0.0_pReal)
deallocate(hydrogenConc (homog)%p)
deallocate(hydrogenConcRate(homog)%p)
allocate (hydrogenConc (homog)%p(1), source=hydrogenflux_initialCh(homog))
allocate (hydrogenConcRate(homog)%p(1), source=0.0_pReal)
endif myhomog
enddo initializeInstances
end subroutine hydrogenflux_isoconc_init
end module hydrogenflux_isoconc

View File

@ -1,303 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Luv Sharma, Max-Planck-Institut fŸr Eisenforschung GmbH
!> @author Pratheek Shanthraj, Max-Planck-Institut fŸr Eisenforschung GmbH
!> @brief material subroutine incorporating kinematics resulting from opening of cleavage planes
!> @details to be done
!--------------------------------------------------------------------------------------------------
module kinematics_cleavage_opening
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
kinematics_cleavage_opening_sizePostResults, & !< cumulative size of post results
kinematics_cleavage_opening_offset, & !< which kinematics is my current damage mechanism?
kinematics_cleavage_opening_instance !< instance of damage kinematics mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
kinematics_cleavage_opening_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
kinematics_cleavage_opening_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
kinematics_cleavage_opening_Noutput !< number of outputs per instance of this damage
integer(pInt), dimension(:), allocatable, private :: &
kinematics_cleavage_opening_totalNcleavage !< total number of cleavage systems
integer(pInt), dimension(:,:), allocatable, private :: &
kinematics_cleavage_opening_Ncleavage !< number of cleavage systems per family
real(pReal), dimension(:), allocatable, private :: &
kinematics_cleavage_opening_sdot_0, &
kinematics_cleavage_opening_N
real(pReal), dimension(:,:), allocatable, private :: &
kinematics_cleavage_opening_critDisp, &
kinematics_cleavage_opening_critLoad
public :: &
kinematics_cleavage_opening_init, &
kinematics_cleavage_opening_LiAndItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine kinematics_cleavage_opening_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_kinematics, &
phase_Nkinematics, &
phase_Noutput, &
KINEMATICS_cleavage_opening_label, &
KINEMATICS_cleavage_opening_ID, &
material_Nphase, &
MATERIAL_partPhase
use numerics,only: &
worldrank
use lattice, only: &
lattice_maxNcleavageFamily, &
lattice_NcleavageSystem
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,phase,instance,kinematics
integer(pInt) :: Nchunks_CleavageFamilies = 0_pInt, j
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- kinematics_'//KINEMATICS_cleavage_opening_LABEL//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_kinematics == KINEMATICS_cleavage_opening_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(kinematics_cleavage_opening_offset(material_Nphase), source=0_pInt)
allocate(kinematics_cleavage_opening_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
kinematics_cleavage_opening_instance(phase) = count(phase_kinematics(:,1:phase) == kinematics_cleavage_opening_ID)
do kinematics = 1, phase_Nkinematics(phase)
if (phase_kinematics(kinematics,phase) == kinematics_cleavage_opening_ID) &
kinematics_cleavage_opening_offset(phase) = kinematics
enddo
enddo
allocate(kinematics_cleavage_opening_sizePostResults(maxNinstance), source=0_pInt)
allocate(kinematics_cleavage_opening_sizePostResult(maxval(phase_Noutput),maxNinstance), source=0_pInt)
allocate(kinematics_cleavage_opening_output(maxval(phase_Noutput),maxNinstance))
kinematics_cleavage_opening_output = ''
allocate(kinematics_cleavage_opening_Noutput(maxNinstance), source=0_pInt)
allocate(kinematics_cleavage_opening_critDisp(lattice_maxNcleavageFamily,maxNinstance), source=0.0_pReal)
allocate(kinematics_cleavage_opening_critLoad(lattice_maxNcleavageFamily,maxNinstance), source=0.0_pReal)
allocate(kinematics_cleavage_opening_Ncleavage(lattice_maxNcleavageFamily,maxNinstance), source=0_pInt)
allocate(kinematics_cleavage_opening_totalNcleavage(maxNinstance), source=0_pInt)
allocate(kinematics_cleavage_opening_sdot_0(maxNinstance), source=0.0_pReal)
allocate(kinematics_cleavage_opening_N(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_kinematics(:,phase) == KINEMATICS_cleavage_opening_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = kinematics_cleavage_opening_instance(phase) ! which instance of my damage is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('anisobrittle_sdot0')
kinematics_cleavage_opening_sdot_0(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('anisobrittle_ratesensitivity')
kinematics_cleavage_opening_N(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('ncleavage') !
Nchunks_CleavageFamilies = chunkPos(1) - 1_pInt
do j = 1_pInt, Nchunks_CleavageFamilies
kinematics_cleavage_opening_Ncleavage(j,instance) = IO_intValue(line,chunkPos,1_pInt+j)
enddo
case ('anisobrittle_criticaldisplacement')
do j = 1_pInt, Nchunks_CleavageFamilies
kinematics_cleavage_opening_critDisp(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
enddo
case ('anisobrittle_criticalload')
do j = 1_pInt, Nchunks_CleavageFamilies
kinematics_cleavage_opening_critLoad(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
enddo
end select
endif; endif
enddo parsingFile
!--------------------------------------------------------------------------------------------------
! sanity checks
sanityChecks: do phase = 1_pInt, material_Nphase
myPhase: if (any(phase_kinematics(:,phase) == KINEMATICS_cleavage_opening_ID)) then
instance = kinematics_cleavage_opening_instance(phase)
kinematics_cleavage_opening_Ncleavage(1:lattice_maxNcleavageFamily,instance) = &
min(lattice_NcleavageSystem(1:lattice_maxNcleavageFamily,phase),& ! limit active cleavage systems per family to min of available and requested
kinematics_cleavage_opening_Ncleavage(1:lattice_maxNcleavageFamily,instance))
kinematics_cleavage_opening_totalNcleavage(instance) = sum(kinematics_cleavage_opening_Ncleavage(:,instance)) ! how many cleavage systems altogether
if (kinematics_cleavage_opening_sdot_0(instance) <= 0.0_pReal) &
call IO_error(211_pInt,el=instance,ext_msg='sdot_0 ('//KINEMATICS_cleavage_opening_LABEL//')')
if (any(kinematics_cleavage_opening_critDisp(1:Nchunks_CleavageFamilies,instance) < 0.0_pReal)) &
call IO_error(211_pInt,el=instance,ext_msg='critical_displacement ('//KINEMATICS_cleavage_opening_LABEL//')')
if (any(kinematics_cleavage_opening_critLoad(1:Nchunks_CleavageFamilies,instance) < 0.0_pReal)) &
call IO_error(211_pInt,el=instance,ext_msg='critical_load ('//KINEMATICS_cleavage_opening_LABEL//')')
if (kinematics_cleavage_opening_N(instance) <= 0.0_pReal) &
call IO_error(211_pInt,el=instance,ext_msg='rate_sensitivity ('//KINEMATICS_cleavage_opening_LABEL//')')
endif myPhase
enddo sanityChecks
end subroutine kinematics_cleavage_opening_init
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the velocity gradient
!--------------------------------------------------------------------------------------------------
subroutine kinematics_cleavage_opening_LiAndItsTangent(Ld, dLd_dTstar3333, Tstar_v, ipc, ip, el)
use prec, only: &
tol_math_check
use material, only: &
phaseAt, phasememberAt, &
material_homog, &
damage, &
damageMapping
use lattice, only: &
lattice_Scleavage, &
lattice_Scleavage_v, &
lattice_maxNcleavageFamily, &
lattice_NcleavageSystem
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola-Kirchhoff stress
real(pReal), intent(out), dimension(3,3) :: &
Ld !< damage velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLd_dTstar3333 !< derivative of Ld with respect to Tstar (4th-order tensor)
integer(pInt) :: &
phase, &
constituent, &
instance, &
homog, damageOffset, &
f, i, index_myFamily, k, l, m, n
real(pReal) :: &
traction_d, traction_t, traction_n, traction_crit, &
udotd, dudotd_dt, udott, dudott_dt, udotn, dudotn_dt
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = kinematics_cleavage_opening_instance(phase)
homog = material_homog(ip,el)
damageOffset = damageMapping(homog)%p(ip,el)
Ld = 0.0_pReal
dLd_dTstar3333 = 0.0_pReal
do f = 1_pInt,lattice_maxNcleavageFamily
index_myFamily = sum(lattice_NcleavageSystem(1:f-1_pInt,phase)) ! at which index starts my family
do i = 1_pInt,kinematics_cleavage_opening_Ncleavage(f,instance) ! process each (active) cleavage system in family
traction_d = dot_product(Tstar_v,lattice_Scleavage_v(1:6,1,index_myFamily+i,phase))
traction_t = dot_product(Tstar_v,lattice_Scleavage_v(1:6,2,index_myFamily+i,phase))
traction_n = dot_product(Tstar_v,lattice_Scleavage_v(1:6,3,index_myFamily+i,phase))
traction_crit = kinematics_cleavage_opening_critLoad(f,instance)* &
damage(homog)%p(damageOffset)*damage(homog)%p(damageOffset)
udotd = &
sign(1.0_pReal,traction_d)* &
kinematics_cleavage_opening_sdot_0(instance)* &
(max(0.0_pReal, abs(traction_d) - traction_crit)/traction_crit)**kinematics_cleavage_opening_N(instance)
if (abs(udotd) > tol_math_check) then
Ld = Ld + udotd*lattice_Scleavage(1:3,1:3,1,index_myFamily+i,phase)
dudotd_dt = sign(1.0_pReal,traction_d)*udotd*kinematics_cleavage_opening_N(instance)/ &
max(0.0_pReal, abs(traction_d) - traction_crit)
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLd_dTstar3333(k,l,m,n) = dLd_dTstar3333(k,l,m,n) + &
dudotd_dt*lattice_Scleavage(k,l,1,index_myFamily+i,phase)* &
lattice_Scleavage(m,n,1,index_myFamily+i,phase)
endif
udott = &
sign(1.0_pReal,traction_t)* &
kinematics_cleavage_opening_sdot_0(instance)* &
(max(0.0_pReal, abs(traction_t) - traction_crit)/traction_crit)**kinematics_cleavage_opening_N(instance)
if (abs(udott) > tol_math_check) then
Ld = Ld + udott*lattice_Scleavage(1:3,1:3,2,index_myFamily+i,phase)
dudott_dt = sign(1.0_pReal,traction_t)*udott*kinematics_cleavage_opening_N(instance)/ &
max(0.0_pReal, abs(traction_t) - traction_crit)
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLd_dTstar3333(k,l,m,n) = dLd_dTstar3333(k,l,m,n) + &
dudott_dt*lattice_Scleavage(k,l,2,index_myFamily+i,phase)* &
lattice_Scleavage(m,n,2,index_myFamily+i,phase)
endif
udotn = &
sign(1.0_pReal,traction_n)* &
kinematics_cleavage_opening_sdot_0(instance)* &
(max(0.0_pReal, abs(traction_n) - traction_crit)/traction_crit)**kinematics_cleavage_opening_N(instance)
if (abs(udotn) > tol_math_check) then
Ld = Ld + udotn*lattice_Scleavage(1:3,1:3,3,index_myFamily+i,phase)
dudotn_dt = sign(1.0_pReal,traction_n)*udotn*kinematics_cleavage_opening_N(instance)/ &
max(0.0_pReal, abs(traction_n) - traction_crit)
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLd_dTstar3333(k,l,m,n) = dLd_dTstar3333(k,l,m,n) + &
dudotn_dt*lattice_Scleavage(k,l,3,index_myFamily+i,phase)* &
lattice_Scleavage(m,n,3,index_myFamily+i,phase)
endif
enddo
enddo
end subroutine kinematics_cleavage_opening_LiAndItsTangent
end module kinematics_cleavage_opening

View File

@ -1,264 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incorporating kinematics resulting from interstitial hydrogen
!> @details to be done
!--------------------------------------------------------------------------------------------------
module kinematics_hydrogen_strain
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
kinematics_hydrogen_strain_sizePostResults, & !< cumulative size of post results
kinematics_hydrogen_strain_offset, & !< which kinematics is my current damage mechanism?
kinematics_hydrogen_strain_instance !< instance of damage kinematics mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
kinematics_hydrogen_strain_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
kinematics_hydrogen_strain_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
kinematics_hydrogen_strain_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, private :: &
kinematics_hydrogen_strain_coeff
public :: &
kinematics_hydrogen_strain_init, &
kinematics_hydrogen_strain_initialStrain, &
kinematics_hydrogen_strain_LiAndItsTangent, &
kinematics_hydrogen_strain_ChemPotAndItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine kinematics_hydrogen_strain_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_kinematics, &
phase_Nkinematics, &
phase_Noutput, &
KINEMATICS_hydrogen_strain_label, &
KINEMATICS_hydrogen_strain_ID, &
material_Nphase, &
MATERIAL_partPhase
use numerics,only: &
worldrank
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,phase,instance,kinematics
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- kinematics_'//KINEMATICS_hydrogen_strain_LABEL//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_kinematics == KINEMATICS_hydrogen_strain_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(kinematics_hydrogen_strain_offset(material_Nphase), source=0_pInt)
allocate(kinematics_hydrogen_strain_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
kinematics_hydrogen_strain_instance(phase) = count(phase_kinematics(:,1:phase) == kinematics_hydrogen_strain_ID)
do kinematics = 1, phase_Nkinematics(phase)
if (phase_kinematics(kinematics,phase) == kinematics_hydrogen_strain_ID) &
kinematics_hydrogen_strain_offset(phase) = kinematics
enddo
enddo
allocate(kinematics_hydrogen_strain_sizePostResults(maxNinstance), source=0_pInt)
allocate(kinematics_hydrogen_strain_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(kinematics_hydrogen_strain_output(maxval(phase_Noutput),maxNinstance))
kinematics_hydrogen_strain_output = ''
allocate(kinematics_hydrogen_strain_Noutput(maxNinstance), source=0_pInt)
allocate(kinematics_hydrogen_strain_coeff(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_kinematics(:,phase) == KINEMATICS_hydrogen_strain_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = kinematics_hydrogen_strain_instance(phase) ! which instance of my damage is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('hydrogen_strain_coeff')
kinematics_hydrogen_strain_coeff(instance) = IO_floatValue(line,chunkPos,2_pInt)
end select
endif; endif
enddo parsingFile
end subroutine kinematics_hydrogen_strain_init
!--------------------------------------------------------------------------------------------------
!> @brief report initial hydrogen strain based on current hydrogen conc deviation from
!> equillibrium (0)
!--------------------------------------------------------------------------------------------------
pure function kinematics_hydrogen_strain_initialStrain(ipc, ip, el)
use math, only: &
math_I3
use material, only: &
material_phase, &
material_homog, &
hydrogenConc, &
hydrogenfluxMapping
use lattice, only: &
lattice_equilibriumHydrogenConcentration
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
kinematics_hydrogen_strain_initialStrain !< initial thermal strain (should be small strain, though)
integer(pInt) :: &
phase, &
homog, offset, instance
phase = material_phase(ipc,ip,el)
instance = kinematics_hydrogen_strain_instance(phase)
homog = material_homog(ip,el)
offset = hydrogenfluxMapping(homog)%p(ip,el)
kinematics_hydrogen_strain_initialStrain = &
(hydrogenConc(homog)%p(offset) - lattice_equilibriumHydrogenConcentration(phase)) * &
kinematics_hydrogen_strain_coeff(instance)* math_I3
end function kinematics_hydrogen_strain_initialStrain
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the velocity gradient
!--------------------------------------------------------------------------------------------------
subroutine kinematics_hydrogen_strain_LiAndItsTangent(Li, dLi_dTstar3333, ipc, ip, el)
use material, only: &
material_phase, &
material_homog, &
hydrogenConc, &
hydrogenConcRate, &
hydrogenfluxMapping
use math, only: &
math_I3
use lattice, only: &
lattice_equilibriumHydrogenConcentration
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(out), dimension(3,3) :: &
Li !< thermal velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLi_dTstar3333 !< derivative of Li with respect to Tstar (4th-order tensor)
integer(pInt) :: &
phase, &
instance, &
homog, offset
real(pReal) :: &
Ch, ChEq, ChDot
phase = material_phase(ipc,ip,el)
instance = kinematics_hydrogen_strain_instance(phase)
homog = material_homog(ip,el)
offset = hydrogenfluxMapping(homog)%p(ip,el)
Ch = hydrogenConc(homog)%p(offset)
ChDot = hydrogenConcRate(homog)%p(offset)
ChEq = lattice_equilibriumHydrogenConcentration(phase)
Li = ChDot*math_I3* &
kinematics_hydrogen_strain_coeff(instance)/ &
(1.0_pReal + kinematics_hydrogen_strain_coeff(instance)*(Ch - ChEq))
dLi_dTstar3333 = 0.0_pReal
end subroutine kinematics_hydrogen_strain_LiAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief contains the kinematic contribution to hydrogen chemical potential
!--------------------------------------------------------------------------------------------------
subroutine kinematics_hydrogen_strain_ChemPotAndItsTangent(ChemPot, dChemPot_dCh, Tstar_v, Fi0, Fi, ipc, ip, el)
use material, only: &
material_phase
use math, only: &
math_inv33, &
math_mul33x33, &
math_Mandel6to33, &
math_transpose33
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(in), dimension(6) :: &
Tstar_v
real(pReal), intent(in), dimension(3,3) :: &
Fi0, Fi
real(pReal), intent(out) :: &
ChemPot, dChemPot_dCh
integer(pInt) :: &
phase, &
instance
phase = material_phase(ipc,ip,el)
instance = kinematics_hydrogen_strain_instance(phase)
ChemPot = -kinematics_hydrogen_strain_coeff(instance)* &
sum(math_mul33x33(Fi,math_Mandel6to33(Tstar_v))* &
math_mul33x33(math_mul33x33(Fi,math_inv33(Fi0)),Fi))
dChemPot_dCh = 0.0_pReal
end subroutine kinematics_hydrogen_strain_ChemPotAndItsTangent
end module kinematics_hydrogen_strain

View File

@ -1,323 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Luv Sharma, Max-Planck-Institut für Eisenforschung GmbH
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incorporating kinematics resulting from opening of slip planes
!> @details to be done
!--------------------------------------------------------------------------------------------------
module kinematics_slipplane_opening
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
kinematics_slipplane_opening_sizePostResults, & !< cumulative size of post results
kinematics_slipplane_opening_offset, & !< which kinematics is my current damage mechanism?
kinematics_slipplane_opening_instance !< instance of damage kinematics mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
kinematics_slipplane_opening_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
kinematics_slipplane_opening_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
kinematics_slipplane_opening_Noutput !< number of outputs per instance of this damage
integer(pInt), dimension(:), allocatable, private :: &
kinematics_slipplane_opening_totalNslip !< total number of slip systems
integer(pInt), dimension(:,:), allocatable, private :: &
kinematics_slipplane_opening_Nslip !< number of slip systems per family
real(pReal), dimension(:), allocatable, private :: &
kinematics_slipplane_opening_sdot_0, &
kinematics_slipplane_opening_N
real(pReal), dimension(:,:), allocatable, private :: &
kinematics_slipplane_opening_critPlasticStrain, &
kinematics_slipplane_opening_critLoad
public :: &
kinematics_slipplane_opening_init, &
kinematics_slipplane_opening_LiAndItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine kinematics_slipplane_opening_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_kinematics, &
phase_Nkinematics, &
phase_Noutput, &
KINEMATICS_slipplane_opening_label, &
KINEMATICS_slipplane_opening_ID, &
material_Nphase, &
MATERIAL_partPhase
use numerics,only: &
worldrank
use lattice, only: &
lattice_maxNslipFamily, &
lattice_NslipSystem
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,phase,instance,kinematics
integer(pInt) :: Nchunks_SlipFamilies = 0_pInt, j
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- kinematics_'//KINEMATICS_slipplane_opening_LABEL//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_kinematics == KINEMATICS_slipplane_opening_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(kinematics_slipplane_opening_offset(material_Nphase), source=0_pInt)
allocate(kinematics_slipplane_opening_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
kinematics_slipplane_opening_instance(phase) = count(phase_kinematics(:,1:phase) == kinematics_slipplane_opening_ID)
do kinematics = 1, phase_Nkinematics(phase)
if (phase_kinematics(kinematics,phase) == kinematics_slipplane_opening_ID) &
kinematics_slipplane_opening_offset(phase) = kinematics
enddo
enddo
allocate(kinematics_slipplane_opening_sizePostResults(maxNinstance), source=0_pInt)
allocate(kinematics_slipplane_opening_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(kinematics_slipplane_opening_output(maxval(phase_Noutput),maxNinstance))
kinematics_slipplane_opening_output = ''
allocate(kinematics_slipplane_opening_Noutput(maxNinstance), source=0_pInt)
allocate(kinematics_slipplane_opening_critLoad(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
allocate(kinematics_slipplane_opening_critPlasticStrain(lattice_maxNslipFamily,maxNinstance),source=0.0_pReal)
allocate(kinematics_slipplane_opening_Nslip(lattice_maxNslipFamily,maxNinstance), source=0_pInt)
allocate(kinematics_slipplane_opening_totalNslip(maxNinstance), source=0_pInt)
allocate(kinematics_slipplane_opening_N(maxNinstance), source=0.0_pReal)
allocate(kinematics_slipplane_opening_sdot_0(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_kinematics(:,phase) == KINEMATICS_slipplane_opening_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = kinematics_slipplane_opening_instance(phase) ! which instance of my damage is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('nslip') !
Nchunks_SlipFamilies = chunkPos(1) - 1_pInt
do j = 1_pInt, Nchunks_SlipFamilies
kinematics_slipplane_opening_Nslip(j,instance) = IO_intValue(line,chunkPos,1_pInt+j)
enddo
case ('anisoductile_sdot0')
kinematics_slipplane_opening_sdot_0(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('anisoductile_criticalplasticstrain')
do j = 1_pInt, Nchunks_SlipFamilies
kinematics_slipplane_opening_critPlasticStrain(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
enddo
case ('anisoductile_ratesensitivity')
kinematics_slipplane_opening_N(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('anisoductile_criticalload')
do j = 1_pInt, Nchunks_SlipFamilies
kinematics_slipplane_opening_critLoad(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
enddo
end select
endif; endif
enddo parsingFile
!--------------------------------------------------------------------------------------------------
! sanity checks
sanityChecks: do phase = 1_pInt, material_Nphase
myPhase: if (any(phase_kinematics(:,phase) == KINEMATICS_slipplane_opening_ID)) then
instance = kinematics_slipplane_opening_instance(phase)
kinematics_slipplane_opening_Nslip(1:lattice_maxNslipFamily,instance) = &
min(lattice_NslipSystem(1:lattice_maxNslipFamily,phase),& ! limit active cleavage systems per family to min of available and requested
kinematics_slipplane_opening_Nslip(1:lattice_maxNslipFamily,instance))
kinematics_slipplane_opening_totalNslip(instance) = sum(kinematics_slipplane_opening_Nslip(:,instance))
if (kinematics_slipplane_opening_sdot_0(instance) <= 0.0_pReal) &
call IO_error(211_pInt,el=instance,ext_msg='sdot_0 ('//KINEMATICS_slipplane_opening_LABEL//')')
if (any(kinematics_slipplane_opening_critPlasticStrain(:,instance) < 0.0_pReal)) &
call IO_error(211_pInt,el=instance,ext_msg='criticaPlasticStrain ('//KINEMATICS_slipplane_opening_LABEL//')')
if (kinematics_slipplane_opening_N(instance) <= 0.0_pReal) &
call IO_error(211_pInt,el=instance,ext_msg='rate_sensitivity ('//KINEMATICS_slipplane_opening_LABEL//')')
endif myPhase
enddo sanityChecks
end subroutine kinematics_slipplane_opening_init
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the velocity gradient
!--------------------------------------------------------------------------------------------------
subroutine kinematics_slipplane_opening_LiAndItsTangent(Ld, dLd_dTstar3333, Tstar_v, ipc, ip, el)
use prec, only: &
tol_math_check
use lattice, only: &
lattice_maxNslipFamily, &
lattice_NslipSystem, &
lattice_sd, &
lattice_st, &
lattice_sn
use material, only: &
phaseAt, phasememberAt, &
material_homog, &
damage, &
damageMapping
use math, only: &
math_Plain3333to99, &
math_I3, &
math_identity4th, &
math_symmetric33, &
math_Mandel33to6, &
math_tensorproduct33, &
math_det33, &
math_mul33x33
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola-Kirchhoff stress
real(pReal), intent(out), dimension(3,3) :: &
Ld !< damage velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLd_dTstar3333 !< derivative of Ld with respect to Tstar (4th-order tensor)
real(pReal), dimension(3,3) :: &
projection_d, projection_t, projection_n !< projection modes 3x3 tensor
real(pReal), dimension(6) :: &
projection_d_v, projection_t_v, projection_n_v !< projection modes 3x3 vector
integer(pInt) :: &
phase, &
constituent, &
instance, &
homog, damageOffset, &
f, i, index_myFamily, k, l, m, n
real(pReal) :: &
traction_d, traction_t, traction_n, traction_crit, &
udotd, dudotd_dt, udott, dudott_dt, udotn, dudotn_dt
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = kinematics_slipplane_opening_instance(phase)
homog = material_homog(ip,el)
damageOffset = damageMapping(homog)%p(ip,el)
Ld = 0.0_pReal
dLd_dTstar3333 = 0.0_pReal
do f = 1_pInt,lattice_maxNslipFamily
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,phase)) ! at which index starts my family
do i = 1_pInt,kinematics_slipplane_opening_Nslip(f,instance) ! process each (active) slip system in family
projection_d = math_tensorproduct33(lattice_sd(1:3,index_myFamily+i,phase),&
lattice_sn(1:3,index_myFamily+i,phase))
projection_t = math_tensorproduct33(lattice_st(1:3,index_myFamily+i,phase),&
lattice_sn(1:3,index_myFamily+i,phase))
projection_n = math_tensorproduct33(lattice_sn(1:3,index_myFamily+i,phase),&
lattice_sn(1:3,index_myFamily+i,phase))
projection_d_v(1:6) = math_Mandel33to6(math_symmetric33(projection_d(1:3,1:3)))
projection_t_v(1:6) = math_Mandel33to6(math_symmetric33(projection_t(1:3,1:3)))
projection_n_v(1:6) = math_Mandel33to6(math_symmetric33(projection_n(1:3,1:3)))
traction_d = dot_product(Tstar_v,projection_d_v(1:6))
traction_t = dot_product(Tstar_v,projection_t_v(1:6))
traction_n = dot_product(Tstar_v,projection_n_v(1:6))
traction_crit = kinematics_slipplane_opening_critLoad(f,instance)* &
damage(homog)%p(damageOffset) ! degrading critical load carrying capacity by damage
udotd = &
sign(1.0_pReal,traction_d)* &
kinematics_slipplane_opening_sdot_0(instance)* &
(abs(traction_d)/traction_crit - &
abs(traction_d)/kinematics_slipplane_opening_critLoad(f,instance))**kinematics_slipplane_opening_N(instance)
if (abs(udotd) > tol_math_check) then
Ld = Ld + udotd*projection_d
dudotd_dt = udotd*kinematics_slipplane_opening_N(instance)/traction_d
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLd_dTstar3333(k,l,m,n) = dLd_dTstar3333(k,l,m,n) + &
dudotd_dt*projection_d(k,l)*projection_d(m,n)
endif
udott = &
sign(1.0_pReal,traction_t)* &
kinematics_slipplane_opening_sdot_0(instance)* &
(abs(traction_t)/traction_crit - &
abs(traction_t)/kinematics_slipplane_opening_critLoad(f,instance))**kinematics_slipplane_opening_N(instance)
if (abs(udott) > tol_math_check) then
Ld = Ld + udott*projection_t
dudott_dt = udott*kinematics_slipplane_opening_N(instance)/traction_t
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLd_dTstar3333(k,l,m,n) = dLd_dTstar3333(k,l,m,n) + &
dudott_dt*projection_t(k,l)*projection_t(m,n)
endif
udotn = &
kinematics_slipplane_opening_sdot_0(instance)* &
(max(0.0_pReal,traction_n)/traction_crit - &
max(0.0_pReal,traction_n)/kinematics_slipplane_opening_critLoad(f,instance))**kinematics_slipplane_opening_N(instance)
if (abs(udotn) > tol_math_check) then
Ld = Ld + udotn*projection_n
dudotn_dt = udotn*kinematics_slipplane_opening_N(instance)/traction_n
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLd_dTstar3333(k,l,m,n) = dLd_dTstar3333(k,l,m,n) + &
dudotn_dt*projection_n(k,l)*projection_n(m,n)
endif
enddo
enddo
end subroutine kinematics_slipplane_opening_LiAndItsTangent
end module kinematics_slipplane_opening

View File

@ -1,228 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incorporating kinematics resulting from thermal expansion
!> @details to be done
!--------------------------------------------------------------------------------------------------
module kinematics_thermal_expansion
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
kinematics_thermal_expansion_sizePostResults, & !< cumulative size of post results
kinematics_thermal_expansion_offset, & !< which kinematics is my current damage mechanism?
kinematics_thermal_expansion_instance !< instance of damage kinematics mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
kinematics_thermal_expansion_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
kinematics_thermal_expansion_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
kinematics_thermal_expansion_Noutput !< number of outputs per instance of this damage
! enum, bind(c) ! ToDo kinematics need state machinery to deal with sizePostResult
! enumerator :: undefined_ID, & ! possible remedy is to decouple having state vars from having output
! thermalexpansionrate_ID ! which means to separate user-defined types tState + tOutput...
! end enum
public :: &
kinematics_thermal_expansion_init, &
kinematics_thermal_expansion_initialStrain, &
kinematics_thermal_expansion_LiAndItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine kinematics_thermal_expansion_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_kinematics, &
phase_Nkinematics, &
phase_Noutput, &
KINEMATICS_thermal_expansion_label, &
KINEMATICS_thermal_expansion_ID, &
material_Nphase, &
MATERIAL_partPhase
use numerics,only: &
worldrank
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,phase,instance,kinematics
character(len=65536) :: &
tag = '', &
output = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- kinematics_'//KINEMATICS_thermal_expansion_LABEL//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_kinematics == KINEMATICS_thermal_expansion_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(kinematics_thermal_expansion_offset(material_Nphase), source=0_pInt)
allocate(kinematics_thermal_expansion_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
kinematics_thermal_expansion_instance(phase) = count(phase_kinematics(:,1:phase) == kinematics_thermal_expansion_ID)
do kinematics = 1, phase_Nkinematics(phase)
if (phase_kinematics(kinematics,phase) == kinematics_thermal_expansion_ID) &
kinematics_thermal_expansion_offset(phase) = kinematics
enddo
enddo
allocate(kinematics_thermal_expansion_sizePostResults(maxNinstance), source=0_pInt)
allocate(kinematics_thermal_expansion_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(kinematics_thermal_expansion_output(maxval(phase_Noutput),maxNinstance))
kinematics_thermal_expansion_output = ''
allocate(kinematics_thermal_expansion_Noutput(maxNinstance), source=0_pInt)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_kinematics(:,phase) == KINEMATICS_thermal_expansion_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = kinematics_thermal_expansion_instance(phase) ! which instance of my damage is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key...
select case(tag)
! case ('(output)')
! output = IO_lc(IO_stringValue(line,chunkPos,2_pInt)) ! ...and corresponding output
! select case(output)
! case ('thermalexpansionrate')
! kinematics_thermal_expansion_Noutput(instance) = kinematics_thermal_expansion_Noutput(instance) + 1_pInt
! kinematics_thermal_expansion_outputID(kinematics_thermal_expansion_Noutput(instance),instance) = &
! thermalexpansionrate_ID
! kinematics_thermal_expansion_output(kinematics_thermal_expansion_Noutput(instance),instance) = output
! ToDo add sizePostResult loop afterwards...
end select
endif; endif
enddo parsingFile
end subroutine kinematics_thermal_expansion_init
!--------------------------------------------------------------------------------------------------
!> @brief report initial thermal strain based on current temperature deviation from reference
!--------------------------------------------------------------------------------------------------
pure function kinematics_thermal_expansion_initialStrain(ipc, ip, el)
use material, only: &
material_phase, &
material_homog, &
temperature, &
thermalMapping
use lattice, only: &
lattice_thermalExpansion33, &
lattice_referenceTemperature
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
kinematics_thermal_expansion_initialStrain !< initial thermal strain (should be small strain, though)
integer(pInt) :: &
phase, &
homog, offset
phase = material_phase(ipc,ip,el)
homog = material_homog(ip,el)
offset = thermalMapping(homog)%p(ip,el)
kinematics_thermal_expansion_initialStrain = &
(temperature(homog)%p(offset) - lattice_referenceTemperature(phase)) * &
lattice_thermalExpansion33(1:3,1:3,phase)
end function kinematics_thermal_expansion_initialStrain
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the velocity gradient
!--------------------------------------------------------------------------------------------------
subroutine kinematics_thermal_expansion_LiAndItsTangent(Li, dLi_dTstar3333, ipc, ip, el)
use material, only: &
material_phase, &
material_homog, &
temperature, &
temperatureRate, &
thermalMapping
use lattice, only: &
lattice_thermalExpansion33, &
lattice_referenceTemperature
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(out), dimension(3,3) :: &
Li !< thermal velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLi_dTstar3333 !< derivative of Li with respect to Tstar (4th-order tensor defined to be zero)
integer(pInt) :: &
phase, &
homog, offset
real(pReal) :: &
T, TRef, TDot
phase = material_phase(ipc,ip,el)
homog = material_homog(ip,el)
offset = thermalMapping(homog)%p(ip,el)
T = temperature(homog)%p(offset)
TDot = temperatureRate(homog)%p(offset)
TRef = lattice_referenceTemperature(phase)
Li = TDot* &
lattice_thermalExpansion33(1:3,1:3,phase)/ &
(1.0_pReal + lattice_thermalExpansion33(1:3,1:3,phase)*(T - TRef))
dLi_dTstar3333 = 0.0_pReal
end subroutine kinematics_thermal_expansion_LiAndItsTangent
end module kinematics_thermal_expansion

View File

@ -1,265 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incorporating kinematics resulting from vacancy point defects
!> @details to be done
!--------------------------------------------------------------------------------------------------
module kinematics_vacancy_strain
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
kinematics_vacancy_strain_sizePostResults, & !< cumulative size of post results
kinematics_vacancy_strain_offset, & !< which kinematics is my current damage mechanism?
kinematics_vacancy_strain_instance !< instance of damage kinematics mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
kinematics_vacancy_strain_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
kinematics_vacancy_strain_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
kinematics_vacancy_strain_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, private :: &
kinematics_vacancy_strain_coeff
public :: &
kinematics_vacancy_strain_init, &
kinematics_vacancy_strain_initialStrain, &
kinematics_vacancy_strain_LiAndItsTangent, &
kinematics_vacancy_strain_ChemPotAndItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine kinematics_vacancy_strain_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_kinematics, &
phase_Nkinematics, &
phase_Noutput, &
KINEMATICS_vacancy_strain_label, &
KINEMATICS_vacancy_strain_ID, &
material_Nphase, &
MATERIAL_partPhase
use numerics,only: &
worldrank
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,phase,instance,kinematics
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- kinematics_'//KINEMATICS_vacancy_strain_LABEL//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_kinematics == KINEMATICS_vacancy_strain_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(kinematics_vacancy_strain_offset(material_Nphase), source=0_pInt)
allocate(kinematics_vacancy_strain_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
kinematics_vacancy_strain_instance(phase) = count(phase_kinematics(:,1:phase) == kinematics_vacancy_strain_ID)
do kinematics = 1, phase_Nkinematics(phase)
if (phase_kinematics(kinematics,phase) == kinematics_vacancy_strain_ID) &
kinematics_vacancy_strain_offset(phase) = kinematics
enddo
enddo
allocate(kinematics_vacancy_strain_sizePostResults(maxNinstance), source=0_pInt)
allocate(kinematics_vacancy_strain_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(kinematics_vacancy_strain_output(maxval(phase_Noutput),maxNinstance))
kinematics_vacancy_strain_output = ''
allocate(kinematics_vacancy_strain_Noutput(maxNinstance), source=0_pInt)
allocate(kinematics_vacancy_strain_coeff(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_kinematics(:,phase) == KINEMATICS_vacancy_strain_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = kinematics_vacancy_strain_instance(phase) ! which instance of my damage is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('vacancy_strain_coeff')
kinematics_vacancy_strain_coeff(instance) = IO_floatValue(line,chunkPos,2_pInt)
end select
endif; endif
enddo parsingFile
end subroutine kinematics_vacancy_strain_init
!--------------------------------------------------------------------------------------------------
!> @brief report initial vacancy strain based on current vacancy conc deviation from equillibrium
!--------------------------------------------------------------------------------------------------
pure function kinematics_vacancy_strain_initialStrain(ipc, ip, el)
use math, only: &
math_I3
use material, only: &
material_phase, &
material_homog, &
vacancyConc, &
vacancyfluxMapping
use lattice, only: &
lattice_equilibriumVacancyConcentration
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
kinematics_vacancy_strain_initialStrain !< initial thermal strain (should be small strain, though)
integer(pInt) :: &
phase, &
homog, offset, instance
phase = material_phase(ipc,ip,el)
instance = kinematics_vacancy_strain_instance(phase)
homog = material_homog(ip,el)
offset = vacancyfluxMapping(homog)%p(ip,el)
kinematics_vacancy_strain_initialStrain = &
(vacancyConc(homog)%p(offset) - lattice_equilibriumVacancyConcentration(phase)) * &
kinematics_vacancy_strain_coeff(instance)* math_I3
end function kinematics_vacancy_strain_initialStrain
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the velocity gradient
!--------------------------------------------------------------------------------------------------
subroutine kinematics_vacancy_strain_LiAndItsTangent(Li, dLi_dTstar3333, ipc, ip, el)
use material, only: &
material_phase, &
material_homog, &
vacancyConc, &
vacancyConcRate, &
vacancyfluxMapping
use math, only: &
math_I3
use lattice, only: &
lattice_equilibriumVacancyConcentration
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(out), dimension(3,3) :: &
Li !< thermal velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLi_dTstar3333 !< derivative of Li with respect to Tstar (4th-order tensor)
integer(pInt) :: &
phase, &
instance, &
homog, offset
real(pReal) :: &
Cv, CvEq, CvDot
phase = material_phase(ipc,ip,el)
instance = kinematics_vacancy_strain_instance(phase)
homog = material_homog(ip,el)
offset = vacancyfluxMapping(homog)%p(ip,el)
Cv = vacancyConc(homog)%p(offset)
CvDot = vacancyConcRate(homog)%p(offset)
CvEq = lattice_equilibriumvacancyConcentration(phase)
Li = CvDot*math_I3* &
kinematics_vacancy_strain_coeff(instance)/ &
(1.0_pReal + kinematics_vacancy_strain_coeff(instance)*(Cv - CvEq))
dLi_dTstar3333 = 0.0_pReal
end subroutine kinematics_vacancy_strain_LiAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief contains the kinematic contribution to vacancy chemical potential
!--------------------------------------------------------------------------------------------------
subroutine kinematics_vacancy_strain_ChemPotAndItsTangent(ChemPot, dChemPot_dCv, Tstar_v, Fi0, Fi, ipc, ip, el)
use material, only: &
material_phase
use math, only: &
math_inv33, &
math_mul33x33, &
math_Mandel6to33, &
math_transpose33
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(in), dimension(6) :: &
Tstar_v
real(pReal), intent(in), dimension(3,3) :: &
Fi0, Fi
real(pReal), intent(out) :: &
ChemPot, dChemPot_dCv
integer(pInt) :: &
phase, &
instance
phase = material_phase(ipc,ip,el)
instance = kinematics_vacancy_strain_instance(phase)
ChemPot = -kinematics_vacancy_strain_coeff(instance)* &
sum(math_mul33x33(Fi,math_Mandel6to33(Tstar_v))* &
math_mul33x33(math_mul33x33(Fi,math_inv33(Fi0)),Fi))
dChemPot_dCv = 0.0_pReal
end subroutine kinematics_vacancy_strain_ChemPotAndItsTangent
end module kinematics_vacancy_strain

File diff suppressed because it is too large Load Diff

View File

@ -1,14 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief dummy source for inclusion of Library files
!--------------------------------------------------------------------------------------------------
module libs
!nothing in here
end module libs
#include "../lib/IR_Precision.f90"
#include "../lib/Lib_Base64.f90"
#include "../lib/Lib_VTK_IO.f90"

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,726 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Managing of parameters related to numerics
!--------------------------------------------------------------------------------------------------
module numerics
use prec, only: &
pInt, &
pReal
implicit none
private
#ifdef PETSc
#include <petsc/finclude/petsc.h90>
#endif
character(len=64), parameter, private :: &
numerics_CONFIGFILE = 'numerics.config' !< name of configuration file
integer(pInt), protected, public :: &
iJacoStiffness = 1_pInt, & !< frequency of stiffness update
iJacoLpresiduum = 1_pInt, & !< frequency of Jacobian update of residuum in Lp
nHomog = 20_pInt, & !< homogenization loop limit (only for debugging info, loop limit is determined by "subStepMinHomog")
nMPstate = 10_pInt, & !< materialpoint state loop limit
nCryst = 20_pInt, & !< crystallite loop limit (only for debugging info, loop limit is determined by "subStepMinCryst")
nState = 10_pInt, & !< state loop limit
nStress = 40_pInt, & !< stress loop limit
pert_method = 1_pInt, & !< method used in perturbation technique for tangent
fixedSeed = 0_pInt, & !< fixed seeding for pseudo-random number generator, Default 0: use random seed
worldrank = 0_pInt, & !< MPI worldrank (/=0 for MPI simulations only)
worldsize = 0_pInt !< MPI worldsize (/=0 for MPI simulations only)
integer, protected, public :: &
DAMASK_NumThreadsInt = 0 !< value stored in environment variable DAMASK_NUM_THREADS, set to zero if no OpenMP directive
integer(pInt), public :: &
numerics_integrationMode = 0_pInt !< integrationMode 1 = central solution; integrationMode 2 = perturbation, Default 0: undefined, is not read from file
integer(pInt), dimension(2) , protected, public :: &
numerics_integrator = 1_pInt !< method used for state integration (central & perturbed state), Default 1: fix-point iteration for both states
real(pReal), protected, public :: &
relevantStrain = 1.0e-7_pReal, & !< strain increment considered significant (used by crystallite to determine whether strain inc is considered significant)
defgradTolerance = 1.0e-7_pReal, & !< deviation of deformation gradient that is still allowed (used by CPFEM to determine outdated ffn1)
pert_Fg = 1.0e-7_pReal, & !< strain perturbation for FEM Jacobi
subStepMinCryst = 1.0e-3_pReal, & !< minimum (relative) size of sub-step allowed during cutback in crystallite
subStepMinHomog = 1.0e-3_pReal, & !< minimum (relative) size of sub-step allowed during cutback in homogenization
subStepSizeCryst = 0.25_pReal, & !< size of first substep when cutback in crystallite
subStepSizeHomog = 0.25_pReal, & !< size of first substep when cutback in homogenization
stepIncreaseCryst = 1.5_pReal, & !< increase of next substep size when previous substep converged in crystallite
stepIncreaseHomog = 1.5_pReal, & !< increase of next substep size when previous substep converged in homogenization
rTol_crystalliteState = 1.0e-6_pReal, & !< relative tolerance in crystallite state loop
rTol_crystalliteStress = 1.0e-6_pReal, & !< relative tolerance in crystallite stress loop
aTol_crystalliteStress = 1.0e-8_pReal, & !< absolute tolerance in crystallite stress loop, Default 1.0e-8: residuum is in Lp and hence strain is on this order
numerics_unitlength = 1.0_pReal, & !< determines the physical length of one computational length unit
absTol_RGC = 1.0e+4_pReal, & !< absolute tolerance of RGC residuum
relTol_RGC = 1.0e-3_pReal, & !< relative tolerance of RGC residuum
absMax_RGC = 1.0e+10_pReal, & !< absolute maximum of RGC residuum
relMax_RGC = 1.0e+2_pReal, & !< relative maximum of RGC residuum
pPert_RGC = 1.0e-7_pReal, & !< perturbation for computing RGC penalty tangent
xSmoo_RGC = 1.0e-5_pReal, & !< RGC penalty smoothing parameter (hyperbolic tangent)
viscPower_RGC = 1.0e+0_pReal, & !< power (sensitivity rate) of numerical viscosity in RGC scheme, Default 1.0e0: Newton viscosity (linear model)
viscModus_RGC = 0.0e+0_pReal, & !< stress modulus of RGC numerical viscosity, Default 0.0e0: No viscosity is applied
refRelaxRate_RGC = 1.0e-3_pReal, & !< reference relaxation rate in RGC viscosity
maxdRelax_RGC = 1.0e+0_pReal, & !< threshold of maximum relaxation vector increment (if exceed this then cutback)
maxVolDiscr_RGC = 1.0e-5_pReal, & !< threshold of maximum volume discrepancy allowed
volDiscrMod_RGC = 1.0e+12_pReal, & !< stiffness of RGC volume discrepancy (zero = without volume discrepancy constraint)
volDiscrPow_RGC = 5.0_pReal, & !< powerlaw penalty for volume discrepancy
charLength = 1.0_pReal, & !< characteristic length scale for gradient problems
residualStiffness = 1.0e-6_pReal !< non-zero residual damage
logical, protected, public :: &
analyticJaco = .true., & !< use analytic Jacobian or perturbation, Default for Spectral solver .true.:
usePingPong = .true., &
numerics_timeSyncing = .false. !< flag indicating if time synchronization in crystallite is used for nonlocal plasticity
!--------------------------------------------------------------------------------------------------
! field parameters:
real(pReal), protected, public :: &
err_struct_tolAbs = 1.0e-10_pReal, & !< absolute tolerance for mechanical equilibrium
err_struct_tolRel = 1.0e-4_pReal, & !< relative tolerance for mechanical equilibrium
err_thermal_tolAbs = 1.0e-2_pReal, & !< absolute tolerance for thermal equilibrium
err_thermal_tolRel = 1.0e-6_pReal, & !< relative tolerance for thermal equilibrium
err_damage_tolAbs = 1.0e-2_pReal, & !< absolute tolerance for damage evolution
err_damage_tolRel = 1.0e-6_pReal, & !< relative tolerance for damage evolution
err_vacancyflux_tolAbs = 1.0e-8_pReal, & !< absolute tolerance for vacancy transport
err_vacancyflux_tolRel = 1.0e-6_pReal, & !< relative tolerance for vacancy transport
err_porosity_tolAbs = 1.0e-2_pReal, & !< absolute tolerance for porosity evolution
err_porosity_tolRel = 1.0e-6_pReal, & !< relative tolerance for porosity evolution
err_hydrogenflux_tolAbs = 1.0e-8_pReal, & !< absolute tolerance for hydrogen transport
err_hydrogenflux_tolRel = 1.0e-6_pReal, & !< relative tolerance for hydrogen transport
vacancyBoundPenalty = 1.0e+4_pReal, & !< penalty to enforce 0 < Cv < 1
hydrogenBoundPenalty = 1.0e+4_pReal !< penalty to enforce 0 < Ch < 1
integer(pInt), protected, public :: &
itmax = 250_pInt, & !< maximum number of iterations
itmin = 1_pInt, & !< minimum number of iterations
stagItMax = 10_pInt, & !< max number of field level staggered iterations
maxCutBack = 3_pInt, & !< max number of cut backs
vacancyPolyOrder = 10_pInt, & !< order of polynomial approximation of entropic contribution to vacancy chemical potential
hydrogenPolyOrder = 10_pInt !< order of polynomial approximation of entropic contribution to hydrogen chemical potential
!--------------------------------------------------------------------------------------------------
! spectral parameters:
#ifdef Spectral
real(pReal), protected, public :: &
err_div_tolAbs = 1.0e-10_pReal, & !< absolute tolerance for equilibrium
err_div_tolRel = 5.0e-4_pReal, & !< relative tolerance for equilibrium
err_curl_tolAbs = 1.0e-10_pReal, & !< absolute tolerance for compatibility
err_curl_tolRel = 5.0e-4_pReal, & !< relative tolerance for compatibility
err_stress_tolAbs = 1.0e3_pReal, & !< absolute tolerance for fullfillment of stress BC
err_stress_tolRel = 0.01_pReal, & !< relative tolerance for fullfillment of stress BC
fftw_timelimit = -1.0_pReal, & !< sets the timelimit of plan creation for FFTW, see manual on www.fftw.org, Default -1.0: disable timelimit
rotation_tol = 1.0e-12_pReal, & !< tolerance of rotation specified in loadcase, Default 1.0e-12: first guess
polarAlpha = 1.0_pReal, & !< polarization scheme parameter 0.0 < alpha < 2.0. alpha = 1.0 ==> AL scheme, alpha = 2.0 ==> accelerated scheme
polarBeta = 1.0_pReal !< polarization scheme parameter 0.0 < beta < 2.0. beta = 1.0 ==> AL scheme, beta = 2.0 ==> accelerated scheme
character(len=64), private :: &
fftw_plan_mode = 'FFTW_PATIENT' !< reads the planing-rigor flag, see manual on www.fftw.org, Default FFTW_PATIENT: use patient planner flag
character(len=64), protected, public :: &
spectral_solver = 'basicpetsc' , & !< spectral solution method
spectral_derivative = 'continuous' !< spectral filtering method
character(len=1024), protected, public :: &
petsc_defaultOptions = '-mech_snes_type ngmres &
&-damage_snes_type ngmres &
&-thermal_snes_type ngmres ', &
petsc_options = ''
integer(pInt), protected, public :: &
fftw_planner_flag = 32_pInt, & !< conversion of fftw_plan_mode to integer, basically what is usually done in the include file of fftw
continueCalculation = 0_pInt, & !< 0: exit if BVP solver does not converge, 1: continue calculation if BVP solver does not converge
divergence_correction = 2_pInt !< correct divergence calculation in fourier space 0: no correction, 1: size scaled to 1, 2: size scaled to Npoints
logical, protected, public :: &
memory_efficient = .true., & !< for fast execution (pre calculation of gamma_hat), Default .true.: do not precalculate
update_gamma = .false. !< update gamma operator with current stiffness, Default .false.: use initial stiffness
#endif
!--------------------------------------------------------------------------------------------------
! FEM parameters:
#ifdef FEM
integer(pInt), protected, public :: &
integrationOrder = 2_pInt, & !< order of quadrature rule required
structOrder = 2_pInt, & !< order of displacement shape functions
thermalOrder = 2_pInt, & !< order of temperature field shape functions
damageOrder = 2_pInt, & !< order of damage field shape functions
vacancyfluxOrder = 2_pInt, & !< order of vacancy concentration and chemical potential field shape functions
porosityOrder = 2_pInt, & !< order of porosity field shape functions
hydrogenfluxOrder = 2_pInt !< order of hydrogen concentration and chemical potential field shape functions
logical, protected, public :: &
BBarStabilisation = .false.
character(len=4096), protected, public :: &
petsc_defaultOptions = '-mech_snes_type newtonls &
&-mech_snes_linesearch_type cp &
&-mech_snes_ksp_ew &
&-mech_snes_ksp_ew_rtol0 0.01 &
&-mech_snes_ksp_ew_rtolmax 0.01 &
&-mech_ksp_type fgmres &
&-mech_ksp_max_it 25 &
&-mech_pc_type ml &
&-mech_mg_levels_ksp_type chebyshev &
&-mech_mg_levels_pc_type sor &
&-mech_pc_ml_nullspace user &
&-damage_snes_type vinewtonrsls &
&-damage_snes_atol 1e-8 &
&-damage_ksp_type preonly &
&-damage_ksp_max_it 25 &
&-damage_pc_type cholesky &
&-damage_pc_factor_mat_solver_package mumps &
&-thermal_snes_type newtonls &
&-thermal_snes_linesearch_type cp &
&-thermal_ksp_type fgmres &
&-thermal_ksp_max_it 25 &
&-thermal_snes_atol 1e-3 &
&-thermal_pc_type hypre &
&-vacancy_snes_type newtonls &
&-vacancy_snes_linesearch_type cp &
&-vacancy_snes_atol 1e-9 &
&-vacancy_ksp_type fgmres &
&-vacancy_ksp_max_it 25 &
&-vacancy_pc_type ml &
&-vacancy_mg_levels_ksp_type chebyshev &
&-vacancy_mg_levels_pc_type sor &
&-porosity_snes_type newtonls &
&-porosity_snes_atol 1e-8 &
&-porosity_ksp_type fgmres &
&-porosity_ksp_max_it 25 &
&-porosity_pc_type hypre &
&-hydrogen_snes_type newtonls &
&-hydrogen_snes_linesearch_type cp &
&-hydrogen_snes_atol 1e-9 &
&-hydrogen_ksp_type fgmres &
&-hydrogen_ksp_max_it 25 &
&-hydrogen_pc_type ml &
&-hydrogen_mg_levels_ksp_type chebyshev &
&-hydrogen_mg_levels_pc_type sor ', &
petsc_options = ''
#endif
public :: numerics_init
contains
!--------------------------------------------------------------------------------------------------
!> @brief reads in parameters from numerics.config and sets openMP related parameters. Also does
! a sanity check
!--------------------------------------------------------------------------------------------------
subroutine numerics_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_read, &
IO_error, &
IO_open_file_stat, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_lc, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_timeStamp, &
IO_EOF
#if defined(Spectral) || defined(FEM)
!$ use OMP_LIB, only: omp_set_num_threads ! Use the standard conforming module file for omp if using the spectral solver
implicit none
#else
implicit none
!$ include "omp_lib.h" ! use the not F90 standard conforming include file to prevent crashes with some versions of MSC.Marc
#endif
integer(pInt), parameter :: FILEUNIT = 300_pInt
!$ integer :: gotDAMASK_NUM_THREADS = 1
integer :: i, ierr ! no pInt
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=65536) :: &
tag ,&
line
!$ character(len=6) DAMASK_NumThreadsString ! environment variable DAMASK_NUM_THREADS
external :: &
MPI_Comm_rank, &
MPI_Comm_size, &
MPI_Abort
#ifdef PETSc
call MPI_Comm_rank(PETSC_COMM_WORLD,worldrank,ierr);CHKERRQ(ierr)
call MPI_Comm_size(PETSC_COMM_WORLD,worldsize,ierr);CHKERRQ(ierr)
#endif
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- numerics init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
!$ call GET_ENVIRONMENT_VARIABLE(NAME='DAMASK_NUM_THREADS',VALUE=DAMASK_NumThreadsString,STATUS=gotDAMASK_NUM_THREADS) ! get environment variable DAMASK_NUM_THREADS...
!$ if(gotDAMASK_NUM_THREADS /= 0) then ! could not get number of threads, set it to 1
!$ call IO_warning(35_pInt,ext_msg='BEGIN:'//DAMASK_NumThreadsString//':END')
!$ DAMASK_NumThreadsInt = 1
!$ else
!$ read(DAMASK_NumThreadsString,'(i6)') DAMASK_NumThreadsInt ! read as integer
!$ if (DAMASK_NumThreadsInt < 1) DAMASK_NumThreadsInt = 1 ! in case of string conversion fails, set it to one
!$ endif
!$ call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution
!--------------------------------------------------------------------------------------------------
! try to open the config file
fileExists: if(IO_open_file_stat(FILEUNIT,numerics_configFile)) then
mainProcess2: if (worldrank == 0) then
write(6,'(a,/)') ' using values from config file'
flush(6)
endif mainProcess2
!--------------------------------------------------------------------------------------------------
! read variables from config file and overwrite default parameters if keyword is present
line = ''
do while (trim(line) /= IO_EOF) ! read thru sections of phase part
line = IO_read(FILEUNIT)
do i=1,len(line)
if(line(i:i) == '=') line(i:i) = ' ' ! also allow keyword = value version
enddo
if (IO_isBlank(line)) cycle ! skip empty lines
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('relevantstrain')
relevantStrain = IO_floatValue(line,chunkPos,2_pInt)
case ('defgradtolerance')
defgradTolerance = IO_floatValue(line,chunkPos,2_pInt)
case ('ijacostiffness')
iJacoStiffness = IO_intValue(line,chunkPos,2_pInt)
case ('ijacolpresiduum')
iJacoLpresiduum = IO_intValue(line,chunkPos,2_pInt)
case ('pert_fg')
pert_Fg = IO_floatValue(line,chunkPos,2_pInt)
case ('pert_method')
pert_method = IO_intValue(line,chunkPos,2_pInt)
case ('nhomog')
nHomog = IO_intValue(line,chunkPos,2_pInt)
case ('nmpstate')
nMPstate = IO_intValue(line,chunkPos,2_pInt)
case ('ncryst')
nCryst = IO_intValue(line,chunkPos,2_pInt)
case ('nstate')
nState = IO_intValue(line,chunkPos,2_pInt)
case ('nstress')
nStress = IO_intValue(line,chunkPos,2_pInt)
case ('substepmincryst')
subStepMinCryst = IO_floatValue(line,chunkPos,2_pInt)
case ('substepsizecryst')
subStepSizeCryst = IO_floatValue(line,chunkPos,2_pInt)
case ('stepincreasecryst')
stepIncreaseCryst = IO_floatValue(line,chunkPos,2_pInt)
case ('substepminhomog')
subStepMinHomog = IO_floatValue(line,chunkPos,2_pInt)
case ('substepsizehomog')
subStepSizeHomog = IO_floatValue(line,chunkPos,2_pInt)
case ('stepincreasehomog')
stepIncreaseHomog = IO_floatValue(line,chunkPos,2_pInt)
case ('rtol_crystallitestate')
rTol_crystalliteState = IO_floatValue(line,chunkPos,2_pInt)
case ('rtol_crystallitestress')
rTol_crystalliteStress = IO_floatValue(line,chunkPos,2_pInt)
case ('atol_crystallitestress')
aTol_crystalliteStress = IO_floatValue(line,chunkPos,2_pInt)
case ('integrator')
numerics_integrator(1) = IO_intValue(line,chunkPos,2_pInt)
case ('integratorstiffness')
numerics_integrator(2) = IO_intValue(line,chunkPos,2_pInt)
case ('analyticjaco')
analyticJaco = IO_intValue(line,chunkPos,2_pInt) > 0_pInt
case ('usepingpong')
usepingpong = IO_intValue(line,chunkPos,2_pInt) > 0_pInt
case ('timesyncing')
numerics_timeSyncing = IO_intValue(line,chunkPos,2_pInt) > 0_pInt
case ('unitlength')
numerics_unitlength = IO_floatValue(line,chunkPos,2_pInt)
!--------------------------------------------------------------------------------------------------
! RGC parameters
case ('atol_rgc')
absTol_RGC = IO_floatValue(line,chunkPos,2_pInt)
case ('rtol_rgc')
relTol_RGC = IO_floatValue(line,chunkPos,2_pInt)
case ('amax_rgc')
absMax_RGC = IO_floatValue(line,chunkPos,2_pInt)
case ('rmax_rgc')
relMax_RGC = IO_floatValue(line,chunkPos,2_pInt)
case ('perturbpenalty_rgc')
pPert_RGC = IO_floatValue(line,chunkPos,2_pInt)
case ('relevantmismatch_rgc')
xSmoo_RGC = IO_floatValue(line,chunkPos,2_pInt)
case ('viscositypower_rgc')
viscPower_RGC = IO_floatValue(line,chunkPos,2_pInt)
case ('viscositymodulus_rgc')
viscModus_RGC = IO_floatValue(line,chunkPos,2_pInt)
case ('refrelaxationrate_rgc')
refRelaxRate_RGC = IO_floatValue(line,chunkPos,2_pInt)
case ('maxrelaxation_rgc')
maxdRelax_RGC = IO_floatValue(line,chunkPos,2_pInt)
case ('maxvoldiscrepancy_rgc')
maxVolDiscr_RGC = IO_floatValue(line,chunkPos,2_pInt)
case ('voldiscrepancymod_rgc')
volDiscrMod_RGC = IO_floatValue(line,chunkPos,2_pInt)
case ('discrepancypower_rgc')
volDiscrPow_RGC = IO_floatValue(line,chunkPos,2_pInt)
!--------------------------------------------------------------------------------------------------
! random seeding parameter
case ('fixed_seed')
fixedSeed = IO_intValue(line,chunkPos,2_pInt)
!--------------------------------------------------------------------------------------------------
! gradient parameter
case ('charlength')
charLength = IO_floatValue(line,chunkPos,2_pInt)
case ('residualstiffness')
residualStiffness = IO_floatValue(line,chunkPos,2_pInt)
!--------------------------------------------------------------------------------------------------
! field parameters
case ('err_struct_tolabs')
err_struct_tolAbs = IO_floatValue(line,chunkPos,2_pInt)
case ('err_struct_tolrel')
err_struct_tolRel = IO_floatValue(line,chunkPos,2_pInt)
case ('err_thermal_tolabs')
err_thermal_tolabs = IO_floatValue(line,chunkPos,2_pInt)
case ('err_thermal_tolrel')
err_thermal_tolrel = IO_floatValue(line,chunkPos,2_pInt)
case ('err_damage_tolabs')
err_damage_tolabs = IO_floatValue(line,chunkPos,2_pInt)
case ('err_damage_tolrel')
err_damage_tolrel = IO_floatValue(line,chunkPos,2_pInt)
case ('err_vacancyflux_tolabs')
err_vacancyflux_tolabs = IO_floatValue(line,chunkPos,2_pInt)
case ('err_vacancyflux_tolrel')
err_vacancyflux_tolrel = IO_floatValue(line,chunkPos,2_pInt)
case ('err_porosity_tolabs')
err_porosity_tolabs = IO_floatValue(line,chunkPos,2_pInt)
case ('err_porosity_tolrel')
err_porosity_tolrel = IO_floatValue(line,chunkPos,2_pInt)
case ('err_hydrogenflux_tolabs')
err_hydrogenflux_tolabs = IO_floatValue(line,chunkPos,2_pInt)
case ('err_hydrogenflux_tolrel')
err_hydrogenflux_tolrel = IO_floatValue(line,chunkPos,2_pInt)
case ('vacancyboundpenalty')
vacancyBoundPenalty = IO_floatValue(line,chunkPos,2_pInt)
case ('hydrogenboundpenalty')
hydrogenBoundPenalty = IO_floatValue(line,chunkPos,2_pInt)
case ('itmax')
itmax = IO_intValue(line,chunkPos,2_pInt)
case ('itmin')
itmin = IO_intValue(line,chunkPos,2_pInt)
case ('maxcutback')
maxCutBack = IO_intValue(line,chunkPos,2_pInt)
case ('maxstaggerediter')
stagItMax = IO_intValue(line,chunkPos,2_pInt)
case ('vacancypolyorder')
vacancyPolyOrder = IO_intValue(line,chunkPos,2_pInt)
case ('hydrogenpolyorder')
hydrogenPolyOrder = IO_intValue(line,chunkPos,2_pInt)
!--------------------------------------------------------------------------------------------------
! spectral parameters
#ifdef Spectral
case ('err_div_tolabs')
err_div_tolAbs = IO_floatValue(line,chunkPos,2_pInt)
case ('err_div_tolrel')
err_div_tolRel = IO_floatValue(line,chunkPos,2_pInt)
case ('err_stress_tolrel')
err_stress_tolrel = IO_floatValue(line,chunkPos,2_pInt)
case ('err_stress_tolabs')
err_stress_tolabs = IO_floatValue(line,chunkPos,2_pInt)
case ('continuecalculation')
continueCalculation = IO_intValue(line,chunkPos,2_pInt)
case ('memory_efficient')
memory_efficient = IO_intValue(line,chunkPos,2_pInt) > 0_pInt
case ('fftw_timelimit')
fftw_timelimit = IO_floatValue(line,chunkPos,2_pInt)
case ('fftw_plan_mode')
fftw_plan_mode = IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('spectralderivative')
spectral_derivative = IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('divergence_correction')
divergence_correction = IO_intValue(line,chunkPos,2_pInt)
case ('update_gamma')
update_gamma = IO_intValue(line,chunkPos,2_pInt) > 0_pInt
case ('petsc_options')
petsc_options = trim(line(chunkPos(4):))
case ('spectralsolver','myspectralsolver')
spectral_solver = IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('err_curl_tolabs')
err_curl_tolAbs = IO_floatValue(line,chunkPos,2_pInt)
case ('err_curl_tolrel')
err_curl_tolRel = IO_floatValue(line,chunkPos,2_pInt)
case ('polaralpha')
polarAlpha = IO_floatValue(line,chunkPos,2_pInt)
case ('polarbeta')
polarBeta = IO_floatValue(line,chunkPos,2_pInt)
#else
case ('err_div_tolabs','err_div_tolrel','err_stress_tolrel','err_stress_tolabs',& ! found spectral parameter for FEM build
'memory_efficient','fftw_timelimit','fftw_plan_mode', &
'divergence_correction','update_gamma','spectralfilter','myfilter', &
'err_curl_tolabs','err_curl_tolrel', &
'polaralpha','polarbeta')
call IO_warning(40_pInt,ext_msg=tag)
#endif
!--------------------------------------------------------------------------------------------------
! FEM parameters
#ifdef FEM
case ('integrationorder')
integrationorder = IO_intValue(line,chunkPos,2_pInt)
case ('structorder')
structorder = IO_intValue(line,chunkPos,2_pInt)
case ('thermalorder')
thermalorder = IO_intValue(line,chunkPos,2_pInt)
case ('damageorder')
damageorder = IO_intValue(line,chunkPos,2_pInt)
case ('vacancyfluxorder')
vacancyfluxOrder = IO_intValue(line,chunkPos,2_pInt)
case ('porosityorder')
porosityOrder = IO_intValue(line,chunkPos,2_pInt)
case ('hydrogenfluxorder')
hydrogenfluxOrder = IO_intValue(line,chunkPos,2_pInt)
case ('petsc_options')
petsc_options = trim(line(chunkPos(4):))
case ('bbarstabilisation')
BBarStabilisation = IO_intValue(line,chunkPos,2_pInt) > 0_pInt
#else
case ('integrationorder','structorder','thermalorder', 'damageorder','vacancyfluxorder', &
'porosityorder','hydrogenfluxorder','bbarstabilisation')
call IO_warning(40_pInt,ext_msg=tag)
#endif
case default ! found unknown keyword
call IO_error(300_pInt,ext_msg=tag)
endselect
enddo
close(FILEUNIT)
else fileExists
#ifdef FEM
if (worldrank == 0) then
#endif
write(6,'(a,/)') ' using standard values'
flush(6)
#ifdef FEM
endif
#endif
endif fileExists
#ifdef Spectral
select case(IO_lc(fftw_plan_mode)) ! setting parameters for the plan creation of FFTW. Basically a translation from fftw3.f
case('estimate','fftw_estimate') ! ordered from slow execution (but fast plan creation) to fast execution
fftw_planner_flag = 64_pInt
case('measure','fftw_measure')
fftw_planner_flag = 0_pInt
case('patient','fftw_patient')
fftw_planner_flag= 32_pInt
case('exhaustive','fftw_exhaustive')
fftw_planner_flag = 8_pInt
case default
call IO_warning(warning_ID=47_pInt,ext_msg=trim(IO_lc(fftw_plan_mode)))
fftw_planner_flag = 32_pInt
end select
#endif
numerics_timeSyncing = numerics_timeSyncing .and. all(numerics_integrator==2_pInt) ! timeSyncing only allowed for explicit Euler integrator
!--------------------------------------------------------------------------------------------------
! writing parameters to output
mainProcess3: if (worldrank == 0) then
write(6,'(a24,1x,es8.1)') ' relevantStrain: ',relevantStrain
write(6,'(a24,1x,es8.1)') ' defgradTolerance: ',defgradTolerance
write(6,'(a24,1x,i8)') ' iJacoStiffness: ',iJacoStiffness
write(6,'(a24,1x,i8)') ' iJacoLpresiduum: ',iJacoLpresiduum
write(6,'(a24,1x,es8.1)') ' pert_Fg: ',pert_Fg
write(6,'(a24,1x,i8)') ' pert_method: ',pert_method
write(6,'(a24,1x,i8)') ' nCryst: ',nCryst
write(6,'(a24,1x,es8.1)') ' subStepMinCryst: ',subStepMinCryst
write(6,'(a24,1x,es8.1)') ' subStepSizeCryst: ',subStepSizeCryst
write(6,'(a24,1x,es8.1)') ' stepIncreaseCryst: ',stepIncreaseCryst
write(6,'(a24,1x,i8)') ' nState: ',nState
write(6,'(a24,1x,i8)') ' nStress: ',nStress
write(6,'(a24,1x,es8.1)') ' rTol_crystalliteState: ',rTol_crystalliteState
write(6,'(a24,1x,es8.1)') ' rTol_crystalliteStress: ',rTol_crystalliteStress
write(6,'(a24,1x,es8.1)') ' aTol_crystalliteStress: ',aTol_crystalliteStress
write(6,'(a24,2(1x,i8))') ' integrator: ',numerics_integrator
write(6,'(a24,1x,L8)') ' timeSyncing: ',numerics_timeSyncing
write(6,'(a24,1x,L8)') ' analytic Jacobian: ',analyticJaco
write(6,'(a24,1x,L8)') ' use ping pong scheme: ',usepingpong
write(6,'(a24,1x,es8.1,/)')' unitlength: ',numerics_unitlength
write(6,'(a24,1x,i8)') ' nHomog: ',nHomog
write(6,'(a24,1x,es8.1)') ' subStepMinHomog: ',subStepMinHomog
write(6,'(a24,1x,es8.1)') ' subStepSizeHomog: ',subStepSizeHomog
write(6,'(a24,1x,es8.1)') ' stepIncreaseHomog: ',stepIncreaseHomog
write(6,'(a24,1x,i8,/)') ' nMPstate: ',nMPstate
!--------------------------------------------------------------------------------------------------
! RGC parameters
write(6,'(a24,1x,es8.1)') ' aTol_RGC: ',absTol_RGC
write(6,'(a24,1x,es8.1)') ' rTol_RGC: ',relTol_RGC
write(6,'(a24,1x,es8.1)') ' aMax_RGC: ',absMax_RGC
write(6,'(a24,1x,es8.1)') ' rMax_RGC: ',relMax_RGC
write(6,'(a24,1x,es8.1)') ' perturbPenalty_RGC: ',pPert_RGC
write(6,'(a24,1x,es8.1)') ' relevantMismatch_RGC: ',xSmoo_RGC
write(6,'(a24,1x,es8.1)') ' viscosityrate_RGC: ',viscPower_RGC
write(6,'(a24,1x,es8.1)') ' viscositymodulus_RGC: ',viscModus_RGC
write(6,'(a24,1x,es8.1)') ' maxrelaxation_RGC: ',maxdRelax_RGC
write(6,'(a24,1x,es8.1)') ' maxVolDiscrepancy_RGC: ',maxVolDiscr_RGC
write(6,'(a24,1x,es8.1)') ' volDiscrepancyMod_RGC: ',volDiscrMod_RGC
write(6,'(a24,1x,es8.1,/)') ' discrepancyPower_RGC: ',volDiscrPow_RGC
!--------------------------------------------------------------------------------------------------
! Random seeding parameter
write(6,'(a24,1x,i16,/)') ' fixed_seed: ',fixedSeed
if (fixedSeed <= 0_pInt) &
write(6,'(a,/)') ' No fixed Seed: Random is random!'
!--------------------------------------------------------------------------------------------------
! gradient parameter
write(6,'(a24,1x,es8.1)') ' charLength: ',charLength
write(6,'(a24,1x,es8.1)') ' residualStiffness: ',residualStiffness
!--------------------------------------------------------------------------------------------------
! openMP parameter
!$ write(6,'(a24,1x,i8,/)') ' number of threads: ',DAMASK_NumThreadsInt
!--------------------------------------------------------------------------------------------------
! field parameters
write(6,'(a24,1x,i8)') ' itmax: ',itmax
write(6,'(a24,1x,i8)') ' itmin: ',itmin
write(6,'(a24,1x,i8)') ' maxCutBack: ',maxCutBack
write(6,'(a24,1x,i8)') ' maxStaggeredIter: ',stagItMax
write(6,'(a24,1x,i8)') ' vacancyPolyOrder: ',vacancyPolyOrder
write(6,'(a24,1x,i8)') ' hydrogenPolyOrder: ',hydrogenPolyOrder
write(6,'(a24,1x,es8.1)') ' err_struct_tolAbs: ',err_struct_tolAbs
write(6,'(a24,1x,es8.1)') ' err_struct_tolRel: ',err_struct_tolRel
write(6,'(a24,1x,es8.1)') ' err_thermal_tolabs: ',err_thermal_tolabs
write(6,'(a24,1x,es8.1)') ' err_thermal_tolrel: ',err_thermal_tolrel
write(6,'(a24,1x,es8.1)') ' err_damage_tolabs: ',err_damage_tolabs
write(6,'(a24,1x,es8.1)') ' err_damage_tolrel: ',err_damage_tolrel
write(6,'(a24,1x,es8.1)') ' err_vacancyflux_tolabs: ',err_vacancyflux_tolabs
write(6,'(a24,1x,es8.1)') ' err_vacancyflux_tolrel: ',err_vacancyflux_tolrel
write(6,'(a24,1x,es8.1)') ' err_porosity_tolabs: ',err_porosity_tolabs
write(6,'(a24,1x,es8.1)') ' err_porosity_tolrel: ',err_porosity_tolrel
write(6,'(a24,1x,es8.1)') ' err_hydrogenflux_tolabs:',err_hydrogenflux_tolabs
write(6,'(a24,1x,es8.1)') ' err_hydrogenflux_tolrel:',err_hydrogenflux_tolrel
write(6,'(a24,1x,es8.1)') ' vacancyBoundPenalty: ',vacancyBoundPenalty
write(6,'(a24,1x,es8.1)') ' hydrogenBoundPenalty: ',hydrogenBoundPenalty
!--------------------------------------------------------------------------------------------------
! spectral parameters
#ifdef Spectral
write(6,'(a24,1x,i8)') ' continueCalculation: ',continueCalculation
write(6,'(a24,1x,L8)') ' memory_efficient: ',memory_efficient
write(6,'(a24,1x,i8)') ' divergence_correction: ',divergence_correction
write(6,'(a24,1x,a)') ' spectral_derivative: ',trim(spectral_derivative)
if(fftw_timelimit<0.0_pReal) then
write(6,'(a24,1x,L8)') ' fftw_timelimit: ',.false.
else
write(6,'(a24,1x,es8.1)') ' fftw_timelimit: ',fftw_timelimit
endif
write(6,'(a24,1x,a)') ' fftw_plan_mode: ',trim(fftw_plan_mode)
write(6,'(a24,1x,i8)') ' fftw_planner_flag: ',fftw_planner_flag
write(6,'(a24,1x,L8,/)') ' update_gamma: ',update_gamma
write(6,'(a24,1x,es8.1)') ' err_stress_tolAbs: ',err_stress_tolAbs
write(6,'(a24,1x,es8.1)') ' err_stress_tolRel: ',err_stress_tolRel
write(6,'(a24,1x,es8.1)') ' err_div_tolAbs: ',err_div_tolAbs
write(6,'(a24,1x,es8.1)') ' err_div_tolRel: ',err_div_tolRel
write(6,'(a24,1x,es8.1)') ' err_curl_tolAbs: ',err_curl_tolAbs
write(6,'(a24,1x,es8.1)') ' err_curl_tolRel: ',err_curl_tolRel
write(6,'(a24,1x,es8.1)') ' polarAlpha: ',polarAlpha
write(6,'(a24,1x,es8.1)') ' polarBeta: ',polarBeta
write(6,'(a24,1x,a)') ' spectral solver: ',trim(spectral_solver)
write(6,'(a24,1x,a)') ' PETSc_options: ',trim(petsc_defaultOptions)//' '//trim(petsc_options)
#endif
!--------------------------------------------------------------------------------------------------
! spectral parameters
#ifdef FEM
write(6,'(a24,1x,i8)') ' integrationOrder: ',integrationOrder
write(6,'(a24,1x,i8)') ' structOrder: ',structOrder
write(6,'(a24,1x,i8)') ' thermalOrder: ',thermalOrder
write(6,'(a24,1x,i8)') ' damageOrder: ',damageOrder
write(6,'(a24,1x,i8)') ' vacancyfluxOrder: ',vacancyfluxOrder
write(6,'(a24,1x,i8)') ' porosityOrder: ',porosityOrder
write(6,'(a24,1x,i8)') ' hydrogenfluxOrder: ',hydrogenfluxOrder
write(6,'(a24,1x,a)') ' PETSc_options: ',trim(petsc_defaultOptions)//' '//trim(petsc_options)
write(6,'(a24,1x,L8)') ' B-Bar stabilisation: ',BBarStabilisation
#endif
endif mainProcess3
!--------------------------------------------------------------------------------------------------
! sanity checks
if (relevantStrain <= 0.0_pReal) call IO_error(301_pInt,ext_msg='relevantStrain')
if (defgradTolerance <= 0.0_pReal) call IO_error(301_pInt,ext_msg='defgradTolerance')
if (iJacoStiffness < 1_pInt) call IO_error(301_pInt,ext_msg='iJacoStiffness')
if (iJacoLpresiduum < 1_pInt) call IO_error(301_pInt,ext_msg='iJacoLpresiduum')
if (pert_Fg <= 0.0_pReal) call IO_error(301_pInt,ext_msg='pert_Fg')
if (pert_method <= 0_pInt .or. pert_method >= 4_pInt) &
call IO_error(301_pInt,ext_msg='pert_method')
if (nHomog < 1_pInt) call IO_error(301_pInt,ext_msg='nHomog')
if (nMPstate < 1_pInt) call IO_error(301_pInt,ext_msg='nMPstate')
if (nCryst < 1_pInt) call IO_error(301_pInt,ext_msg='nCryst')
if (nState < 1_pInt) call IO_error(301_pInt,ext_msg='nState')
if (nStress < 1_pInt) call IO_error(301_pInt,ext_msg='nStress')
if (subStepMinCryst <= 0.0_pReal) call IO_error(301_pInt,ext_msg='subStepMinCryst')
if (subStepSizeCryst <= 0.0_pReal) call IO_error(301_pInt,ext_msg='subStepSizeCryst')
if (stepIncreaseCryst <= 0.0_pReal) call IO_error(301_pInt,ext_msg='stepIncreaseCryst')
if (subStepMinHomog <= 0.0_pReal) call IO_error(301_pInt,ext_msg='subStepMinHomog')
if (subStepSizeHomog <= 0.0_pReal) call IO_error(301_pInt,ext_msg='subStepSizeHomog')
if (stepIncreaseHomog <= 0.0_pReal) call IO_error(301_pInt,ext_msg='stepIncreaseHomog')
if (rTol_crystalliteState <= 0.0_pReal) call IO_error(301_pInt,ext_msg='rTol_crystalliteState')
if (rTol_crystalliteStress <= 0.0_pReal) call IO_error(301_pInt,ext_msg='rTol_crystalliteStress')
if (aTol_crystalliteStress <= 0.0_pReal) call IO_error(301_pInt,ext_msg='aTol_crystalliteStress')
if (any(numerics_integrator <= 0_pInt) .or. any(numerics_integrator >= 6_pInt)) &
call IO_error(301_pInt,ext_msg='integrator')
if (numerics_unitlength <= 0.0_pReal) call IO_error(301_pInt,ext_msg='unitlength')
if (absTol_RGC <= 0.0_pReal) call IO_error(301_pInt,ext_msg='absTol_RGC')
if (relTol_RGC <= 0.0_pReal) call IO_error(301_pInt,ext_msg='relTol_RGC')
if (absMax_RGC <= 0.0_pReal) call IO_error(301_pInt,ext_msg='absMax_RGC')
if (relMax_RGC <= 0.0_pReal) call IO_error(301_pInt,ext_msg='relMax_RGC')
if (pPert_RGC <= 0.0_pReal) call IO_error(301_pInt,ext_msg='pPert_RGC')
if (xSmoo_RGC <= 0.0_pReal) call IO_error(301_pInt,ext_msg='xSmoo_RGC')
if (viscPower_RGC < 0.0_pReal) call IO_error(301_pInt,ext_msg='viscPower_RGC')
if (viscModus_RGC < 0.0_pReal) call IO_error(301_pInt,ext_msg='viscModus_RGC')
if (refRelaxRate_RGC <= 0.0_pReal) call IO_error(301_pInt,ext_msg='refRelaxRate_RGC')
if (maxdRelax_RGC <= 0.0_pReal) call IO_error(301_pInt,ext_msg='maxdRelax_RGC')
if (maxVolDiscr_RGC <= 0.0_pReal) call IO_error(301_pInt,ext_msg='maxVolDiscr_RGC')
if (volDiscrMod_RGC < 0.0_pReal) call IO_error(301_pInt,ext_msg='volDiscrMod_RGC')
if (volDiscrPow_RGC <= 0.0_pReal) call IO_error(301_pInt,ext_msg='volDiscrPw_RGC')
if (residualStiffness < 0.0_pReal) call IO_error(301_pInt,ext_msg='residualStiffness')
if (itmax <= 1_pInt) call IO_error(301_pInt,ext_msg='itmax')
if (itmin > itmax .or. itmin < 1_pInt) call IO_error(301_pInt,ext_msg='itmin')
if (maxCutBack < 0_pInt) call IO_error(301_pInt,ext_msg='maxCutBack')
if (stagItMax < 0_pInt) call IO_error(301_pInt,ext_msg='maxStaggeredIter')
if (vacancyPolyOrder < 0_pInt) call IO_error(301_pInt,ext_msg='vacancyPolyOrder')
if (err_struct_tolRel <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_struct_tolRel')
if (err_struct_tolAbs <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_struct_tolAbs')
if (err_thermal_tolabs <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_thermal_tolabs')
if (err_thermal_tolrel <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_thermal_tolrel')
if (err_damage_tolabs <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_damage_tolabs')
if (err_damage_tolrel <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_damage_tolrel')
if (err_vacancyflux_tolabs <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_vacancyflux_tolabs')
if (err_vacancyflux_tolrel <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_vacancyflux_tolrel')
if (err_porosity_tolabs <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_porosity_tolabs')
if (err_porosity_tolrel <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_porosity_tolrel')
if (err_hydrogenflux_tolabs <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_hydrogenflux_tolabs')
if (err_hydrogenflux_tolrel <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_hydrogenflux_tolrel')
#ifdef Spectral
if (continueCalculation /= 0_pInt .and. &
continueCalculation /= 1_pInt) call IO_error(301_pInt,ext_msg='continueCalculation')
if (divergence_correction < 0_pInt .or. &
divergence_correction > 2_pInt) call IO_error(301_pInt,ext_msg='divergence_correction')
if (update_gamma .and. &
.not. memory_efficient) call IO_error(error_ID = 847_pInt)
if (err_stress_tolrel <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_stress_tolRel')
if (err_stress_tolabs <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_stress_tolAbs')
if (err_div_tolRel <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_div_tolRel')
if (err_div_tolAbs <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_div_tolAbs')
if (err_curl_tolRel <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_curl_tolRel')
if (err_curl_tolAbs <= 0.0_pReal) call IO_error(301_pInt,ext_msg='err_curl_tolAbs')
if (polarAlpha <= 0.0_pReal .or. &
polarAlpha > 2.0_pReal) call IO_error(301_pInt,ext_msg='polarAlpha')
if (polarBeta < 0.0_pReal .or. &
polarBeta > 2.0_pReal) call IO_error(301_pInt,ext_msg='polarBeta')
#endif
end subroutine numerics_init
end module numerics

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,678 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for isotropic (ISOTROPIC) plasticity
!> @details Isotropic (ISOTROPIC) Plasticity which resembles the phenopowerlaw plasticity without
!! resolving the stress on the slip systems. Will give the response of phenopowerlaw for an
!! untextured polycrystal
!--------------------------------------------------------------------------------------------------
module plastic_isotropic
#ifdef HDF
use hdf5, only: &
HID_T
#endif
use prec, only: &
pReal,&
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
plastic_isotropic_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
plastic_isotropic_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
plastic_isotropic_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
plastic_isotropic_Noutput !< number of outputs per instance
enum, bind(c)
enumerator :: undefined_ID, &
flowstress_ID, &
strainrate_ID
end enum
type, private :: tParameters !< container type for internal constitutive parameters
integer(kind(undefined_ID)), allocatable, dimension(:) :: &
outputID
real(pReal) :: &
fTaylor, &
tau0, &
gdot0, &
n, &
h0, &
h0_slopeLnRate, &
tausat, &
a, &
aTolFlowstress, &
aTolShear , &
tausat_SinhFitA, &
tausat_SinhFitB, &
tausat_SinhFitC, &
tausat_SinhFitD
logical :: &
dilatation
end type
type(tParameters), dimension(:), allocatable, private :: param !< containers of constitutive parameters (len Ninstance)
type, private :: tIsotropicState !< internal state aliases
real(pReal), pointer, dimension(:) :: & ! scalars along NipcMyInstance
flowstress, &
accumulatedShear
end type
type, private :: tIsotropicAbsTol !< internal alias for abs tolerance in state
real(pReal), pointer :: & ! scalars along NipcMyInstance
flowstress, &
accumulatedShear
end type
type(tIsotropicState), allocatable, dimension(:), private :: & !< state aliases per instance
state, &
state0, &
dotState
type(tIsotropicAbsTol), allocatable, dimension(:), private :: & !< state aliases per instance
stateAbsTol
public :: &
plastic_isotropic_init, &
plastic_isotropic_LpAndItsTangent, &
plastic_isotropic_LiAndItsTangent, &
plastic_isotropic_dotState, &
plastic_isotropic_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine plastic_isotropic_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelBasic
use numerics, only: &
analyticJaco, &
worldrank, &
numerics_integrator
use math, only: &
math_Mandel3333to66, &
math_Voigt66to3333
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_plasticity, &
phase_plasticityInstance, &
phase_Noutput, &
PLASTICITY_ISOTROPIC_label, &
PLASTICITY_ISOTROPIC_ID, &
material_phase, &
plasticState, &
MATERIAL_partPhase
use lattice
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: &
o, &
phase, &
instance, &
maxNinstance, &
mySize, &
sizeDotState, &
sizeState, &
sizeDeltaState
character(len=65536) :: &
tag = '', &
outputtag = '', &
line = '', &
extmsg = ''
integer(pInt) :: NipcMyPhase
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_ISOTROPIC_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_plasticity == PLASTICITY_ISOTROPIC_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(plastic_isotropic_sizePostResults(maxNinstance), source=0_pInt)
allocate(plastic_isotropic_sizePostResult(maxval(phase_Noutput), maxNinstance),source=0_pInt)
allocate(plastic_isotropic_output(maxval(phase_Noutput), maxNinstance))
plastic_isotropic_output = ''
allocate(plastic_isotropic_Noutput(maxNinstance), source=0_pInt)
allocate(param(maxNinstance)) ! one container of parameters per instance
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next section
phase = phase + 1_pInt ! advance section counter
if (phase_plasticity(phase) == PLASTICITY_ISOTROPIC_ID) then
instance = phase_plasticityInstance(phase)
endif
cycle ! skip to next line
endif
if (phase > 0_pInt) then; if (phase_plasticity(phase) == PLASTICITY_ISOTROPIC_ID) then ! one of my phases. Do not short-circuit here (.and. between if-statements), it's not safe in Fortran
instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase
allocate(param(instance)%outputID(phase_Noutput(phase))) ! allocate space for IDs of every requested output
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
extmsg = trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')' ! prepare error message identifier
select case(tag)
case ('(output)')
outputtag = IO_lc(IO_stringValue(line,chunkPos,2_pInt))
select case(outputtag)
case ('flowstress')
plastic_isotropic_Noutput(instance) = plastic_isotropic_Noutput(instance) + 1_pInt
param(instance)%outputID (plastic_isotropic_Noutput(instance)) = flowstress_ID
plastic_isotropic_output(plastic_isotropic_Noutput(instance),instance) = outputtag
case ('strainrate')
plastic_isotropic_Noutput(instance) = plastic_isotropic_Noutput(instance) + 1_pInt
param(instance)%outputID (plastic_isotropic_Noutput(instance)) = strainrate_ID
plastic_isotropic_output(plastic_isotropic_Noutput(instance),instance) = outputtag
end select
case ('/dilatation/')
param(instance)%dilatation = .true.
case ('tau0')
param(instance)%tau0 = IO_floatValue(line,chunkPos,2_pInt)
if (param(instance)%tau0 < 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
case ('gdot0')
param(instance)%gdot0 = IO_floatValue(line,chunkPos,2_pInt)
if (param(instance)%gdot0 <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
case ('n')
param(instance)%n = IO_floatValue(line,chunkPos,2_pInt)
if (param(instance)%n <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
case ('h0')
param(instance)%h0 = IO_floatValue(line,chunkPos,2_pInt)
case ('h0_slope','slopelnrate')
param(instance)%h0_slopeLnRate = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat')
param(instance)%tausat = IO_floatValue(line,chunkPos,2_pInt)
if (param(instance)%tausat <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
case ('tausat_sinhfita')
param(instance)%tausat_SinhFitA = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitb')
param(instance)%tausat_SinhFitB = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitc')
param(instance)%tausat_SinhFitC = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitd')
param(instance)%tausat_SinhFitD = IO_floatValue(line,chunkPos,2_pInt)
case ('a', 'w0')
param(instance)%a = IO_floatValue(line,chunkPos,2_pInt)
if (param(instance)%a <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
case ('taylorfactor')
param(instance)%fTaylor = IO_floatValue(line,chunkPos,2_pInt)
if (param(instance)%fTaylor <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
case ('atol_flowstress')
param(instance)%aTolFlowstress = IO_floatValue(line,chunkPos,2_pInt)
if (param(instance)%aTolFlowstress <= 0.0_pReal) call IO_error(211_pInt,ext_msg=extmsg)
case ('atol_shear')
param(instance)%aTolShear = IO_floatValue(line,chunkPos,2_pInt)
case default
end select
endif; endif
enddo parsingFile
allocate(state(maxNinstance)) ! internal state aliases
allocate(state0(maxNinstance))
allocate(dotState(maxNinstance))
allocate(stateAbsTol(maxNinstance))
initializeInstances: do phase = 1_pInt, size(phase_plasticity) ! loop over every plasticity
myPhase: if (phase_plasticity(phase) == PLASTICITY_isotropic_ID) then ! isolate instances of own constitutive description
NipcMyPhase = count(material_phase == phase) ! number of own material points (including point components ipc)
instance = phase_plasticityInstance(phase)
!--------------------------------------------------------------------------------------------------
! sanity checks
if (param(instance)%aTolShear <= 0.0_pReal) &
param(instance)%aTolShear = 1.0e-6_pReal ! default absolute tolerance 1e-6
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,plastic_isotropic_Noutput(instance)
select case(param(instance)%outputID(o))
case(flowstress_ID,strainrate_ID)
mySize = 1_pInt
case default
end select
outputFound: if (mySize > 0_pInt) then
plastic_isotropic_sizePostResult(o,instance) = mySize
plastic_isotropic_sizePostResults(instance) = &
plastic_isotropic_sizePostResults(instance) + mySize
endif outputFound
enddo outputsLoop
!--------------------------------------------------------------------------------------------------
! allocate state arrays
sizeState = 2_pInt ! flowstress, accumulated_shear
sizeDotState = sizeState ! both evolve
sizeDeltaState = 0_pInt ! no sudden jumps in state
plasticState(phase)%sizeState = sizeState
plasticState(phase)%sizeDotState = sizeDotState
plasticState(phase)%sizeDeltaState = sizeDeltaState
plasticState(phase)%sizePostResults = plastic_isotropic_sizePostResults(instance)
plasticState(phase)%nSlip = 1
plasticState(phase)%nTwin = 0
plasticState(phase)%nTrans= 0
allocate(plasticState(phase)%aTolState ( sizeState))
allocate(plasticState(phase)%state0 ( sizeState,NipcMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%partionedState0 ( sizeState,NipcMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%subState0 ( sizeState,NipcMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%state ( sizeState,NipcMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%dotState (sizeDotState,NipcMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%deltaState (sizeDeltaState,NipcMyPhase),source=0.0_pReal)
if (.not. analyticJaco) then
allocate(plasticState(phase)%state_backup ( sizeState,NipcMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%dotState_backup (sizeDotState,NipcMyPhase),source=0.0_pReal)
endif
if (any(numerics_integrator == 1_pInt)) then
allocate(plasticState(phase)%previousDotState (sizeDotState,NipcMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%previousDotState2(sizeDotState,NipcMyPhase),source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(plasticState(phase)%RK4dotState (sizeDotState,NipcMyPhase),source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NipcMyPhase),source=0.0_pReal)
!--------------------------------------------------------------------------------------------------
! globally required state aliases
plasticState(phase)%slipRate => plasticState(phase)%dotState(2:2,1:NipcMyPhase)
plasticState(phase)%accumulatedSlip => plasticState(phase)%state (2:2,1:NipcMyPhase)
!--------------------------------------------------------------------------------------------------
! locally defined state aliases
state(instance)%flowstress => plasticState(phase)%state (1,1:NipcMyPhase)
state0(instance)%flowstress => plasticState(phase)%state0 (1,1:NipcMyPhase)
dotState(instance)%flowstress => plasticState(phase)%dotState (1,1:NipcMyPhase)
stateAbsTol(instance)%flowstress => plasticState(phase)%aTolState(1)
state(instance)%accumulatedShear => plasticState(phase)%state (2,1:NipcMyPhase)
state0(instance)%accumulatedShear => plasticState(phase)%state0 (2,1:NipcMyPhase)
dotState(instance)%accumulatedShear => plasticState(phase)%dotState (2,1:NipcMyPhase)
stateAbsTol(instance)%accumulatedShear => plasticState(phase)%aTolState(2)
!--------------------------------------------------------------------------------------------------
! init state
state0(instance)%flowstress = param(instance)%tau0
state0(instance)%accumulatedShear = 0.0_pReal
!--------------------------------------------------------------------------------------------------
! init absolute state tolerances
stateAbsTol(instance)%flowstress = param(instance)%aTolFlowstress
stateAbsTol(instance)%accumulatedShear = param(instance)%aTolShear
endif myPhase
enddo initializeInstances
end subroutine plastic_isotropic_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_e, &
debug_i, &
debug_g
use math, only: &
math_mul6x6, &
math_Mandel6to33, &
math_Plain3333to99, &
math_deviatoric33, &
math_mul33xx33, &
math_transpose33
use material, only: &
phaseAt, phasememberAt, &
plasticState, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(3,3), intent(out) :: &
Lp !< plastic velocity gradient
real(pReal), dimension(9,9), intent(out) :: &
dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(3,3) :: &
Tstar_dev_33 !< deviatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
real(pReal), dimension(3,3,3,3) :: &
dLp_dTstar_3333 !< derivative of Lp with respect to Tstar as 4th order tensor
real(pReal) :: &
gamma_dot, & !< strainrate
norm_Tstar_dev, & !< euclidean norm of Tstar_dev
squarenorm_Tstar_dev !< square of the euclidean norm of Tstar_dev
integer(pInt) :: &
instance, of, &
k, l, m, n
of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember
instance = phase_plasticityInstance(phaseAt(ipc,ip,el)) ! "phaseAt" equivalent to "material_phase" !!
Tstar_dev_33 = math_deviatoric33(math_Mandel6to33(Tstar_v)) ! deviatoric part of 2nd Piola-Kirchhoff stress
squarenorm_Tstar_dev = math_mul33xx33(Tstar_dev_33,Tstar_dev_33)
norm_Tstar_dev = sqrt(squarenorm_Tstar_dev)
if (norm_Tstar_dev <= 0.0_pReal) then ! Tstar == 0 --> both Lp and dLp_dTstar are zero
Lp = 0.0_pReal
dLp_dTstar99 = 0.0_pReal
else
gamma_dot = param(instance)%gdot0 &
* ( sqrt(1.5_pReal) * norm_Tstar_dev / param(instance)%fTaylor / state(instance)%flowstress(of) ) &
**param(instance)%n
Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/param(instance)%fTaylor
if (iand(debug_level(debug_constitutive), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i2,1x,i3)') '<< CONST isotropic >> at el ip g ',el,ip,ipc
write(6,'(/,a,/,3(12x,3(f12.4,1x)/))') '<< CONST isotropic >> Tstar (dev) / MPa', &
math_transpose33(Tstar_dev_33(1:3,1:3))*1.0e-6_pReal
write(6,'(/,a,/,f12.5)') '<< CONST isotropic >> norm Tstar / MPa', norm_Tstar_dev*1.0e-6_pReal
write(6,'(/,a,/,f12.5)') '<< CONST isotropic >> gdot', gamma_dot
end if
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Lp
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,m,n) = (param(instance)%n-1.0_pReal) * &
Tstar_dev_33(k,l)*Tstar_dev_33(m,n) / squarenorm_Tstar_dev
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,k,l) = dLp_dTstar_3333(k,l,k,l) + 1.0_pReal
forall (k=1_pInt:3_pInt,m=1_pInt:3_pInt) &
dLp_dTstar_3333(k,k,m,m) = dLp_dTstar_3333(k,k,m,m) - 1.0_pReal/3.0_pReal
dLp_dTstar99 = math_Plain3333to99(gamma_dot / param(instance)%fTaylor * &
dLp_dTstar_3333 / norm_Tstar_dev)
end if
end subroutine plastic_isotropic_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar_3333,Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6, &
math_Mandel6to33, &
math_Plain3333to99, &
math_spherical33, &
math_mul33xx33
use material, only: &
phaseAt, phasememberAt, &
plasticState, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(3,3), intent(out) :: &
Li !< plastic velocity gradient
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(3,3) :: &
Tstar_sph_33 !< sphiatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
real(pReal), dimension(3,3,3,3), intent(out) :: &
dLi_dTstar_3333 !< derivative of Li with respect to Tstar as 4th order tensor
real(pReal) :: &
gamma_dot, & !< strainrate
norm_Tstar_sph, & !< euclidean norm of Tstar_sph
squarenorm_Tstar_sph !< square of the euclidean norm of Tstar_sph
integer(pInt) :: &
instance, of, &
k, l, m, n
of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember
instance = phase_plasticityInstance(phaseAt(ipc,ip,el)) ! "phaseAt" equivalent to "material_phase" !!
Tstar_sph_33 = math_spherical33(math_Mandel6to33(Tstar_v)) ! spherical part of 2nd Piola-Kirchhoff stress
squarenorm_Tstar_sph = math_mul33xx33(Tstar_sph_33,Tstar_sph_33)
norm_Tstar_sph = sqrt(squarenorm_Tstar_sph)
if (param(instance)%dilatation) then
if (norm_Tstar_sph <= 0.0_pReal) then ! Tstar == 0 --> both Li and dLi_dTstar are zero
Li = 0.0_pReal
dLi_dTstar_3333 = 0.0_pReal
else
gamma_dot = param(instance)%gdot0 &
* (sqrt(1.5_pReal) * norm_Tstar_sph / param(instance)%fTaylor / state(instance)%flowstress(of) ) &
**param(instance)%n
Li = Tstar_sph_33/norm_Tstar_sph * gamma_dot/param(instance)%fTaylor
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Li
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLi_dTstar_3333(k,l,m,n) = (param(instance)%n-1.0_pReal) * &
Tstar_sph_33(k,l)*Tstar_sph_33(m,n) / squarenorm_Tstar_sph
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLi_dTstar_3333(k,l,k,l) = dLi_dTstar_3333(k,l,k,l) + 1.0_pReal
dLi_dTstar_3333 = gamma_dot / param(instance)%fTaylor * &
dLi_dTstar_3333 / norm_Tstar_sph
endif
endif
end subroutine plastic_isotropic_LiAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
subroutine plastic_isotropic_dotState(Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6
use material, only: &
phaseAt, phasememberAt, &
plasticState, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(6), intent(in):: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(6) :: &
Tstar_dev_v !< deviatoric 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
gamma_dot, & !< strainrate
hardening, & !< hardening coefficient
saturation, & !< saturation flowstress
norm_Tstar_v !< euclidean norm of Tstar_dev
integer(pInt) :: &
instance, & !< instance of my instance (unique number of my constitutive model)
of !< shortcut notation for offset position in state array
of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember
instance = phase_plasticityInstance(phaseAt(ipc,ip,el)) ! "phaseAt" equivalent to "material_phase" !!
!--------------------------------------------------------------------------------------------------
! norm of (deviatoric) 2nd Piola-Kirchhoff stress
if (param(instance)%dilatation) then
norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v))
else
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_v = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
end if
!--------------------------------------------------------------------------------------------------
! strain rate
gamma_dot = param(instance)%gdot0 * ( sqrt(1.5_pReal) * norm_Tstar_v &
/ &!-----------------------------------------------------------------------------------
(param(instance)%fTaylor*state(instance)%flowstress(of) ))**param(instance)%n
!--------------------------------------------------------------------------------------------------
! hardening coefficient
if (abs(gamma_dot) > 1e-12_pReal) then
if (abs(param(instance)%tausat_SinhFitA) <= tiny(0.0_pReal)) then
saturation = param(instance)%tausat
else
saturation = ( param(instance)%tausat &
+ ( log( ( gamma_dot / param(instance)%tausat_SinhFitA&
)**(1.0_pReal / param(instance)%tausat_SinhFitD)&
+ sqrt( ( gamma_dot / param(instance)%tausat_SinhFitA &
)**(2.0_pReal / param(instance)%tausat_SinhFitD) &
+ 1.0_pReal ) &
) & ! asinh(K) = ln(K + sqrt(K^2 +1))
)**(1.0_pReal / param(instance)%tausat_SinhFitC) &
/ ( param(instance)%tausat_SinhFitB &
* (gamma_dot / param(instance)%gdot0)**(1.0_pReal / param(instance)%n) &
) &
)
endif
hardening = ( param(instance)%h0 + param(instance)%h0_slopeLnRate * log(gamma_dot) ) &
* abs( 1.0_pReal - state(instance)%flowstress(of)/saturation )**param(instance)%a &
* sign(1.0_pReal, 1.0_pReal - state(instance)%flowstress(of)/saturation)
else
hardening = 0.0_pReal
endif
dotState(instance)%flowstress (of) = hardening * gamma_dot
dotState(instance)%accumulatedShear(of) = gamma_dot
end subroutine plastic_isotropic_dotState
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
function plastic_isotropic_postResults(Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6
use material, only: &
material_phase, &
plasticState, &
phaseAt, phasememberAt, &
phase_plasticityInstance
implicit none
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(plastic_isotropic_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
plastic_isotropic_postResults
real(pReal), dimension(6) :: &
Tstar_dev_v !< deviatoric 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
norm_Tstar_v ! euclidean norm of Tstar_dev
integer(pInt) :: &
instance, & !< instance of my instance (unique number of my constitutive model)
of, & !< shortcut notation for offset position in state array
c, &
o
of = phasememberAt(ipc,ip,el) ! phasememberAt should be tackled by material and be renamed to material_phasemember
instance = phase_plasticityInstance(phaseAt(ipc,ip,el)) ! "phaseAt" equivalent to "material_phase" !!
!--------------------------------------------------------------------------------------------------
! norm of (deviatoric) 2nd Piola-Kirchhoff stress
if (param(instance)%dilatation) then
norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v))
else
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_v = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
end if
c = 0_pInt
plastic_isotropic_postResults = 0.0_pReal
outputsLoop: do o = 1_pInt,plastic_isotropic_Noutput(instance)
select case(param(instance)%outputID(o))
case (flowstress_ID)
plastic_isotropic_postResults(c+1_pInt) = state(instance)%flowstress(of)
c = c + 1_pInt
case (strainrate_ID)
plastic_isotropic_postResults(c+1_pInt) = &
param(instance)%gdot0 * ( sqrt(1.5_pReal) * norm_Tstar_v &
/ &!----------------------------------------------------------------------------------
(param(instance)%fTaylor * state(instance)%flowstress(of)) ) ** param(instance)%n
c = c + 1_pInt
end select
enddo outputsLoop
end function plastic_isotropic_postResults
end module plastic_isotropic

View File

@ -1,579 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for isotropic (J2) plasticity
!> @details Isotropic (J2) Plasticity which resembles the phenopowerlaw plasticity without
!! resolving the stress on the slip systems. Will give the response of phenopowerlaw for an
!! untextured polycrystal
!--------------------------------------------------------------------------------------------------
module plastic_j2
#ifdef HDF
use hdf5, only: &
HID_T
#endif
use prec, only: &
pReal,&
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
plastic_j2_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
plastic_j2_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
plastic_j2_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
plastic_j2_Noutput !< number of outputs per instance
real(pReal), dimension(:), allocatable, private :: &
plastic_j2_fTaylor, & !< Taylor factor
plastic_j2_tau0, & !< initial plastic stress
plastic_j2_gdot0, & !< reference velocity
plastic_j2_n, & !< Visco-plastic parameter
!--------------------------------------------------------------------------------------------------
! h0 as function of h0 = A + B log (gammadot)
plastic_j2_h0, &
plastic_j2_h0_slopeLnRate, &
plastic_j2_tausat, & !< final plastic stress
plastic_j2_a, &
plastic_j2_aTolResistance, &
plastic_j2_aTolShear, &
!--------------------------------------------------------------------------------------------------
! tausat += (asinh((gammadot / SinhFitA)**(1 / SinhFitD)))**(1 / SinhFitC) / (SinhFitB * (gammadot / gammadot0)**(1/n))
plastic_j2_tausat_SinhFitA, & !< fitting parameter for normalized strain rate vs. stress function
plastic_j2_tausat_SinhFitB, & !< fitting parameter for normalized strain rate vs. stress function
plastic_j2_tausat_SinhFitC, & !< fitting parameter for normalized strain rate vs. stress function
plastic_j2_tausat_SinhFitD !< fitting parameter for normalized strain rate vs. stress function
enum, bind(c)
enumerator :: undefined_ID, &
flowstress_ID, &
strainrate_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
plastic_j2_outputID !< ID of each post result output
#ifdef HDF
type plastic_j2_tOutput
real(pReal), dimension(:), allocatable, private :: &
flowstress, &
strainrate
logical :: flowstressActive = .false., strainrateActive = .false. ! if we can write the output block wise, this is not needed anymore because we can do an if(allocated(xxx))
end type plastic_j2_tOutput
type(plastic_j2_tOutput), allocatable, dimension(:) :: plastic_j2_Output2
integer(HID_T), allocatable, dimension(:) :: outID
#endif
public :: &
plastic_j2_init, &
plastic_j2_LpAndItsTangent, &
plastic_j2_dotState, &
plastic_j2_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine plastic_j2_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
#ifdef HDF
use hdf5
#endif
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelBasic
use numerics, only: &
analyticJaco, &
worldrank, &
numerics_integrator
use math, only: &
math_Mandel3333to66, &
math_Voigt66to3333
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_error, &
IO_timeStamp, &
#ifdef HDF
tempResults, &
HDF5_addGroup, &
HDF5_addScalarDataset,&
#endif
IO_EOF
use material, only: &
phase_plasticity, &
phase_plasticityInstance, &
phase_Noutput, &
PLASTICITY_J2_label, &
PLASTICITY_J2_ID, &
material_phase, &
plasticState, &
MATERIAL_partPhase
use lattice
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: &
o, &
phase, &
maxNinstance, &
instance, &
mySize, &
sizeDotState, &
sizeState, &
sizeDeltaState
character(len=65536) :: &
tag = '', &
line = ''
integer(pInt) :: NofMyPhase
#ifdef HDF
character(len=5) :: &
str1
integer(HID_T) :: ID,ID2,ID4
#endif
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_J2_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_plasticity == PLASTICITY_J2_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
#ifdef HDF
allocate(plastic_j2_Output2(maxNinstance))
allocate(outID(maxNinstance))
#endif
allocate(plastic_j2_sizePostResults(maxNinstance), source=0_pInt)
allocate(plastic_j2_sizePostResult(maxval(phase_Noutput), maxNinstance),source=0_pInt)
allocate(plastic_j2_output(maxval(phase_Noutput), maxNinstance))
plastic_j2_output = ''
allocate(plastic_j2_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(plastic_j2_Noutput(maxNinstance), source=0_pInt)
allocate(plastic_j2_fTaylor(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_tau0(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_gdot0(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_n(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_h0(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_h0_slopeLnRate(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_tausat(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_a(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_aTolResistance(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_aTolShear (maxNinstance), source=0.0_pReal)
allocate(plastic_j2_tausat_SinhFitA(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_tausat_SinhFitB(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_tausat_SinhFitC(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_tausat_SinhFitD(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next section
phase = phase + 1_pInt ! advance section counter
if (phase_plasticity(phase) == PLASTICITY_J2_ID) then
instance = phase_plasticityInstance(phase)
#ifdef HDF
outID(instance)=HDF5_addGroup(str1,tempResults)
#endif
endif
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (phase_plasticity(phase) == PLASTICITY_J2_ID) then ! one of my phases. Do not short-circuit here (.and. between if-statements), it's not safe in Fortran
instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('flowstress')
plastic_j2_Noutput(instance) = plastic_j2_Noutput(instance) + 1_pInt
plastic_j2_outputID(plastic_j2_Noutput(instance),instance) = flowstress_ID
plastic_j2_output(plastic_j2_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
#ifdef HDF
call HDF5_addScalarDataset(outID(instance),myConstituents,'flowstress','MPa')
allocate(plastic_j2_Output2(instance)%flowstress(myConstituents))
plastic_j2_Output2(instance)%flowstressActive = .true.
#endif
case ('strainrate')
plastic_j2_Noutput(instance) = plastic_j2_Noutput(instance) + 1_pInt
plastic_j2_outputID(plastic_j2_Noutput(instance),instance) = strainrate_ID
plastic_j2_output(plastic_j2_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
#ifdef HDF
call HDF5_addScalarDataset(outID(instance),myConstituents,'strainrate','1/s')
allocate(plastic_j2_Output2(instance)%strainrate(myConstituents))
plastic_j2_Output2(instance)%strainrateActive = .true.
#endif
case default
end select
case ('tau0')
plastic_j2_tau0(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_j2_tau0(instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('gdot0')
plastic_j2_gdot0(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_j2_gdot0(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('n')
plastic_j2_n(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_j2_n(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('h0')
plastic_j2_h0(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('h0_slope','slopelnrate')
plastic_j2_h0_slopeLnRate(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat')
plastic_j2_tausat(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_j2_tausat(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('tausat_sinhfita')
plastic_j2_tausat_SinhFitA(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitb')
plastic_j2_tausat_SinhFitB(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitc')
plastic_j2_tausat_SinhFitC(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitd')
plastic_j2_tausat_SinhFitD(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('a', 'w0')
plastic_j2_a(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_j2_a(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('taylorfactor')
plastic_j2_fTaylor(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_j2_fTaylor(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('atol_resistance')
plastic_j2_aTolResistance(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_j2_aTolResistance(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('atol_shear')
plastic_j2_aTolShear(instance) = IO_floatValue(line,chunkPos,2_pInt)
case default
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, size(phase_plasticity)
myPhase: if (phase_plasticity(phase) == PLASTICITY_j2_ID) then
NofMyPhase=count(material_phase==phase)
instance = phase_plasticityInstance(phase)
!--------------------------------------------------------------------------------------------------
! sanity checks
if (plastic_j2_aTolShear(instance) <= 0.0_pReal) &
plastic_j2_aTolShear(instance) = 1.0e-6_pReal ! default absolute tolerance 1e-6
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,plastic_j2_Noutput(instance)
select case(plastic_j2_outputID(o,instance))
case(flowstress_ID,strainrate_ID)
mySize = 1_pInt
case default
end select
outputFound: if (mySize > 0_pInt) then
plastic_j2_sizePostResult(o,instance) = mySize
plastic_j2_sizePostResults(instance) = &
plastic_j2_sizePostResults(instance) + mySize
endif outputFound
enddo outputsLoop
!--------------------------------------------------------------------------------------------------
! allocate state arrays
sizeState = 2_pInt
sizeDotState = sizeState
sizeDeltaState = 0_pInt
plasticState(phase)%sizeState = sizeState
plasticState(phase)%sizeDotState = sizeDotState
plasticState(phase)%sizeDeltaState = sizeDeltaState
plasticState(phase)%sizePostResults = plastic_j2_sizePostResults(instance)
plasticState(phase)%nSlip = 1
plasticState(phase)%nTwin = 0
plasticState(phase)%nTrans= 0
allocate(plasticState(phase)%aTolState ( sizeState))
plasticState(phase)%aTolState(1) = plastic_j2_aTolResistance(instance)
plasticState(phase)%aTolState(2) = plastic_j2_aTolShear(instance)
allocate(plasticState(phase)%state0 ( sizeState,NofMyPhase))
plasticState(phase)%state0(1,1:NofMyPhase) = plastic_j2_tau0(instance)
plasticState(phase)%state0(2,1:NofMyPhase) = 0.0_pReal
allocate(plasticState(phase)%partionedState0 ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%subState0 ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%state ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%dotState (sizeDotState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%deltaState (sizeDeltaState,NofMyPhase),source=0.0_pReal)
if (.not. analyticJaco) then
allocate(plasticState(phase)%state_backup ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%dotState_backup (sizeDotState,NofMyPhase),source=0.0_pReal)
endif
if (any(numerics_integrator == 1_pInt)) then
allocate(plasticState(phase)%previousDotState (sizeDotState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%previousDotState2(sizeDotState,NofMyPhase),source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(plasticState(phase)%RK4dotState (sizeDotState,NofMyPhase),source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
plasticState(phase)%slipRate => plasticState(phase)%dotState(2:2,1:NofMyPhase)
plasticState(phase)%accumulatedSlip => plasticState(phase)%state (2:2,1:NofMyPhase)
endif myPhase
enddo initializeInstances
end subroutine plastic_j2_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
subroutine plastic_j2_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6, &
math_Mandel6to33, &
math_Plain3333to99, &
math_deviatoric33, &
math_mul33xx33
use material, only: &
phaseAt, phasememberAt, &
plasticState, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(3,3), intent(out) :: &
Lp !< plastic velocity gradient
real(pReal), dimension(9,9), intent(out) :: &
dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(3,3) :: &
Tstar_dev_33 !< deviatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
real(pReal), dimension(3,3,3,3) :: &
dLp_dTstar_3333 !< derivative of Lp with respect to Tstar as 4th order tensor
real(pReal) :: &
gamma_dot, & !< strainrate
norm_Tstar_dev, & !< euclidean norm of Tstar_dev
squarenorm_Tstar_dev !< square of the euclidean norm of Tstar_dev
integer(pInt) :: &
instance, &
k, l, m, n
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
Tstar_dev_33 = math_deviatoric33(math_Mandel6to33(Tstar_v)) ! deviatoric part of 2nd Piola-Kirchhoff stress
squarenorm_Tstar_dev = math_mul33xx33(Tstar_dev_33,Tstar_dev_33)
norm_Tstar_dev = sqrt(squarenorm_Tstar_dev)
if (norm_Tstar_dev <= 0.0_pReal) then ! Tstar == 0 --> both Lp and dLp_dTstar are zero
Lp = 0.0_pReal
dLp_dTstar99 = 0.0_pReal
else
gamma_dot = plastic_j2_gdot0(instance) &
* (sqrt(1.5_pReal) * norm_Tstar_dev / (plastic_j2_fTaylor(instance) * &
plasticState(phaseAt(ipc,ip,el))%state(1,phasememberAt(ipc,ip,el)))) &
**plastic_j2_n(instance)
Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/plastic_j2_fTaylor(instance)
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Lp
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,m,n) = (plastic_j2_n(instance)-1.0_pReal) * &
Tstar_dev_33(k,l)*Tstar_dev_33(m,n) / squarenorm_Tstar_dev
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,k,l) = dLp_dTstar_3333(k,l,k,l) + 1.0_pReal
forall (k=1_pInt:3_pInt,m=1_pInt:3_pInt) &
dLp_dTstar_3333(k,k,m,m) = dLp_dTstar_3333(k,k,m,m) - 1.0_pReal/3.0_pReal
dLp_dTstar99 = math_Plain3333to99(gamma_dot / plastic_j2_fTaylor(instance) * &
dLp_dTstar_3333 / norm_Tstar_dev)
end if
end subroutine plastic_j2_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
subroutine plastic_j2_dotState(Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6
use material, only: &
phaseAt, phasememberAt, &
plasticState, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(6), intent(in):: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(6) :: &
Tstar_dev_v !< deviatoric part of the 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
gamma_dot, & !< strainrate
hardening, & !< hardening coefficient
saturation, & !< saturation resistance
norm_Tstar_dev !< euclidean norm of Tstar_dev
integer(pInt) :: &
instance, & !< instance of my instance (unique number of my constitutive model)
of, & !< shortcut notation for offset position in state array
ph !< shortcut notation for phase ID (unique number of all phases, regardless of constitutive model)
of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
!--------------------------------------------------------------------------------------------------
! norm of deviatoric part of 2nd Piola-Kirchhoff stress
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_dev = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
!--------------------------------------------------------------------------------------------------
! strain rate
gamma_dot = plastic_j2_gdot0(instance) * ( sqrt(1.5_pReal) * norm_Tstar_dev &
/ &!-----------------------------------------------------------------------------------
(plastic_j2_fTaylor(instance)*plasticState(ph)%state(1,of)) )**plastic_j2_n(instance)
!--------------------------------------------------------------------------------------------------
! hardening coefficient
if (abs(gamma_dot) > 1e-12_pReal) then
if (abs(plastic_j2_tausat_SinhFitA(instance)) <= tiny(0.0_pReal)) then
saturation = plastic_j2_tausat(instance)
else
saturation = ( plastic_j2_tausat(instance) &
+ ( log( ( gamma_dot / plastic_j2_tausat_SinhFitA(instance)&
)**(1.0_pReal / plastic_j2_tausat_SinhFitD(instance))&
+ sqrt( ( gamma_dot / plastic_j2_tausat_SinhFitA(instance) &
)**(2.0_pReal / plastic_j2_tausat_SinhFitD(instance)) &
+ 1.0_pReal ) &
) & ! asinh(K) = ln(K + sqrt(K^2 +1))
)**(1.0_pReal / plastic_j2_tausat_SinhFitC(instance)) &
/ ( plastic_j2_tausat_SinhFitB(instance) &
* (gamma_dot / plastic_j2_gdot0(instance))**(1.0_pReal / plastic_j2_n(instance)) &
) &
)
endif
hardening = ( plastic_j2_h0(instance) + plastic_j2_h0_slopeLnRate(instance) * log(gamma_dot) ) &
* abs( 1.0_pReal - plasticState(ph)%state(1,of)/saturation )**plastic_j2_a(instance) &
* sign(1.0_pReal, 1.0_pReal - plasticState(ph)%state(1,of)/saturation)
else
hardening = 0.0_pReal
endif
plasticState(ph)%dotState(1,of) = hardening * gamma_dot
plasticState(ph)%dotState(2,of) = gamma_dot
end subroutine plastic_j2_dotState
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
function plastic_j2_postResults(Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6
use material, only: &
material_phase, &
plasticState, &
phaseAt, phasememberAt, &
phase_plasticityInstance
implicit none
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(plastic_j2_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
plastic_j2_postResults
real(pReal), dimension(6) :: &
Tstar_dev_v ! deviatoric part of the 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
norm_Tstar_dev ! euclidean norm of Tstar_dev
integer(pInt) :: &
instance, & !< instance of my instance (unique number of my constitutive model)
of, & !< shortcut notation for offset position in state array
ph, & !< shortcut notation for phase ID (unique number of all phases, regardless of constitutive model)
c, &
o
of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
!--------------------------------------------------------------------------------------------------
! calculate deviatoric part of 2nd Piola-Kirchhoff stress and its norm
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_dev = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
c = 0_pInt
plastic_j2_postResults = 0.0_pReal
outputsLoop: do o = 1_pInt,plastic_j2_Noutput(instance)
select case(plastic_j2_outputID(o,instance))
case (flowstress_ID)
plastic_j2_postResults(c+1_pInt) = plasticState(ph)%state(1,of)
c = c + 1_pInt
case (strainrate_ID)
plastic_j2_postResults(c+1_pInt) = &
plastic_j2_gdot0(instance) * ( sqrt(1.5_pReal) * norm_Tstar_dev &
/ &!----------------------------------------------------------------------------------
(plastic_j2_fTaylor(instance) * plasticState(ph)%state(1,of)) ) ** plastic_j2_n(instance)
c = c + 1_pInt
end select
enddo outputsLoop
end function plastic_j2_postResults
end module plastic_j2

View File

@ -1,109 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for purely elastic material
!--------------------------------------------------------------------------------------------------
module plastic_none
use prec, only: &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
plastic_none_sizePostResults
integer(pInt), dimension(:,:), allocatable, target, public :: &
plastic_none_sizePostResult !< size of each post result output
public :: &
plastic_none_init
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine plastic_none_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelBasic
use IO, only: &
IO_timeStamp
use numerics, only: &
worldrank, &
numerics_integrator
use material, only: &
phase_plasticity, &
PLASTICITY_NONE_label, &
material_phase, &
plasticState, &
PLASTICITY_none_ID
implicit none
integer(pInt) :: &
maxNinstance, &
phase, &
NofMyPhase, &
sizeState, &
sizeDotState, &
sizeDeltaState
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_NONE_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_plasticity == PLASTICITY_none_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
initializeInstances: do phase = 1_pInt, size(phase_plasticity)
if (phase_plasticity(phase) == PLASTICITY_none_ID) then
NofMyPhase=count(material_phase==phase)
sizeState = 0_pInt
plasticState(phase)%sizeState = sizeState
sizeDotState = sizeState
plasticState(phase)%sizeDotState = sizeDotState
sizeDeltaState = 0_pInt
plasticState(phase)%sizeDeltaState = sizeDeltaState
plasticState(phase)%sizePostResults = 0_pInt
plasticState(phase)%nSlip = 0_pInt
plasticState(phase)%nTwin = 0_pInt
plasticState(phase)%nTrans = 0_pInt
allocate(plasticState(phase)%aTolState (sizeState))
allocate(plasticState(phase)%state0 (sizeState,NofMyPhase))
allocate(plasticState(phase)%partionedState0 (sizeState,NofMyPhase))
allocate(plasticState(phase)%subState0 (sizeState,NofMyPhase))
allocate(plasticState(phase)%state (sizeState,NofMyPhase))
allocate(plasticState(phase)%state_backup (sizeState,NofMyPhase))
allocate(plasticState(phase)%dotState (sizeDotState,NofMyPhase))
allocate(plasticState(phase)%deltaState (sizeDeltaState,NofMyPhase))
allocate(plasticState(phase)%dotState_backup (sizeDotState,NofMyPhase))
if (any(numerics_integrator == 1_pInt)) then
allocate(plasticState(phase)%previousDotState (sizeDotState,NofMyPhase))
allocate(plasticState(phase)%previousDotState2(sizeDotState,NofMyPhase))
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(plasticState(phase)%RK4dotState (sizeDotState,NofMyPhase))
if (any(numerics_integrator == 5_pInt)) &
allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase))
endif
enddo initializeInstances
allocate(plastic_none_sizePostResults(maxNinstance), source=0_pInt)
end subroutine plastic_none_init
end module plastic_none

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,61 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for constant porosity
!--------------------------------------------------------------------------------------------------
module porosity_none
implicit none
private
public :: &
porosity_none_init
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields, reads information from material configuration file
!--------------------------------------------------------------------------------------------------
subroutine porosity_none_init()
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use prec, only: &
pReal, &
pInt
use IO, only: &
IO_timeStamp
use material
use numerics, only: &
worldrank
implicit none
integer(pInt) :: &
homog, &
NofMyHomog
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- porosity_'//POROSITY_none_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
initializeInstances: do homog = 1_pInt, material_Nhomogenization
myhomog: if (porosity_type(homog) == POROSITY_none_ID) then
NofMyHomog = count(material_homog == homog)
porosityState(homog)%sizeState = 0_pInt
porosityState(homog)%sizePostResults = 0_pInt
allocate(porosityState(homog)%state0 (0_pInt,NofMyHomog), source=0.0_pReal)
allocate(porosityState(homog)%subState0(0_pInt,NofMyHomog), source=0.0_pReal)
allocate(porosityState(homog)%state (0_pInt,NofMyHomog), source=0.0_pReal)
deallocate(porosity(homog)%p)
allocate (porosity(homog)%p(1), source=porosity_initialPhi(homog))
endif myhomog
enddo initializeInstances
end subroutine porosity_none_init
end module porosity_none

View File

@ -1,450 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for phase field modelling of pore nucleation and growth
!> @details phase field model for pore nucleation and growth based on vacancy clustering
!--------------------------------------------------------------------------------------------------
module porosity_phasefield
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
porosity_phasefield_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
porosity_phasefield_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
porosity_phasefield_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
porosity_phasefield_Noutput !< number of outputs per instance of this porosity
enum, bind(c)
enumerator :: undefined_ID, &
porosity_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
porosity_phasefield_outputID !< ID of each post result output
public :: &
porosity_phasefield_init, &
porosity_phasefield_getFormationEnergy, &
porosity_phasefield_getSurfaceEnergy, &
porosity_phasefield_getSourceAndItsTangent, &
porosity_phasefield_getDiffusion33, &
porosity_phasefield_getMobility, &
porosity_phasefield_putPorosity, &
porosity_phasefield_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine porosity_phasefield_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
porosity_type, &
porosity_typeInstance, &
homogenization_Noutput, &
POROSITY_phasefield_label, &
POROSITY_phasefield_ID, &
material_homog, &
mappingHomogenization, &
porosityState, &
porosityMapping, &
porosity, &
porosity_initialPhi, &
material_partHomogenization, &
material_partPhase
use numerics,only: &
worldrank
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,mySize=0_pInt,section,instance,o
integer(pInt) :: sizeState
integer(pInt) :: NofMyHomog
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- porosity_'//POROSITY_phasefield_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(porosity_type == POROSITY_phasefield_ID),pInt)
if (maxNinstance == 0_pInt) return
allocate(porosity_phasefield_sizePostResults(maxNinstance), source=0_pInt)
allocate(porosity_phasefield_sizePostResult (maxval(homogenization_Noutput),maxNinstance),source=0_pInt)
allocate(porosity_phasefield_output (maxval(homogenization_Noutput),maxNinstance))
porosity_phasefield_output = ''
allocate(porosity_phasefield_outputID (maxval(homogenization_Noutput),maxNinstance),source=undefined_ID)
allocate(porosity_phasefield_Noutput (maxNinstance), source=0_pInt)
rewind(fileUnit)
section = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to <homogenization>
line = IO_read(fileUnit)
enddo
parsingHomog: do while (trim(line) /= IO_EOF) ! read through sections of homog part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next homog section
section = section + 1_pInt ! advance homog section counter
cycle ! skip to next line
endif
if (section > 0_pInt ) then; if (porosity_type(section) == POROSITY_phasefield_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = porosity_typeInstance(section) ! which instance of my porosity is present homog
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('porosity')
porosity_phasefield_Noutput(instance) = porosity_phasefield_Noutput(instance) + 1_pInt
porosity_phasefield_outputID(porosity_phasefield_Noutput(instance),instance) = porosity_ID
porosity_phasefield_output(porosity_phasefield_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
end select
endif; endif
enddo parsingHomog
initializeInstances: do section = 1_pInt, size(porosity_type)
if (porosity_type(section) == POROSITY_phasefield_ID) then
NofMyHomog=count(material_homog==section)
instance = porosity_typeInstance(section)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,porosity_phasefield_Noutput(instance)
select case(porosity_phasefield_outputID(o,instance))
case(porosity_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
porosity_phasefield_sizePostResult(o,instance) = mySize
porosity_phasefield_sizePostResults(instance) = porosity_phasefield_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! allocate state arrays
sizeState = 0_pInt
porosityState(section)%sizeState = sizeState
porosityState(section)%sizePostResults = porosity_phasefield_sizePostResults(instance)
allocate(porosityState(section)%state0 (sizeState,NofMyHomog))
allocate(porosityState(section)%subState0(sizeState,NofMyHomog))
allocate(porosityState(section)%state (sizeState,NofMyHomog))
nullify(porosityMapping(section)%p)
porosityMapping(section)%p => mappingHomogenization(1,:,:)
deallocate(porosity(section)%p)
allocate(porosity(section)%p(NofMyHomog), source=porosity_initialPhi(section))
endif
enddo initializeInstances
end subroutine porosity_phasefield_init
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized vacancy formation energy
!--------------------------------------------------------------------------------------------------
function porosity_phasefield_getFormationEnergy(ip,el)
use lattice, only: &
lattice_vacancyFormationEnergy, &
lattice_vacancyVol
use material, only: &
homogenization_Ngrains, &
material_phase
use mesh, only: &
mesh_element
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
porosity_phasefield_getFormationEnergy
integer(pInt) :: &
grain
porosity_phasefield_getFormationEnergy = 0.0_pReal
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
porosity_phasefield_getFormationEnergy = porosity_phasefield_getFormationEnergy + &
lattice_vacancyFormationEnergy(material_phase(grain,ip,el))/ &
lattice_vacancyVol(material_phase(grain,ip,el))
enddo
porosity_phasefield_getFormationEnergy = &
porosity_phasefield_getFormationEnergy/ &
homogenization_Ngrains(mesh_element(3,el))
end function porosity_phasefield_getFormationEnergy
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized pore surface energy (normalized by characteristic length)
!--------------------------------------------------------------------------------------------------
function porosity_phasefield_getSurfaceEnergy(ip,el)
use lattice, only: &
lattice_vacancySurfaceEnergy
use material, only: &
homogenization_Ngrains, &
material_phase
use mesh, only: &
mesh_element
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
porosity_phasefield_getSurfaceEnergy
integer(pInt) :: &
grain
porosity_phasefield_getSurfaceEnergy = 0.0_pReal
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
porosity_phasefield_getSurfaceEnergy = porosity_phasefield_getSurfaceEnergy + &
lattice_vacancySurfaceEnergy(material_phase(grain,ip,el))
enddo
porosity_phasefield_getSurfaceEnergy = &
porosity_phasefield_getSurfaceEnergy/ &
homogenization_Ngrains(mesh_element(3,el))
end function porosity_phasefield_getSurfaceEnergy
!--------------------------------------------------------------------------------------------------
!> @brief calculates homogenized local driving force for pore nucleation and growth
!--------------------------------------------------------------------------------------------------
subroutine porosity_phasefield_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ip, el)
use math, only : &
math_mul33x33, &
math_mul66x6, &
math_Mandel33to6, &
math_transpose33, &
math_I3
use material, only: &
homogenization_Ngrains, &
material_homog, &
material_phase, &
phase_NstiffnessDegradations, &
phase_stiffnessDegradation, &
vacancyConc, &
vacancyfluxMapping, &
damage, &
damageMapping, &
STIFFNESS_DEGRADATION_damage_ID
use crystallite, only: &
crystallite_Fe
use constitutive, only: &
constitutive_homogenizedC
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
phi
integer(pInt) :: &
phase, &
grain, &
homog, &
mech
real(pReal) :: &
phiDot, dPhiDot_dPhi, Cv, W_e, strain(6), C(6,6)
homog = material_homog(ip,el)
Cv = vacancyConc(homog)%p(vacancyfluxMapping(homog)%p(ip,el))
W_e = 0.0_pReal
do grain = 1, homogenization_Ngrains(homog)
phase = material_phase(grain,ip,el)
strain = math_Mandel33to6(math_mul33x33(math_transpose33(crystallite_Fe(1:3,1:3,grain,ip,el)), &
crystallite_Fe(1:3,1:3,grain,ip,el)) - math_I3)/2.0_pReal
C = constitutive_homogenizedC(grain,ip,el)
do mech = 1_pInt, phase_NstiffnessDegradations(phase)
select case(phase_stiffnessDegradation(mech,phase))
case (STIFFNESS_DEGRADATION_damage_ID)
C = damage(homog)%p(damageMapping(homog)%p(ip,el))* &
damage(homog)%p(damageMapping(homog)%p(ip,el))* &
C
end select
enddo
W_e = W_e + sum(abs(strain*math_mul66x6(C,strain)))
enddo
W_e = W_e/homogenization_Ngrains(homog)
phiDot = 2.0_pReal*(1.0_pReal - phi)*(1.0_pReal - Cv)*(1.0_pReal - Cv) - &
2.0_pReal*phi*(W_e + Cv*porosity_phasefield_getFormationEnergy(ip,el))/ &
porosity_phasefield_getSurfaceEnergy (ip,el)
dPhiDot_dPhi = - 2.0_pReal*(1.0_pReal - Cv)*(1.0_pReal - Cv) &
- 2.0_pReal*(W_e + Cv*porosity_phasefield_getFormationEnergy(ip,el))/ &
porosity_phasefield_getSurfaceEnergy (ip,el)
end subroutine porosity_phasefield_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized nonlocal diffusion tensor in reference configuration
!--------------------------------------------------------------------------------------------------
function porosity_phasefield_getDiffusion33(ip,el)
use lattice, only: &
lattice_PorosityDiffusion33
use material, only: &
homogenization_Ngrains, &
material_phase, &
mappingHomogenization
use crystallite, only: &
crystallite_push33ToRef
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
porosity_phasefield_getDiffusion33
integer(pInt) :: &
homog, &
grain
homog = mappingHomogenization(2,ip,el)
porosity_phasefield_getDiffusion33 = 0.0_pReal
do grain = 1, homogenization_Ngrains(homog)
porosity_phasefield_getDiffusion33 = porosity_phasefield_getDiffusion33 + &
crystallite_push33ToRef(grain,ip,el,lattice_PorosityDiffusion33(1:3,1:3,material_phase(grain,ip,el)))
enddo
porosity_phasefield_getDiffusion33 = &
porosity_phasefield_getDiffusion33/ &
homogenization_Ngrains(homog)
end function porosity_phasefield_getDiffusion33
!--------------------------------------------------------------------------------------------------
!> @brief Returns homogenized phase field mobility
!--------------------------------------------------------------------------------------------------
real(pReal) function porosity_phasefield_getMobility(ip,el)
use mesh, only: &
mesh_element
use lattice, only: &
lattice_PorosityMobility
use material, only: &
material_phase, &
homogenization_Ngrains
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
integer(pInt) :: &
ipc
porosity_phasefield_getMobility = 0.0_pReal
do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
porosity_phasefield_getMobility = porosity_phasefield_getMobility + lattice_PorosityMobility(material_phase(ipc,ip,el))
enddo
porosity_phasefield_getMobility = porosity_phasefield_getMobility/homogenization_Ngrains(mesh_element(3,el))
end function porosity_phasefield_getMobility
!--------------------------------------------------------------------------------------------------
!> @brief updates porosity with solution from phasefield PDE
!--------------------------------------------------------------------------------------------------
subroutine porosity_phasefield_putPorosity(phi,ip,el)
use material, only: &
material_homog, &
porosityMapping, &
porosity
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
phi
integer(pInt) :: &
homog, &
offset
homog = material_homog(ip,el)
offset = porosityMapping(homog)%p(ip,el)
porosity(homog)%p(offset) = phi
end subroutine porosity_phasefield_putPorosity
!--------------------------------------------------------------------------------------------------
!> @brief return array of porosity results
!--------------------------------------------------------------------------------------------------
function porosity_phasefield_postResults(ip,el)
use material, only: &
mappingHomogenization, &
porosity_typeInstance, &
porosity
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point
el !< element
real(pReal), dimension(porosity_phasefield_sizePostResults(porosity_typeInstance(mappingHomogenization(2,ip,el)))) :: &
porosity_phasefield_postResults
integer(pInt) :: &
instance, homog, offset, o, c
homog = mappingHomogenization(2,ip,el)
offset = mappingHomogenization(1,ip,el)
instance = porosity_typeInstance(homog)
c = 0_pInt
porosity_phasefield_postResults = 0.0_pReal
do o = 1_pInt,porosity_phasefield_Noutput(instance)
select case(porosity_phasefield_outputID(o,instance))
case (porosity_ID)
porosity_phasefield_postResults(c+1_pInt) = porosity(homog)%p(offset)
c = c + 1
end select
enddo
end function porosity_phasefield_postResults
end module porosity_phasefield

View File

@ -1,192 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Luv Sharma, Max-Planck-Institut für Eisenforschung GmbH
!> @brief setting precision for real and int type depending on makros "FLOAT" and "INT"
!> @details setting precision for real and int type and for DAMASK_NaN. Definition is made
!! depending on makros "FLOAT" and "INT" defined during compilation
!! for details on NaN see https://software.intel.com/en-us/forums/topic/294680
!--------------------------------------------------------------------------------------------------
module prec
#if !(defined(__GFORTRAN__) && __GNUC__ < 5)
use, intrinsic :: & ! unfortunately not avialable in gfortran <= 5
IEEE_arithmetic
#endif
implicit none
private
#if (FLOAT==4)
#if defined(Spectral) || defined(FEM)
SPECTRAL SOLVER AND OWN FEM DO NOT SUPPORT SINGLE PRECISION, STOPPING COMPILATION
#endif
integer, parameter, public :: pReal = 4 !< floating point single precition (was selected_real_kind(6,37), number with 6 significant digits, up to 1e+-37)
#ifdef __INTEL_COMPILER
real(pReal), parameter, public :: DAMASK_NaN = Z'7F800001' !< quiet NaN for single precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran)
#endif
#ifdef __GFORTRAN__
real(pReal), parameter, public :: DAMASK_NaN = real(Z'7F800001', pReal) !< quiet NaN for single precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran)
#endif
#elif (FLOAT==8)
integer, parameter, public :: pReal = 8 !< floating point double precision (was selected_real_kind(15,300), number with 15 significant digits, up to 1e+-300)
#ifdef __INTEL_COMPILER
real(pReal), parameter, public :: DAMASK_NaN = Z'7FF8000000000000' !< quiet NaN for double precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran)
#endif
#ifdef __GFORTRAN__
real(pReal), parameter, public :: DAMASK_NaN = real(Z'7FF8000000000000',pReal) !< quiet NaN for double precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran)
#endif
#else
NO SUITABLE PRECISION FOR REAL SELECTED, STOPPING COMPILATION
#endif
#if (INT==4)
integer, parameter, public :: pInt = 4 !< integer representation 32 bit (was selected_int_kind(9), number with at least up to +- 1e9)
#elif (INT==8)
integer, parameter, public :: pInt = 8 !< integer representation 64 bit (was selected_int_kind(12), number with at least up to +- 1e12)
#else
NO SUITABLE PRECISION FOR INTEGER SELECTED, STOPPING COMPILATION
#endif
integer, parameter, public :: pLongInt = 8 !< integer representation 64 bit (was selected_int_kind(12), number with at least up to +- 1e12)
real(pReal), parameter, public :: tol_math_check = 1.0e-8_pReal !< tolerance for internal math self-checks (rotation)
integer(pInt), allocatable, dimension(:) :: realloc_lhs_test
type, public :: p_vec !< variable length datatype used for storage of state
real(pReal), dimension(:), pointer :: p
end type p_vec
type, public :: p_intvec
integer(pInt), dimension(:), pointer :: p
end type p_intvec
!http://stackoverflow.com/questions/3948210/can-i-have-a-pointer-to-an-item-in-an-allocatable-array
type, public :: tState
integer(pInt) :: &
sizeState = 0_pInt , & !< size of state
sizeDotState = 0_pInt, & !< size of dot state, i.e. parts of the state that are integrated
sizeDeltaState = 0_pInt, & !< size of delta state, i.e. parts of the state that have discontinuous rates
sizePostResults = 0_pInt !< size of output data
real(pReal), pointer, dimension(:), contiguous :: &
atolState
real(pReal), pointer, dimension(:,:), contiguous :: & ! a pointer is needed here because we might point to state/doState. However, they will never point to something, but are rather allocated and, hence, contiguous
state, & !< state
dotState, & !< state rate
state0
real(pReal), allocatable, dimension(:,:) :: &
partionedState0, &
subState0, &
state_backup, &
deltaState, &
previousDotState, & !< state rate of previous xxxx
previousDotState2, & !< state rate two xxxx ago
dotState_backup, & !< backup of state rate
RK4dotState
real(pReal), allocatable, dimension(:,:,:) :: &
RKCK45dotState
end type
type, extends(tState), public :: tPlasticState
integer(pInt) :: &
nSlip = 0_pInt , &
nTwin = 0_pInt, &
nTrans = 0_pInt
logical :: &
nonlocal = .false. !< absolute tolerance for state integration
real(pReal), pointer, dimension(:,:), contiguous :: &
slipRate, & !< slip rate
accumulatedSlip !< accumulated plastic slip
end type
type, public :: tSourceState
type(tState), dimension(:), allocatable :: p !< tState for each active source mechanism in a phase
end type
type, public :: tHomogMapping
integer(pInt), pointer, dimension(:,:) :: p
end type
type, public :: tPhaseMapping
integer(pInt), pointer, dimension(:,:,:) :: p
end type
#ifdef FEM
type, public :: tOutputData
integer(pInt) :: &
sizeIpCells = 0_pInt , &
sizeResults = 0_pInt
real(pReal), allocatable, dimension(:,:) :: &
output !< output data
end type
#endif
public :: &
prec_init, &
prec_isNaN
contains
!--------------------------------------------------------------------------------------------------
!> @brief reporting precision and checking if DAMASK_NaN is set correctly
!--------------------------------------------------------------------------------------------------
subroutine prec_init
use, intrinsic :: &
iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
implicit none
integer(pInt) :: worldrank = 0_pInt
#ifdef PETSc
#include <petsc/finclude/petscsys.h>
PetscErrorCode :: ierr
#endif
external :: &
quit, &
MPI_Comm_rank, &
MPI_Abort
#ifdef PETSc
call MPI_Comm_rank(PETSC_COMM_WORLD,worldrank,ierr);CHKERRQ(ierr)
#endif
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- prec init -+>>>'
#include "compilation_info.f90"
write(6,'(a,i3)') ' Bytes for pReal: ',pReal
write(6,'(a,i3)') ' Bytes for pInt: ',pInt
write(6,'(a,i3)') ' Bytes for pLongInt: ',pLongInt
write(6,'(a,e10.3)') ' NaN: ', DAMASK_NaN
write(6,'(a,l3)') ' NaN != NaN: ',DAMASK_NaN /= DAMASK_NaN
write(6,'(a,l3,/)') ' NaN check passed ',prec_isNAN(DAMASK_NaN)
endif mainProcess
if ((.not. prec_isNaN(DAMASK_NaN)) .or. (DAMASK_NaN == DAMASK_NaN)) call quit(9000)
realloc_lhs_test = [1_pInt,2_pInt]
if (realloc_lhs_test(2)/=2_pInt) call quit(9000)
end subroutine prec_init
!--------------------------------------------------------------------------------------------------
!> @brief figures out if a floating point number is NaN
! basically just a small wrapper, because gfortran < 4.9 does not have the IEEE module
!--------------------------------------------------------------------------------------------------
logical elemental function prec_isNaN(a)
implicit none
real(pReal), intent(in) :: a
#if (defined(__GFORTRAN__) && __GNUC__ < 5)
intrinsic :: isNaN
prec_isNaN = isNaN(a)
#else
prec_isNaN = IEEE_is_NaN(a)
#endif
end function prec_isNaN
end module prec

View File

@ -1,8 +0,0 @@
!COMPILER-GENERATED INTERFACE MODULE: Thu Mar 3 12:28:23 2016
MODULE QUIT__genmod
INTERFACE
SUBROUTINE QUIT(STOP_ID)
INTEGER(KIND=4), INTENT(IN) :: STOP_ID
END SUBROUTINE QUIT
END INTERFACE
END MODULE QUIT__genmod

View File

@ -1,425 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Luv Sharma, Max-Planck-Institut fŸr Eisenforschung GmbH
!> @author Pratheek Shanthraj, Max-Planck-Institut fŸr Eisenforschung GmbH
!> @brief material subroutine incorporating anisotropic brittle damage source mechanism
!> @details to be done
!--------------------------------------------------------------------------------------------------
module source_damage_anisoBrittle
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
source_damage_anisoBrittle_sizePostResults, & !< cumulative size of post results
source_damage_anisoBrittle_offset, & !< which source is my current source mechanism?
source_damage_anisoBrittle_instance !< instance of source mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
source_damage_anisoBrittle_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
source_damage_anisoBrittle_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
source_damage_anisoBrittle_Noutput !< number of outputs per instance of this source
integer(pInt), dimension(:), allocatable, private :: &
source_damage_anisoBrittle_totalNcleavage !< total number of cleavage systems
integer(pInt), dimension(:,:), allocatable, private :: &
source_damage_anisoBrittle_Ncleavage !< number of cleavage systems per family
real(pReal), dimension(:), allocatable, private :: &
source_damage_anisoBrittle_aTol, &
source_damage_anisoBrittle_sdot_0, &
source_damage_anisoBrittle_N
real(pReal), dimension(:,:), allocatable, private :: &
source_damage_anisoBrittle_critDisp, &
source_damage_anisoBrittle_critLoad
enum, bind(c)
enumerator :: undefined_ID, &
damage_drivingforce_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
source_damage_anisoBrittle_outputID !< ID of each post result output
public :: &
source_damage_anisoBrittle_init, &
source_damage_anisoBrittle_dotState, &
source_damage_anisobrittle_getRateAndItsTangent, &
source_damage_anisoBrittle_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine source_damage_anisoBrittle_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_source, &
phase_Nsources, &
phase_Noutput, &
SOURCE_damage_anisoBrittle_label, &
SOURCE_damage_anisoBrittle_ID, &
material_Nphase, &
material_phase, &
sourceState, &
MATERIAL_partPhase
use numerics,only: &
analyticJaco, &
worldrank, &
numerics_integrator
use lattice, only: &
lattice_maxNcleavageFamily, &
lattice_NcleavageSystem
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,instance,source,sourceOffset,o
integer(pInt) :: sizeState, sizeDotState, sizeDeltaState
integer(pInt) :: NofMyPhase
integer(pInt) :: Nchunks_CleavageFamilies = 0_pInt, j
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- source_'//SOURCE_damage_anisoBrittle_LABEL//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_source == SOURCE_damage_anisoBrittle_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(source_damage_anisoBrittle_offset(material_Nphase), source=0_pInt)
allocate(source_damage_anisoBrittle_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
source_damage_anisoBrittle_instance(phase) = count(phase_source(:,1:phase) == source_damage_anisoBrittle_ID)
do source = 1, phase_Nsources(phase)
if (phase_source(source,phase) == source_damage_anisoBrittle_ID) &
source_damage_anisoBrittle_offset(phase) = source
enddo
enddo
allocate(source_damage_anisoBrittle_sizePostResults(maxNinstance), source=0_pInt)
allocate(source_damage_anisoBrittle_sizePostResult(maxval(phase_Noutput),maxNinstance), source=0_pInt)
allocate(source_damage_anisoBrittle_output(maxval(phase_Noutput),maxNinstance))
source_damage_anisoBrittle_output = ''
allocate(source_damage_anisoBrittle_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(source_damage_anisoBrittle_Noutput(maxNinstance), source=0_pInt)
allocate(source_damage_anisoBrittle_critDisp(lattice_maxNcleavageFamily,maxNinstance), source=0.0_pReal)
allocate(source_damage_anisoBrittle_critLoad(lattice_maxNcleavageFamily,maxNinstance), source=0.0_pReal)
allocate(source_damage_anisoBrittle_Ncleavage(lattice_maxNcleavageFamily,maxNinstance), source=0_pInt)
allocate(source_damage_anisoBrittle_totalNcleavage(maxNinstance), source=0_pInt)
allocate(source_damage_anisoBrittle_aTol(maxNinstance), source=0.0_pReal)
allocate(source_damage_anisoBrittle_sdot_0(maxNinstance), source=0.0_pReal)
allocate(source_damage_anisoBrittle_N(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_source(:,phase) == SOURCE_damage_anisoBrittle_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = source_damage_anisoBrittle_instance(phase) ! which instance of my damage is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('anisobrittle_drivingforce')
source_damage_anisoBrittle_Noutput(instance) = source_damage_anisoBrittle_Noutput(instance) + 1_pInt
source_damage_anisoBrittle_outputID(source_damage_anisoBrittle_Noutput(instance),instance) = damage_drivingforce_ID
source_damage_anisoBrittle_output(source_damage_anisoBrittle_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
case ('anisobrittle_atol')
source_damage_anisoBrittle_aTol(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('anisobrittle_sdot0')
source_damage_anisoBrittle_sdot_0(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('anisobrittle_ratesensitivity')
source_damage_anisoBrittle_N(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('ncleavage') !
Nchunks_CleavageFamilies = chunkPos(1) - 1_pInt
do j = 1_pInt, Nchunks_CleavageFamilies
source_damage_anisoBrittle_Ncleavage(j,instance) = IO_intValue(line,chunkPos,1_pInt+j)
enddo
case ('anisobrittle_criticaldisplacement')
do j = 1_pInt, Nchunks_CleavageFamilies
source_damage_anisoBrittle_critDisp(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
enddo
case ('anisobrittle_criticalload')
do j = 1_pInt, Nchunks_CleavageFamilies
source_damage_anisoBrittle_critLoad(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
enddo
end select
endif; endif
enddo parsingFile
!--------------------------------------------------------------------------------------------------
! sanity checks
sanityChecks: do phase = 1_pInt, material_Nphase
myPhase: if (any(phase_source(:,phase) == SOURCE_damage_anisoBrittle_ID)) then
instance = source_damage_anisoBrittle_instance(phase)
source_damage_anisoBrittle_Ncleavage(1:lattice_maxNcleavageFamily,instance) = &
min(lattice_NcleavageSystem(1:lattice_maxNcleavageFamily,phase),& ! limit active cleavage systems per family to min of available and requested
source_damage_anisoBrittle_Ncleavage(1:lattice_maxNcleavageFamily,instance))
source_damage_anisoBrittle_totalNcleavage(instance) = sum(source_damage_anisoBrittle_Ncleavage(:,instance)) ! how many cleavage systems altogether
if (source_damage_anisoBrittle_aTol(instance) < 0.0_pReal) &
source_damage_anisoBrittle_aTol(instance) = 1.0e-3_pReal ! default absolute tolerance 1e-3
if (source_damage_anisoBrittle_sdot_0(instance) <= 0.0_pReal) &
call IO_error(211_pInt,el=instance,ext_msg='sdot_0 ('//SOURCE_damage_anisoBrittle_LABEL//')')
if (any(source_damage_anisoBrittle_critDisp(1:Nchunks_CleavageFamilies,instance) < 0.0_pReal)) &
call IO_error(211_pInt,el=instance,ext_msg='critical_displacement ('//SOURCE_damage_anisoBrittle_LABEL//')')
if (any(source_damage_anisoBrittle_critLoad(1:Nchunks_CleavageFamilies,instance) < 0.0_pReal)) &
call IO_error(211_pInt,el=instance,ext_msg='critical_load ('//SOURCE_damage_anisoBrittle_LABEL//')')
if (source_damage_anisoBrittle_N(instance) <= 0.0_pReal) &
call IO_error(211_pInt,el=instance,ext_msg='rate_sensitivity ('//SOURCE_damage_anisoBrittle_LABEL//')')
endif myPhase
enddo sanityChecks
initializeInstances: do phase = 1_pInt, material_Nphase
if (any(phase_source(:,phase) == SOURCE_damage_anisoBrittle_ID)) then
NofMyPhase=count(material_phase==phase)
instance = source_damage_anisoBrittle_instance(phase)
sourceOffset = source_damage_anisoBrittle_offset(phase)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,source_damage_anisoBrittle_Noutput(instance)
select case(source_damage_anisoBrittle_outputID(o,instance))
case(damage_drivingforce_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
source_damage_anisoBrittle_sizePostResult(o,instance) = mySize
source_damage_anisoBrittle_sizePostResults(instance) = source_damage_anisoBrittle_sizePostResults(instance) + mySize
endif
enddo outputsLoop
!--------------------------------------------------------------------------------------------------
! Determine size of state array
sizeDotState = 1_pInt
sizeDeltaState = 0_pInt
sizeState = 1_pInt
sourceState(phase)%p(sourceOffset)%sizeState = sizeState
sourceState(phase)%p(sourceOffset)%sizeDotState = sizeDotState
sourceState(phase)%p(sourceOffset)%sizeDeltaState = sizeDeltaState
sourceState(phase)%p(sourceOffset)%sizePostResults = source_damage_anisoBrittle_sizePostResults(instance)
allocate(sourceState(phase)%p(sourceOffset)%aTolState (sizeState), &
source=source_damage_anisoBrittle_aTol(instance))
allocate(sourceState(phase)%p(sourceOffset)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal)
if (.not. analyticJaco) then
allocate(sourceState(phase)%p(sourceOffset)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 1_pInt)) then
allocate(sourceState(phase)%p(sourceOffset)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
endif
enddo initializeInstances
end subroutine source_damage_anisoBrittle_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine source_damage_anisoBrittle_dotState(Tstar_v, ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
sourceState, &
material_homog, &
damage, &
damageMapping
use lattice, only: &
lattice_Scleavage_v, &
lattice_maxNcleavageFamily, &
lattice_NcleavageSystem
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
integer(pInt) :: &
phase, &
constituent, &
instance, &
sourceOffset, &
damageOffset, &
homog, &
f, i, index_myFamily
real(pReal) :: &
traction_d, traction_t, traction_n, traction_crit
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = source_damage_anisoBrittle_instance(phase)
sourceOffset = source_damage_anisoBrittle_offset(phase)
homog = material_homog(ip,el)
damageOffset = damageMapping(homog)%p(ip,el)
sourceState(phase)%p(sourceOffset)%dotState(1,constituent) = 0.0_pReal
do f = 1_pInt,lattice_maxNcleavageFamily
index_myFamily = sum(lattice_NcleavageSystem(1:f-1_pInt,phase)) ! at which index starts my family
do i = 1_pInt,source_damage_anisoBrittle_Ncleavage(f,instance) ! process each (active) cleavage system in family
traction_d = dot_product(Tstar_v,lattice_Scleavage_v(1:6,1,index_myFamily+i,phase))
traction_t = dot_product(Tstar_v,lattice_Scleavage_v(1:6,2,index_myFamily+i,phase))
traction_n = dot_product(Tstar_v,lattice_Scleavage_v(1:6,3,index_myFamily+i,phase))
traction_crit = source_damage_anisoBrittle_critLoad(f,instance)* &
damage(homog)%p(damageOffset)*damage(homog)%p(damageOffset)
sourceState(phase)%p(sourceOffset)%dotState(1,constituent) = &
sourceState(phase)%p(sourceOffset)%dotState(1,constituent) + &
source_damage_anisoBrittle_sdot_0(instance)* &
((max(0.0_pReal, abs(traction_d) - traction_crit)/traction_crit)**source_damage_anisoBrittle_N(instance) + &
(max(0.0_pReal, abs(traction_t) - traction_crit)/traction_crit)**source_damage_anisoBrittle_N(instance) + &
(max(0.0_pReal, abs(traction_n) - traction_crit)/traction_crit)**source_damage_anisoBrittle_N(instance))/ &
source_damage_anisoBrittle_critDisp(f,instance)
enddo
enddo
end subroutine source_damage_anisoBrittle_dotState
!--------------------------------------------------------------------------------------------------
!> @brief returns local part of nonlocal damage driving force
!--------------------------------------------------------------------------------------------------
subroutine source_damage_anisobrittle_getRateAndItsTangent(localphiDot, dLocalphiDot_dPhi, phi, ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in) :: &
phi
real(pReal), intent(out) :: &
localphiDot, &
dLocalphiDot_dPhi
integer(pInt) :: &
phase, constituent, sourceOffset
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
sourceOffset = source_damage_anisoBrittle_offset(phase)
localphiDot = 1.0_pReal - &
sourceState(phase)%p(sourceOffset)%state(1,constituent)*phi
dLocalphiDot_dPhi = -sourceState(phase)%p(sourceOffset)%state(1,constituent)
end subroutine source_damage_anisobrittle_getRateAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief return array of local damage results
!--------------------------------------------------------------------------------------------------
function source_damage_anisoBrittle_postResults(ipc,ip,el)
use material, only: &
phaseAt, phasememberAt, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(source_damage_anisoBrittle_sizePostResults( &
source_damage_anisoBrittle_instance(phaseAt(ipc,ip,el)))) :: &
source_damage_anisoBrittle_postResults
integer(pInt) :: &
instance, phase, constituent, sourceOffset, o, c
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = source_damage_anisoBrittle_instance(phase)
sourceOffset = source_damage_anisoBrittle_offset(phase)
c = 0_pInt
source_damage_anisoBrittle_postResults = 0.0_pReal
do o = 1_pInt,source_damage_anisoBrittle_Noutput(instance)
select case(source_damage_anisoBrittle_outputID(o,instance))
case (damage_drivingforce_ID)
source_damage_anisoBrittle_postResults(c+1_pInt) = &
sourceState(phase)%p(sourceOffset)%state(1,constituent)
c = c + 1_pInt
end select
enddo
end function source_damage_anisoBrittle_postResults
end module source_damage_anisoBrittle

View File

@ -1,415 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Luv Sharma, Max-Planck-Institut für Eisenforschung GmbH
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incorporating anisotropic ductile damage source mechanism
!> @details to be done
!--------------------------------------------------------------------------------------------------
module source_damage_anisoDuctile
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
source_damage_anisoDuctile_sizePostResults, & !< cumulative size of post results
source_damage_anisoDuctile_offset, & !< which source is my current damage mechanism?
source_damage_anisoDuctile_instance !< instance of damage source mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
source_damage_anisoDuctile_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
source_damage_anisoDuctile_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
source_damage_anisoDuctile_Noutput !< number of outputs per instance of this damage
integer(pInt), dimension(:), allocatable, private :: &
source_damage_anisoDuctile_totalNslip !< total number of slip systems
integer(pInt), dimension(:,:), allocatable, private :: &
source_damage_anisoDuctile_Nslip !< number of slip systems per family
real(pReal), dimension(:), allocatable, private :: &
source_damage_anisoDuctile_aTol
real(pReal), dimension(:,:), allocatable, private :: &
source_damage_anisoDuctile_critPlasticStrain
real(pReal), dimension(:), allocatable, private :: &
source_damage_anisoDuctile_sdot_0, &
source_damage_anisoDuctile_N
real(pReal), dimension(:,:), allocatable, private :: &
source_damage_anisoDuctile_critLoad
enum, bind(c)
enumerator :: undefined_ID, &
damage_drivingforce_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
source_damage_anisoDuctile_outputID !< ID of each post result output
public :: &
source_damage_anisoDuctile_init, &
source_damage_anisoDuctile_dotState, &
source_damage_anisoDuctile_getRateAndItsTangent, &
source_damage_anisoDuctile_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine source_damage_anisoDuctile_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_source, &
phase_Nsources, &
phase_Noutput, &
SOURCE_damage_anisoDuctile_label, &
SOURCE_damage_anisoDuctile_ID, &
material_Nphase, &
material_phase, &
sourceState, &
MATERIAL_partPhase
use numerics,only: &
analyticJaco, &
worldrank, &
numerics_integrator
use lattice, only: &
lattice_maxNslipFamily, &
lattice_NslipSystem
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,instance,source,sourceOffset,o
integer(pInt) :: sizeState, sizeDotState, sizeDeltaState
integer(pInt) :: NofMyPhase
integer(pInt) :: Nchunks_SlipFamilies = 0_pInt, j
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- source_'//SOURCE_damage_anisoDuctile_LABEL//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_source == SOURCE_damage_anisoDuctile_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(source_damage_anisoDuctile_offset(material_Nphase), source=0_pInt)
allocate(source_damage_anisoDuctile_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
source_damage_anisoDuctile_instance(phase) = count(phase_source(:,1:phase) == source_damage_anisoDuctile_ID)
do source = 1, phase_Nsources(phase)
if (phase_source(source,phase) == source_damage_anisoDuctile_ID) &
source_damage_anisoDuctile_offset(phase) = source
enddo
enddo
allocate(source_damage_anisoDuctile_sizePostResults(maxNinstance), source=0_pInt)
allocate(source_damage_anisoDuctile_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(source_damage_anisoDuctile_output(maxval(phase_Noutput),maxNinstance))
source_damage_anisoDuctile_output = ''
allocate(source_damage_anisoDuctile_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(source_damage_anisoDuctile_Noutput(maxNinstance), source=0_pInt)
allocate(source_damage_anisoDuctile_critLoad(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
allocate(source_damage_anisoDuctile_critPlasticStrain(lattice_maxNslipFamily,maxNinstance),source=0.0_pReal)
allocate(source_damage_anisoDuctile_Nslip(lattice_maxNslipFamily,maxNinstance), source=0_pInt)
allocate(source_damage_anisoDuctile_totalNslip(maxNinstance), source=0_pInt)
allocate(source_damage_anisoDuctile_N(maxNinstance), source=0.0_pReal)
allocate(source_damage_anisoDuctile_sdot_0(maxNinstance), source=0.0_pReal)
allocate(source_damage_anisoDuctile_aTol(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_source(:,phase) == SOURCE_damage_anisoDuctile_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = source_damage_anisoDuctile_instance(phase) ! which instance of my damage is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('anisoductile_drivingforce')
source_damage_anisoDuctile_Noutput(instance) = source_damage_anisoDuctile_Noutput(instance) + 1_pInt
source_damage_anisoDuctile_outputID(source_damage_anisoDuctile_Noutput(instance),instance) = damage_drivingforce_ID
source_damage_anisoDuctile_output(source_damage_anisoDuctile_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
case ('anisoductile_atol')
source_damage_anisoDuctile_aTol(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('nslip') !
Nchunks_SlipFamilies = chunkPos(1) - 1_pInt
do j = 1_pInt, Nchunks_SlipFamilies
source_damage_anisoDuctile_Nslip(j,instance) = IO_intValue(line,chunkPos,1_pInt+j)
enddo
case ('anisoductile_sdot0')
source_damage_anisoDuctile_sdot_0(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('anisoductile_criticalplasticstrain')
do j = 1_pInt, Nchunks_SlipFamilies
source_damage_anisoDuctile_critPlasticStrain(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
enddo
case ('anisoductile_ratesensitivity')
source_damage_anisoDuctile_N(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('anisoductile_criticalload')
do j = 1_pInt, Nchunks_SlipFamilies
source_damage_anisoDuctile_critLoad(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
enddo
end select
endif; endif
enddo parsingFile
!--------------------------------------------------------------------------------------------------
! sanity checks
sanityChecks: do phase = 1_pInt, size(phase_source)
myPhase: if (any(phase_source(:,phase) == SOURCE_damage_anisoDuctile_ID)) then
instance = source_damage_anisoDuctile_instance(phase)
source_damage_anisoDuctile_Nslip(1:lattice_maxNslipFamily,instance) = &
min(lattice_NslipSystem(1:lattice_maxNslipFamily,phase),& ! limit active cleavage systems per family to min of available and requested
source_damage_anisoDuctile_Nslip(1:lattice_maxNslipFamily,instance))
source_damage_anisoDuctile_totalNslip(instance) = sum(source_damage_anisoDuctile_Nslip(:,instance))
if (source_damage_anisoDuctile_aTol(instance) < 0.0_pReal) &
source_damage_anisoDuctile_aTol(instance) = 1.0e-3_pReal ! default absolute tolerance 1e-3
if (source_damage_anisoDuctile_sdot_0(instance) <= 0.0_pReal) &
call IO_error(211_pInt,el=instance,ext_msg='sdot_0 ('//SOURCE_damage_anisoDuctile_LABEL//')')
if (any(source_damage_anisoDuctile_critPlasticStrain(:,instance) < 0.0_pReal)) &
call IO_error(211_pInt,el=instance,ext_msg='criticaPlasticStrain ('//SOURCE_damage_anisoDuctile_LABEL//')')
if (source_damage_anisoDuctile_N(instance) <= 0.0_pReal) &
call IO_error(211_pInt,el=instance,ext_msg='rate_sensitivity ('//SOURCE_damage_anisoDuctile_LABEL//')')
endif myPhase
enddo sanityChecks
initializeInstances: do phase = 1_pInt, material_Nphase
if (any(phase_source(:,phase) == SOURCE_damage_anisoDuctile_ID)) then
NofMyPhase=count(material_phase==phase)
instance = source_damage_anisoDuctile_instance(phase)
sourceOffset = source_damage_anisoDuctile_offset(phase)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,source_damage_anisoDuctile_Noutput(instance)
select case(source_damage_anisoDuctile_outputID(o,instance))
case(damage_drivingforce_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
source_damage_anisoDuctile_sizePostResult(o,instance) = mySize
source_damage_anisoDuctile_sizePostResults(instance) = source_damage_anisoDuctile_sizePostResults(instance) + mySize
endif
enddo outputsLoop
!--------------------------------------------------------------------------------------------------
! Determine size of state array
sizeDotState = 1_pInt
sizeDeltaState = 0_pInt
sizeState = 1_pInt
sourceState(phase)%p(sourceOffset)%sizeState = sizeState
sourceState(phase)%p(sourceOffset)%sizeDotState = sizeDotState
sourceState(phase)%p(sourceOffset)%sizeDeltaState = sizeDeltaState
sourceState(phase)%p(sourceOffset)%sizePostResults = source_damage_anisoDuctile_sizePostResults(instance)
allocate(sourceState(phase)%p(sourceOffset)%aTolState (sizeState), &
source=source_damage_anisoDuctile_aTol(instance))
allocate(sourceState(phase)%p(sourceOffset)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal)
if (.not. analyticJaco) then
allocate(sourceState(phase)%p(sourceOffset)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 1_pInt)) then
allocate(sourceState(phase)%p(sourceOffset)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
endif
enddo initializeInstances
end subroutine source_damage_anisoDuctile_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine source_damage_anisoDuctile_dotState(ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
plasticState, &
sourceState, &
material_homog, &
damage, &
damageMapping
use lattice, only: &
lattice_maxNslipFamily
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
integer(pInt) :: &
phase, &
constituent, &
sourceOffset, &
homog, damageOffset, &
instance, &
index, f, i
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = source_damage_anisoDuctile_instance(phase)
sourceOffset = source_damage_anisoDuctile_offset(phase)
homog = material_homog(ip,el)
damageOffset = damageMapping(homog)%p(ip,el)
index = 1_pInt
sourceState(phase)%p(sourceOffset)%dotState(1,constituent) = 0.0_pReal
do f = 1_pInt,lattice_maxNslipFamily
do i = 1_pInt,source_damage_anisoDuctile_Nslip(f,instance) ! process each (active) slip system in family
sourceState(phase)%p(sourceOffset)%dotState(1,constituent) = &
sourceState(phase)%p(sourceOffset)%dotState(1,constituent) + &
plasticState(phase)%slipRate(index,constituent)/ &
((damage(homog)%p(damageOffset))**source_damage_anisoDuctile_N(instance))/ &
source_damage_anisoDuctile_critPlasticStrain(f,instance)
index = index + 1_pInt
enddo
enddo
end subroutine source_damage_anisoDuctile_dotState
!--------------------------------------------------------------------------------------------------
!> @brief returns local part of nonlocal damage driving force
!--------------------------------------------------------------------------------------------------
subroutine source_damage_anisoDuctile_getRateAndItsTangent(localphiDot, dLocalphiDot_dPhi, phi, ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in) :: &
phi
real(pReal), intent(out) :: &
localphiDot, &
dLocalphiDot_dPhi
integer(pInt) :: &
phase, constituent, sourceOffset
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
sourceOffset = source_damage_anisoDuctile_offset(phase)
localphiDot = 1.0_pReal - &
sourceState(phase)%p(sourceOffset)%state(1,constituent)* &
phi
dLocalphiDot_dPhi = -sourceState(phase)%p(sourceOffset)%state(1,constituent)
end subroutine source_damage_anisoDuctile_getRateAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief return array of local damage results
!--------------------------------------------------------------------------------------------------
function source_damage_anisoDuctile_postResults(ipc,ip,el)
use material, only: &
phaseAt, phasememberAt, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(source_damage_anisoDuctile_sizePostResults( &
source_damage_anisoDuctile_instance(phaseAt(ipc,ip,el)))) :: &
source_damage_anisoDuctile_postResults
integer(pInt) :: &
instance, phase, constituent, sourceOffset, o, c
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = source_damage_anisoDuctile_instance(phase)
sourceOffset = source_damage_anisoDuctile_offset(phase)
c = 0_pInt
source_damage_anisoDuctile_postResults = 0.0_pReal
do o = 1_pInt,source_damage_anisoDuctile_Noutput(instance)
select case(source_damage_anisoDuctile_outputID(o,instance))
case (damage_drivingforce_ID)
source_damage_anisoDuctile_postResults(c+1_pInt) = &
sourceState(phase)%p(sourceOffset)%state(1,constituent)
c = c + 1_pInt
end select
enddo
end function source_damage_anisoDuctile_postResults
end module source_damage_anisoDuctile

View File

@ -1,383 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Luv Sharma, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incoprorating isotropic brittle damage source mechanism
!> @details to be done
!--------------------------------------------------------------------------------------------------
module source_damage_isoBrittle
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
source_damage_isoBrittle_sizePostResults, & !< cumulative size of post results
source_damage_isoBrittle_offset, & !< which source is my current damage mechanism?
source_damage_isoBrittle_instance !< instance of damage source mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
source_damage_isoBrittle_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
source_damage_isoBrittle_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
source_damage_isoBrittle_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, private :: &
source_damage_isoBrittle_aTol, &
source_damage_isoBrittle_N, &
source_damage_isoBrittle_critStrainEnergy
enum, bind(c)
enumerator :: undefined_ID, &
damage_drivingforce_ID
end enum !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!11 ToDo
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
source_damage_isoBrittle_outputID !< ID of each post result output
public :: &
source_damage_isoBrittle_init, &
source_damage_isoBrittle_deltaState, &
source_damage_isoBrittle_getRateAndItsTangent, &
source_damage_isoBrittle_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine source_damage_isoBrittle_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_source, &
phase_Nsources, &
phase_Noutput, &
SOURCE_damage_isoBrittle_label, &
SOURCE_damage_isoBrittle_ID, &
material_Nphase, &
material_phase, &
sourceState, &
MATERIAL_partPhase
use numerics,only: &
analyticJaco, &
worldrank, &
numerics_integrator
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,instance,source,sourceOffset,o
integer(pInt) :: sizeState, sizeDotState, sizeDeltaState
integer(pInt) :: NofMyPhase
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- source_'//SOURCE_damage_isoBrittle_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_source == SOURCE_damage_isoBrittle_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(source_damage_isoBrittle_offset(material_Nphase), source=0_pInt)
allocate(source_damage_isoBrittle_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
source_damage_isoBrittle_instance(phase) = count(phase_source(:,1:phase) == source_damage_isoBrittle_ID)
do source = 1, phase_Nsources(phase)
if (phase_source(source,phase) == source_damage_isoBrittle_ID) &
source_damage_isoBrittle_offset(phase) = source
enddo
enddo
allocate(source_damage_isoBrittle_sizePostResults(maxNinstance), source=0_pInt)
allocate(source_damage_isoBrittle_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(source_damage_isoBrittle_output(maxval(phase_Noutput),maxNinstance))
source_damage_isoBrittle_output = ''
allocate(source_damage_isoBrittle_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(source_damage_isoBrittle_Noutput(maxNinstance), source=0_pInt)
allocate(source_damage_isoBrittle_critStrainEnergy(maxNinstance), source=0.0_pReal)
allocate(source_damage_isoBrittle_N(maxNinstance), source=1.0_pReal)
allocate(source_damage_isoBrittle_aTol(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_source(:,phase) == SOURCE_damage_isoBrittle_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = source_damage_isoBrittle_instance(phase) ! which instance of my damage is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('isobrittle_drivingforce')
source_damage_isoBrittle_Noutput(instance) = source_damage_isoBrittle_Noutput(instance) + 1_pInt
source_damage_isoBrittle_outputID(source_damage_isoBrittle_Noutput(instance),instance) = damage_drivingforce_ID
source_damage_isoBrittle_output(source_damage_isoBrittle_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
case ('isobrittle_criticalstrainenergy')
source_damage_isoBrittle_critStrainEnergy(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('isobrittle_n')
source_damage_isoBrittle_N(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('isobrittle_atol')
source_damage_isoBrittle_aTol(instance) = IO_floatValue(line,chunkPos,2_pInt)
end select
endif; endif
enddo parsingFile
!--------------------------------------------------------------------------------------------------
! sanity checks
sanityChecks: do phase = 1_pInt, material_Nphase
myPhase: if (any(phase_source(:,phase) == SOURCE_damage_isoBrittle_ID)) then
instance = source_damage_isoBrittle_instance(phase)
if (source_damage_isoBrittle_aTol(instance) < 0.0_pReal) &
source_damage_isoBrittle_aTol(instance) = 1.0e-3_pReal ! default absolute tolerance 1e-3
if (source_damage_isoBrittle_critStrainEnergy(instance) <= 0.0_pReal) &
call IO_error(211_pInt,el=instance,ext_msg='criticalStrainEnergy ('//SOURCE_damage_isoBrittle_LABEL//')')
endif myPhase
enddo sanityChecks
initializeInstances: do phase = 1_pInt, material_Nphase
if (any(phase_source(:,phase) == SOURCE_damage_isoBrittle_ID)) then
NofMyPhase=count(material_phase==phase)
instance = source_damage_isoBrittle_instance(phase)
sourceOffset = source_damage_isoBrittle_offset(phase)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,source_damage_isoBrittle_Noutput(instance)
select case(source_damage_isoBrittle_outputID(o,instance))
case(damage_drivingforce_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
source_damage_isoBrittle_sizePostResult(o,instance) = mySize
source_damage_isoBrittle_sizePostResults(instance) = source_damage_isoBrittle_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! Determine size of state array
sizeDotState = 1_pInt
sizeDeltaState = 1_pInt
sizeState = 1_pInt
sourceState(phase)%p(sourceOffset)%sizeState = sizeState
sourceState(phase)%p(sourceOffset)%sizeDotState = sizeDotState
sourceState(phase)%p(sourceOffset)%sizeDeltaState = sizeDeltaState
sourceState(phase)%p(sourceOffset)%sizePostResults = source_damage_isoBrittle_sizePostResults(instance)
allocate(sourceState(phase)%p(sourceOffset)%aTolState (sizeState), &
source=source_damage_isoBrittle_aTol(instance))
allocate(sourceState(phase)%p(sourceOffset)%state0 (sizeState,NofMyPhase), source=.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal)
if (.not. analyticJaco) then
allocate(sourceState(phase)%p(sourceOffset)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 1_pInt)) then
allocate(sourceState(phase)%p(sourceOffset)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
endif
enddo initializeInstances
end subroutine source_damage_isoBrittle_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine source_damage_isoBrittle_deltaState(C, Fe, ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
sourceState, &
material_homog, &
phase_NstiffnessDegradations, &
phase_stiffnessDegradation, &
porosity, &
porosityMapping, &
STIFFNESS_DEGRADATION_porosity_ID
use math, only : &
math_mul33x33, &
math_mul66x6, &
math_Mandel33to6, &
math_transpose33, &
math_I3
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(3,3) :: &
Fe
real(pReal), intent(in), dimension(6,6) :: &
C
integer(pInt) :: &
phase, constituent, instance, sourceOffset, mech
real(pReal) :: &
strain(6), &
stiffness(6,6), &
strainenergy
phase = phaseAt(ipc,ip,el) !< phase ID at ipc,ip,el
constituent = phasememberAt(ipc,ip,el) !< state array offset for phase ID at ipc,ip,el
! ToDo: capability for multiple instances of SAME source within given phase. Needs Ninstance loop from here on!
instance = source_damage_isoBrittle_instance(phase) !< instance of damage_isoBrittle source
sourceOffset = source_damage_isoBrittle_offset(phase)
stiffness = C
do mech = 1_pInt, phase_NstiffnessDegradations(phase)
select case(phase_stiffnessDegradation(mech,phase))
case (STIFFNESS_DEGRADATION_porosity_ID)
stiffness = porosity(material_homog(ip,el))%p(porosityMapping(material_homog(ip,el))%p(ip,el))* &
porosity(material_homog(ip,el))%p(porosityMapping(material_homog(ip,el))%p(ip,el))* &
stiffness
end select
enddo
strain = 0.5_pReal*math_Mandel33to6(math_mul33x33(math_transpose33(Fe),Fe)-math_I3)
strainenergy = 2.0_pReal*sum(strain*math_mul66x6(stiffness,strain))/ &
source_damage_isoBrittle_critStrainEnergy(instance)
if (strainenergy > sourceState(phase)%p(sourceOffset)%subState0(1,constituent)) then
sourceState(phase)%p(sourceOffset)%deltaState(1,constituent) = &
strainenergy - sourceState(phase)%p(sourceOffset)%state(1,constituent)
else
sourceState(phase)%p(sourceOffset)%deltaState(1,constituent) = &
sourceState(phase)%p(sourceOffset)%subState0(1,constituent) - &
sourceState(phase)%p(sourceOffset)%state(1,constituent)
endif
end subroutine source_damage_isoBrittle_deltaState
!--------------------------------------------------------------------------------------------------
!> @brief returns local part of nonlocal damage driving force
!--------------------------------------------------------------------------------------------------
subroutine source_damage_isoBrittle_getRateAndItsTangent(localphiDot, dLocalphiDot_dPhi, phi, ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in) :: &
phi
real(pReal), intent(out) :: &
localphiDot, &
dLocalphiDot_dPhi
integer(pInt) :: &
phase, constituent, instance, sourceOffset
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = source_damage_isoBrittle_instance(phase)
sourceOffset = source_damage_isoBrittle_offset(phase)
localphiDot = (1.0_pReal - phi)**(source_damage_isoBrittle_N(instance) - 1.0_pReal) - &
phi*sourceState(phase)%p(sourceOffset)%state(1,constituent)
dLocalphiDot_dPhi = - (source_damage_isoBrittle_N(instance) - 1.0_pReal)* &
(1.0_pReal - phi)**max(0.0_pReal,source_damage_isoBrittle_N(instance) - 2.0_pReal) &
- sourceState(phase)%p(sourceOffset)%state(1,constituent)
end subroutine source_damage_isoBrittle_getRateAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief return array of local damage results
!--------------------------------------------------------------------------------------------------
function source_damage_isoBrittle_postResults(ipc,ip,el)
use material, only: &
phaseAt, phasememberAt, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(source_damage_isoBrittle_sizePostResults( &
source_damage_isoBrittle_instance(phaseAt(ipc,ip,el)))) :: &
source_damage_isoBrittle_postResults
integer(pInt) :: &
instance, phase, constituent, sourceOffset, o, c
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = source_damage_isoBrittle_instance(phase)
sourceOffset = source_damage_isoBrittle_offset(phase)
c = 0_pInt
source_damage_isoBrittle_postResults = 0.0_pReal
do o = 1_pInt,source_damage_isoBrittle_Noutput(instance)
select case(source_damage_isoBrittle_outputID(o,instance))
case (damage_drivingforce_ID)
source_damage_isoBrittle_postResults(c+1_pInt) = sourceState(phase)%p(sourceOffset)%state(1,constituent)
c = c + 1
end select
enddo
end function source_damage_isoBrittle_postResults
end module source_damage_isoBrittle

View File

@ -1,350 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut fŸr Eisenforschung GmbH
!> @author Luv Sharma, Max-Planck-Institut fŸr Eisenforschung GmbH
!> @brief material subroutine incoprorating isotropic ductile damage source mechanism
!> @details to be done
!--------------------------------------------------------------------------------------------------
module source_damage_isoDuctile
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
source_damage_isoDuctile_sizePostResults, & !< cumulative size of post results
source_damage_isoDuctile_offset, & !< which source is my current damage mechanism?
source_damage_isoDuctile_instance !< instance of damage source mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
source_damage_isoDuctile_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
source_damage_isoDuctile_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
source_damage_isoDuctile_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, private :: &
source_damage_isoDuctile_aTol, &
source_damage_isoDuctile_critPlasticStrain, &
source_damage_isoDuctile_N
enum, bind(c)
enumerator :: undefined_ID, &
damage_drivingforce_ID
end enum !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!11 ToDo
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
source_damage_isoDuctile_outputID !< ID of each post result output
public :: &
source_damage_isoDuctile_init, &
source_damage_isoDuctile_dotState, &
source_damage_isoDuctile_getRateAndItsTangent, &
source_damage_isoDuctile_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine source_damage_isoDuctile_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_source, &
phase_Nsources, &
phase_Noutput, &
SOURCE_damage_isoDuctile_label, &
SOURCE_damage_isoDuctile_ID, &
material_Nphase, &
material_phase, &
sourceState, &
MATERIAL_partPhase
use numerics,only: &
analyticJaco, &
worldrank, &
numerics_integrator
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,instance,source,sourceOffset,o
integer(pInt) :: sizeState, sizeDotState, sizeDeltaState
integer(pInt) :: NofMyPhase
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- source_'//SOURCE_damage_isoDuctile_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_source == SOURCE_damage_isoDuctile_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(source_damage_isoDuctile_offset(material_Nphase), source=0_pInt)
allocate(source_damage_isoDuctile_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
source_damage_isoDuctile_instance(phase) = count(phase_source(:,1:phase) == source_damage_isoDuctile_ID)
do source = 1, phase_Nsources(phase)
if (phase_source(source,phase) == source_damage_isoDuctile_ID) &
source_damage_isoDuctile_offset(phase) = source
enddo
enddo
allocate(source_damage_isoDuctile_sizePostResults(maxNinstance), source=0_pInt)
allocate(source_damage_isoDuctile_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(source_damage_isoDuctile_output(maxval(phase_Noutput),maxNinstance))
source_damage_isoDuctile_output = ''
allocate(source_damage_isoDuctile_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(source_damage_isoDuctile_Noutput(maxNinstance), source=0_pInt)
allocate(source_damage_isoDuctile_critPlasticStrain(maxNinstance), source=0.0_pReal)
allocate(source_damage_isoDuctile_N(maxNinstance), source=0.0_pReal)
allocate(source_damage_isoDuctile_aTol(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_source(:,phase) == SOURCE_damage_isoDuctile_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = source_damage_isoDuctile_instance(phase) ! which instance of my damage is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('isoductile_drivingforce')
source_damage_isoDuctile_Noutput(instance) = source_damage_isoDuctile_Noutput(instance) + 1_pInt
source_damage_isoDuctile_outputID(source_damage_isoDuctile_Noutput(instance),instance) = damage_drivingforce_ID
source_damage_isoDuctile_output(source_damage_isoDuctile_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
case ('isoductile_criticalplasticstrain')
source_damage_isoDuctile_critPlasticStrain(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('isoductile_ratesensitivity')
source_damage_isoDuctile_N(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('isoductile_atol')
source_damage_isoDuctile_aTol(instance) = IO_floatValue(line,chunkPos,2_pInt)
end select
endif; endif
enddo parsingFile
!--------------------------------------------------------------------------------------------------
! sanity checks
sanityChecks: do phase = 1_pInt, material_Nphase
myPhase: if (any(phase_source(:,phase) == SOURCE_damage_isoDuctile_ID)) then
instance = source_damage_isoDuctile_instance(phase)
if (source_damage_isoDuctile_aTol(instance) < 0.0_pReal) &
source_damage_isoDuctile_aTol(instance) = 1.0e-3_pReal ! default absolute tolerance 1e-3
if (source_damage_isoDuctile_critPlasticStrain(instance) <= 0.0_pReal) &
call IO_error(211_pInt,el=instance,ext_msg='critical plastic strain ('//SOURCE_damage_isoDuctile_LABEL//')')
endif myPhase
enddo sanityChecks
initializeInstances: do phase = 1_pInt, material_Nphase
if (any(phase_source(:,phase) == SOURCE_damage_isoDuctile_ID)) then
NofMyPhase=count(material_phase==phase)
instance = source_damage_isoDuctile_instance(phase)
sourceOffset = source_damage_isoDuctile_offset(phase)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,source_damage_isoDuctile_Noutput(instance)
select case(source_damage_isoDuctile_outputID(o,instance))
case(damage_drivingforce_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
source_damage_isoDuctile_sizePostResult(o,instance) = mySize
source_damage_isoDuctile_sizePostResults(instance) = source_damage_isoDuctile_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! Determine size of state array
sizeDotState = 1_pInt
sizeDeltaState = 0_pInt
sizeState = 1_pInt
sourceState(phase)%p(sourceOffset)%sizeState = sizeState
sourceState(phase)%p(sourceOffset)%sizeDotState = sizeDotState
sourceState(phase)%p(sourceOffset)%sizeDeltaState = sizeDeltaState
sourceState(phase)%p(sourceOffset)%sizePostResults = source_damage_isoDuctile_sizePostResults(instance)
allocate(sourceState(phase)%p(sourceOffset)%aTolState (sizeState), &
source=source_damage_isoDuctile_aTol(instance))
allocate(sourceState(phase)%p(sourceOffset)%state0 (sizeState,NofMyPhase), source=.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal)
if (.not. analyticJaco) then
allocate(sourceState(phase)%p(sourceOffset)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 1_pInt)) then
allocate(sourceState(phase)%p(sourceOffset)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
endif
enddo initializeInstances
end subroutine source_damage_isoDuctile_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine source_damage_isoDuctile_dotState(ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
plasticState, &
sourceState, &
material_homog, &
damage, &
damageMapping
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
integer(pInt) :: &
phase, constituent, instance, homog, sourceOffset, damageOffset
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = source_damage_isoDuctile_instance(phase)
sourceOffset = source_damage_isoDuctile_offset(phase)
homog = material_homog(ip,el)
damageOffset = damageMapping(homog)%p(ip,el)
sourceState(phase)%p(sourceOffset)%dotState(1,constituent) = &
sum(plasticState(phase)%slipRate(:,constituent))/ &
((damage(homog)%p(damageOffset))**source_damage_isoDuctile_N(instance))/ &
source_damage_isoDuctile_critPlasticStrain(instance)
end subroutine source_damage_isoDuctile_dotState
!--------------------------------------------------------------------------------------------------
!> @brief returns local part of nonlocal damage driving force
!--------------------------------------------------------------------------------------------------
subroutine source_damage_isoDuctile_getRateAndItsTangent(localphiDot, dLocalphiDot_dPhi, phi, ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in) :: &
phi
real(pReal), intent(out) :: &
localphiDot, &
dLocalphiDot_dPhi
integer(pInt) :: &
phase, constituent, sourceOffset
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
sourceOffset = source_damage_isoDuctile_offset(phase)
localphiDot = 1.0_pReal - &
sourceState(phase)%p(sourceOffset)%state(1,constituent)* &
phi
dLocalphiDot_dPhi = -sourceState(phase)%p(sourceOffset)%state(1,constituent)
end subroutine source_damage_isoDuctile_getRateAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief return array of local damage results
!--------------------------------------------------------------------------------------------------
function source_damage_isoDuctile_postResults(ipc,ip,el)
use material, only: &
phaseAt, phasememberAt, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(source_damage_isoDuctile_sizePostResults( &
source_damage_isoDuctile_instance(phaseAt(ipc,ip,el)))) :: &
source_damage_isoDuctile_postResults
integer(pInt) :: &
instance, phase, constituent, sourceOffset, o, c
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = source_damage_isoDuctile_instance(phase)
sourceOffset = source_damage_isoDuctile_offset(phase)
c = 0_pInt
source_damage_isoDuctile_postResults = 0.0_pReal
do o = 1_pInt,source_damage_isoDuctile_Noutput(instance)
select case(source_damage_isoDuctile_outputID(o,instance))
case (damage_drivingforce_ID)
source_damage_isoDuctile_postResults(c+1_pInt) = sourceState(phase)%p(sourceOffset)%state(1,constituent)
c = c + 1
end select
enddo
end function source_damage_isoDuctile_postResults
end module source_damage_isoDuctile

View File

@ -1,220 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for thermal source due to plastic dissipation
!> @details to be done
!--------------------------------------------------------------------------------------------------
module source_thermal_dissipation
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
source_thermal_dissipation_sizePostResults, & !< cumulative size of post results
source_thermal_dissipation_offset, & !< which source is my current thermal dissipation mechanism?
source_thermal_dissipation_instance !< instance of thermal dissipation source mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
source_thermal_dissipation_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
source_thermal_dissipation_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
source_thermal_dissipation_Noutput !< number of outputs per instance of this source
real(pReal), dimension(:), allocatable, private :: &
source_thermal_dissipation_coldworkCoeff
public :: &
source_thermal_dissipation_init, &
source_thermal_dissipation_getRateAndItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine source_thermal_dissipation_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_source, &
phase_Nsources, &
phase_Noutput, &
SOURCE_thermal_dissipation_label, &
SOURCE_thermal_dissipation_ID, &
material_Nphase, &
material_phase, &
sourceState, &
MATERIAL_partPhase
use numerics,only: &
analyticJaco, &
worldrank, &
numerics_integrator
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,phase,instance,source,sourceOffset
integer(pInt) :: sizeState, sizeDotState, sizeDeltaState
integer(pInt) :: NofMyPhase
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- source_'//SOURCE_thermal_dissipation_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_source == SOURCE_thermal_dissipation_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(source_thermal_dissipation_offset(material_Nphase), source=0_pInt)
allocate(source_thermal_dissipation_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
source_thermal_dissipation_instance(phase) = count(phase_source(:,1:phase) == SOURCE_thermal_dissipation_ID)
do source = 1, phase_Nsources(phase)
if (phase_source(source,phase) == SOURCE_thermal_dissipation_ID) &
source_thermal_dissipation_offset(phase) = source
enddo
enddo
allocate(source_thermal_dissipation_sizePostResults(maxNinstance), source=0_pInt)
allocate(source_thermal_dissipation_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(source_thermal_dissipation_output (maxval(phase_Noutput),maxNinstance))
source_thermal_dissipation_output = ''
allocate(source_thermal_dissipation_Noutput(maxNinstance), source=0_pInt)
allocate(source_thermal_dissipation_coldworkCoeff(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_source(:,phase) == SOURCE_thermal_dissipation_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = source_thermal_dissipation_instance(phase) ! which instance of my source is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('dissipation_coldworkcoeff')
source_thermal_dissipation_coldworkCoeff(instance) = IO_floatValue(line,chunkPos,2_pInt)
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, material_Nphase
if (any(phase_source(:,phase) == SOURCE_thermal_dissipation_ID)) then
NofMyPhase=count(material_phase==phase)
instance = source_thermal_dissipation_instance(phase)
sourceOffset = source_thermal_dissipation_offset(phase)
sizeDotState = 0_pInt
sizeDeltaState = 0_pInt
sizeState = 0_pInt
sourceState(phase)%p(sourceOffset)%sizeState = sizeState
sourceState(phase)%p(sourceOffset)%sizeDotState = sizeDotState
sourceState(phase)%p(sourceOffset)%sizeDeltaState = sizeDeltaState
sourceState(phase)%p(sourceOffset)%sizePostResults = source_thermal_dissipation_sizePostResults(instance)
allocate(sourceState(phase)%p(sourceOffset)%aTolState (sizeState), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal)
if (.not. analyticJaco) then
allocate(sourceState(phase)%p(sourceOffset)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 1_pInt)) then
allocate(sourceState(phase)%p(sourceOffset)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
endif
enddo initializeInstances
end subroutine source_thermal_dissipation_init
!--------------------------------------------------------------------------------------------------
!> @brief returns local vacancy generation rate
!--------------------------------------------------------------------------------------------------
subroutine source_thermal_dissipation_getRateAndItsTangent(TDot, dTDOT_dT, Tstar_v, Lp, ipc, ip, el)
use math, only: &
math_Mandel6to33
use material, only: &
phaseAt, phasememberAt
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), intent(in), dimension(3,3) :: &
Lp
real(pReal), intent(out) :: &
TDot, &
dTDOT_dT
integer(pInt) :: &
instance, phase, constituent
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = source_thermal_dissipation_instance(phase)
TDot = source_thermal_dissipation_coldworkCoeff(instance)* &
sum(abs(math_Mandel6to33(Tstar_v)*Lp))
dTDOT_dT = 0.0_pReal
end subroutine source_thermal_dissipation_getRateAndItsTangent
end module source_thermal_dissipation

View File

@ -1,277 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for thermal source due to plastic dissipation
!> @details to be done
!--------------------------------------------------------------------------------------------------
module source_thermal_externalheat
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
source_thermal_externalheat_sizePostResults, & !< cumulative size of post results
source_thermal_externalheat_offset, & !< which source is my current thermal dissipation mechanism?
source_thermal_externalheat_instance !< instance of thermal dissipation source mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
source_thermal_externalheat_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
source_thermal_externalheat_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
source_thermal_externalheat_Noutput !< number of outputs per instance of this source
integer(pInt), dimension(:), allocatable, private :: &
source_thermal_externalheat_nIntervals
real(pReal), dimension(:,:), allocatable, private :: &
source_thermal_externalheat_time, &
source_thermal_externalheat_rate
public :: &
source_thermal_externalheat_init, &
source_thermal_externalheat_dotState, &
source_thermal_externalheat_getRateAndItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine source_thermal_externalheat_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_source, &
phase_Nsources, &
phase_Noutput, &
SOURCE_thermal_externalheat_label, &
SOURCE_thermal_externalheat_ID, &
material_Nphase, &
material_phase, &
sourceState, &
MATERIAL_partPhase
use numerics,only: &
analyticJaco, &
worldrank, &
numerics_integrator
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,phase,instance,source,sourceOffset
integer(pInt) :: sizeState, sizeDotState, sizeDeltaState
integer(pInt) :: NofMyPhase,interval
character(len=65536) :: &
tag = '', &
line = ''
real(pReal), allocatable, dimension(:,:) :: temp_time, temp_rate
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- source_'//SOURCE_thermal_externalheat_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_source == SOURCE_thermal_externalheat_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(source_thermal_externalheat_offset(material_Nphase), source=0_pInt)
allocate(source_thermal_externalheat_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
source_thermal_externalheat_instance(phase) = count(phase_source(:,1:phase) == SOURCE_thermal_externalheat_ID)
do source = 1, phase_Nsources(phase)
if (phase_source(source,phase) == SOURCE_thermal_externalheat_ID) &
source_thermal_externalheat_offset(phase) = source
enddo
enddo
allocate(source_thermal_externalheat_sizePostResults(maxNinstance), source=0_pInt)
allocate(source_thermal_externalheat_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(source_thermal_externalheat_output (maxval(phase_Noutput),maxNinstance))
source_thermal_externalheat_output = ''
allocate(source_thermal_externalheat_Noutput(maxNinstance), source=0_pInt)
allocate(source_thermal_externalheat_nIntervals(maxNinstance), source=0_pInt)
allocate(temp_time(maxNinstance,1000), source=0.0_pReal)
allocate(temp_rate(maxNinstance,1000), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_source(:,phase) == SOURCE_thermal_externalheat_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = source_thermal_externalheat_instance(phase) ! which instance of my source is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('externalheat_time')
if (chunkPos(1) <= 2_pInt) &
call IO_error(150_pInt,ext_msg=trim(tag)//' ('//SOURCE_thermal_externalheat_label//')')
source_thermal_externalheat_nIntervals(instance) = chunkPos(1) - 2_pInt
do interval = 1, source_thermal_externalheat_nIntervals(instance) + 1_pInt
temp_time(instance, interval) = IO_floatValue(line,chunkPos,1_pInt + interval)
enddo
case ('externalheat_rate')
do interval = 1, source_thermal_externalheat_nIntervals(instance) + 1_pInt
temp_rate(instance, interval) = IO_floatValue(line,chunkPos,1_pInt + interval)
enddo
end select
endif; endif
enddo parsingFile
allocate(source_thermal_externalheat_time(maxNinstance,maxval(source_thermal_externalheat_nIntervals)+1_pInt), source=0.0_pReal)
allocate(source_thermal_externalheat_rate(maxNinstance,maxval(source_thermal_externalheat_nIntervals)+1_pInt), source=0.0_pReal)
initializeInstances: do phase = 1_pInt, material_Nphase
if (any(phase_source(:,phase) == SOURCE_thermal_externalheat_ID)) then
NofMyPhase=count(material_phase==phase)
instance = source_thermal_externalheat_instance(phase)
sourceOffset = source_thermal_externalheat_offset(phase)
source_thermal_externalheat_time(instance,1:source_thermal_externalheat_nIntervals(instance)+1_pInt) = &
temp_time(instance,1:source_thermal_externalheat_nIntervals(instance)+1_pInt)
source_thermal_externalheat_rate(instance,1:source_thermal_externalheat_nIntervals(instance)+1_pInt) = &
temp_rate(instance,1:source_thermal_externalheat_nIntervals(instance)+1_pInt)
sizeDotState = 1_pInt
sizeDeltaState = 0_pInt
sizeState = 1_pInt
sourceState(phase)%p(sourceOffset)%sizeState = sizeState
sourceState(phase)%p(sourceOffset)%sizeDotState = sizeDotState
sourceState(phase)%p(sourceOffset)%sizeDeltaState = sizeDeltaState
sourceState(phase)%p(sourceOffset)%sizePostResults = source_thermal_externalheat_sizePostResults(instance)
allocate(sourceState(phase)%p(sourceOffset)%aTolState (sizeState), source=0.00001_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal)
if (.not. analyticJaco) then
allocate(sourceState(phase)%p(sourceOffset)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 1_pInt)) then
allocate(sourceState(phase)%p(sourceOffset)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
endif
enddo initializeInstances
end subroutine source_thermal_externalheat_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine source_thermal_externalheat_dotState(ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
integer(pInt) :: &
phase, &
constituent, &
sourceOffset
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
sourceOffset = source_thermal_externalheat_offset(phase)
sourceState(phase)%p(sourceOffset)%dotState(1,constituent) = 1.0_pReal
end subroutine source_thermal_externalheat_dotState
!--------------------------------------------------------------------------------------------------
!> @brief returns local vacancy generation rate
!--------------------------------------------------------------------------------------------------
subroutine source_thermal_externalheat_getRateAndItsTangent(TDot, dTDot_dT, ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(out) :: &
TDot, &
dTDot_dT
integer(pInt) :: &
instance, phase, constituent, sourceOffset, interval
real(pReal) :: &
norm_time
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = source_thermal_externalheat_instance(phase)
sourceOffset = source_thermal_externalheat_offset(phase)
do interval = 1, source_thermal_externalheat_nIntervals(instance)
norm_time = (sourceState(phase)%p(sourceOffset)%state(1,constituent) - &
source_thermal_externalheat_time(instance,interval)) / &
(source_thermal_externalheat_time(instance,interval+1) - &
source_thermal_externalheat_time(instance,interval))
if (norm_time >= 0.0_pReal .and. norm_time < 1.0_pReal) &
TDot = source_thermal_externalheat_rate(instance,interval ) * (1.0_pReal - norm_time) + &
source_thermal_externalheat_rate(instance,interval+1) * norm_time
enddo
dTDot_dT = 0.0
end subroutine source_thermal_externalheat_getRateAndItsTangent
end module source_thermal_externalheat

View File

@ -1,253 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for vacancy generation due to irradiation
!> @details to be done
!--------------------------------------------------------------------------------------------------
module source_vacancy_irradiation
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
source_vacancy_irradiation_sizePostResults, & !< cumulative size of post results
source_vacancy_irradiation_offset, & !< which source is my current damage mechanism?
source_vacancy_irradiation_instance !< instance of damage source mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
source_vacancy_irradiation_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
source_vacancy_irradiation_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
source_vacancy_irradiation_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, private :: &
source_vacancy_irradiation_cascadeProb, &
source_vacancy_irradiation_cascadeVolume
public :: &
source_vacancy_irradiation_init, &
source_vacancy_irradiation_deltaState, &
source_vacancy_irradiation_getRateAndItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine source_vacancy_irradiation_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_source, &
phase_Nsources, &
phase_Noutput, &
SOURCE_vacancy_irradiation_label, &
SOURCE_vacancy_irradiation_ID, &
material_Nphase, &
material_phase, &
sourceState, &
MATERIAL_partPhase
use numerics,only: &
analyticJaco, &
worldrank, &
numerics_integrator
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,phase,instance,source,sourceOffset
integer(pInt) :: sizeState, sizeDotState, sizeDeltaState
integer(pInt) :: NofMyPhase
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- source_'//SOURCE_vacancy_irradiation_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_source == SOURCE_vacancy_irradiation_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(source_vacancy_irradiation_offset(material_Nphase), source=0_pInt)
allocate(source_vacancy_irradiation_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
source_vacancy_irradiation_instance(phase) = count(phase_source(:,1:phase) == source_vacancy_irradiation_ID)
do source = 1, phase_Nsources(phase)
if (phase_source(source,phase) == source_vacancy_irradiation_ID) &
source_vacancy_irradiation_offset(phase) = source
enddo
enddo
allocate(source_vacancy_irradiation_sizePostResults(maxNinstance), source=0_pInt)
allocate(source_vacancy_irradiation_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(source_vacancy_irradiation_output(maxval(phase_Noutput),maxNinstance))
source_vacancy_irradiation_output = ''
allocate(source_vacancy_irradiation_Noutput(maxNinstance), source=0_pInt)
allocate(source_vacancy_irradiation_cascadeProb(maxNinstance), source=0.0_pReal)
allocate(source_vacancy_irradiation_cascadeVolume(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_source(:,phase) == SOURCE_vacancy_irradiation_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = source_vacancy_irradiation_instance(phase) ! which instance of my vacancy is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('irradiation_cascadeprobability')
source_vacancy_irradiation_cascadeProb(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('irradiation_cascadevolume')
source_vacancy_irradiation_cascadeVolume(instance) = IO_floatValue(line,chunkPos,2_pInt)
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, material_Nphase
if (any(phase_source(:,phase) == SOURCE_vacancy_irradiation_ID)) then
NofMyPhase=count(material_phase==phase)
instance = source_vacancy_irradiation_instance(phase)
sourceOffset = source_vacancy_irradiation_offset(phase)
sizeDotState = 2_pInt
sizeDeltaState = 2_pInt
sizeState = 2_pInt
sourceState(phase)%p(sourceOffset)%sizeState = sizeState
sourceState(phase)%p(sourceOffset)%sizeDotState = sizeDotState
sourceState(phase)%p(sourceOffset)%sizeDeltaState = sizeDeltaState
sourceState(phase)%p(sourceOffset)%sizePostResults = source_vacancy_irradiation_sizePostResults(instance)
allocate(sourceState(phase)%p(sourceOffset)%aTolState (sizeState), source=0.1_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal)
if (.not. analyticJaco) then
allocate(sourceState(phase)%p(sourceOffset)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 1_pInt)) then
allocate(sourceState(phase)%p(sourceOffset)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
endif
enddo initializeInstances
end subroutine source_vacancy_irradiation_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine source_vacancy_irradiation_deltaState(ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
integer(pInt) :: &
phase, constituent, sourceOffset
real(pReal) :: &
randNo
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
sourceOffset = source_vacancy_irradiation_offset(phase)
call random_number(randNo)
sourceState(phase)%p(sourceOffset)%deltaState(1,constituent) = &
randNo - sourceState(phase)%p(sourceOffset)%state(1,constituent)
call random_number(randNo)
sourceState(phase)%p(sourceOffset)%deltaState(2,constituent) = &
randNo - sourceState(phase)%p(sourceOffset)%state(2,constituent)
end subroutine source_vacancy_irradiation_deltaState
!--------------------------------------------------------------------------------------------------
!> @brief returns local vacancy generation rate
!--------------------------------------------------------------------------------------------------
subroutine source_vacancy_irradiation_getRateAndItsTangent(CvDot, dCvDot_dCv, ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(out) :: &
CvDot, dCvDot_dCv
integer(pInt) :: &
instance, phase, constituent, sourceOffset
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = source_vacancy_irradiation_instance(phase)
sourceOffset = source_vacancy_irradiation_offset(phase)
CvDot = 0.0_pReal
dCvDot_dCv = 0.0_pReal
if (sourceState(phase)%p(sourceOffset)%state0(1,constituent) < source_vacancy_irradiation_cascadeProb(instance)) &
CvDot = sourceState(phase)%p(sourceOffset)%state0(2,constituent)*source_vacancy_irradiation_cascadeVolume(instance)
end subroutine source_vacancy_irradiation_getRateAndItsTangent
end module source_vacancy_irradiation

View File

@ -1,215 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for vacancy generation due to plasticity
!> @details to be done
!--------------------------------------------------------------------------------------------------
module source_vacancy_phenoplasticity
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
source_vacancy_phenoplasticity_sizePostResults, & !< cumulative size of post results
source_vacancy_phenoplasticity_offset, & !< which source is my current damage mechanism?
source_vacancy_phenoplasticity_instance !< instance of damage source mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
source_vacancy_phenoplasticity_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
source_vacancy_phenoplasticity_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
source_vacancy_phenoplasticity_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, private :: &
source_vacancy_phenoplasticity_rateCoeff
public :: &
source_vacancy_phenoplasticity_init, &
source_vacancy_phenoplasticity_getRateAndItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine source_vacancy_phenoplasticity_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_source, &
phase_Nsources, &
phase_Noutput, &
SOURCE_vacancy_phenoplasticity_label, &
SOURCE_vacancy_phenoplasticity_ID, &
material_Nphase, &
material_phase, &
sourceState, &
MATERIAL_partPhase
use numerics,only: &
analyticJaco, &
worldrank, &
numerics_integrator
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,phase,instance,source,sourceOffset
integer(pInt) :: sizeState, sizeDotState, sizeDeltaState
integer(pInt) :: NofMyPhase
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- source_'//SOURCE_vacancy_phenoplasticity_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_source == SOURCE_vacancy_phenoplasticity_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(source_vacancy_phenoplasticity_offset(material_Nphase), source=0_pInt)
allocate(source_vacancy_phenoplasticity_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
source_vacancy_phenoplasticity_instance(phase) = count(phase_source(:,1:phase) == source_vacancy_phenoplasticity_ID)
do source = 1, phase_Nsources(phase)
if (phase_source(source,phase) == source_vacancy_phenoplasticity_ID) &
source_vacancy_phenoplasticity_offset(phase) = source
enddo
enddo
allocate(source_vacancy_phenoplasticity_sizePostResults(maxNinstance), source=0_pInt)
allocate(source_vacancy_phenoplasticity_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(source_vacancy_phenoplasticity_output(maxval(phase_Noutput),maxNinstance))
source_vacancy_phenoplasticity_output = ''
allocate(source_vacancy_phenoplasticity_Noutput(maxNinstance), source=0_pInt)
allocate(source_vacancy_phenoplasticity_rateCoeff(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_source(:,phase) == SOURCE_vacancy_phenoplasticity_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = source_vacancy_phenoplasticity_instance(phase) ! which instance of my vacancy is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('phenoplasticity_ratecoeff')
source_vacancy_phenoplasticity_rateCoeff(instance) = IO_floatValue(line,chunkPos,2_pInt)
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, material_Nphase
if (any(phase_source(:,phase) == SOURCE_vacancy_phenoplasticity_ID)) then
NofMyPhase=count(material_phase==phase)
instance = source_vacancy_phenoplasticity_instance(phase)
sourceOffset = source_vacancy_phenoplasticity_offset(phase)
sizeDotState = 0_pInt
sizeDeltaState = 0_pInt
sizeState = 0_pInt
sourceState(phase)%p(sourceOffset)%sizeState = sizeState
sourceState(phase)%p(sourceOffset)%sizeDotState = sizeDotState
sourceState(phase)%p(sourceOffset)%sizeDeltaState = sizeDeltaState
sourceState(phase)%p(sourceOffset)%sizePostResults = source_vacancy_phenoplasticity_sizePostResults(instance)
allocate(sourceState(phase)%p(sourceOffset)%aTolState (sizeState), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal)
if (.not. analyticJaco) then
allocate(sourceState(phase)%p(sourceOffset)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 1_pInt)) then
allocate(sourceState(phase)%p(sourceOffset)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
endif
enddo initializeInstances
end subroutine source_vacancy_phenoplasticity_init
!--------------------------------------------------------------------------------------------------
!> @brief returns local vacancy generation rate
!--------------------------------------------------------------------------------------------------
subroutine source_vacancy_phenoplasticity_getRateAndItsTangent(CvDot, dCvDot_dCv, ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
plasticState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(out) :: &
CvDot, dCvDot_dCv
integer(pInt) :: &
instance, phase, constituent
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = source_vacancy_phenoplasticity_instance(phase)
CvDot = &
source_vacancy_phenoplasticity_rateCoeff(instance)* &
sum(plasticState(phase)%slipRate(:,constituent))
dCvDot_dCv = 0.0_pReal
end subroutine source_vacancy_phenoplasticity_getRateAndItsTangent
end module source_vacancy_phenoplasticity

View File

@ -1,255 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for vacancy generation due to thermal fluctuations
!> @details to be done
!--------------------------------------------------------------------------------------------------
module source_vacancy_thermalfluc
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
source_vacancy_thermalfluc_sizePostResults, & !< cumulative size of post results
source_vacancy_thermalfluc_offset, & !< which source is my current damage mechanism?
source_vacancy_thermalfluc_instance !< instance of damage source mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
source_vacancy_thermalfluc_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
source_vacancy_thermalfluc_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
source_vacancy_thermalfluc_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, private :: &
source_vacancy_thermalfluc_amplitude, &
source_vacancy_thermalfluc_normVacancyEnergy
public :: &
source_vacancy_thermalfluc_init, &
source_vacancy_thermalfluc_deltaState, &
source_vacancy_thermalfluc_getRateAndItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine source_vacancy_thermalfluc_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use lattice, only: &
lattice_vacancyFormationEnergy
use material, only: &
phase_source, &
phase_Nsources, &
phase_Noutput, &
SOURCE_vacancy_thermalfluc_label, &
SOURCE_vacancy_thermalfluc_ID, &
material_Nphase, &
material_phase, &
sourceState, &
MATERIAL_partPhase
use numerics,only: &
analyticJaco, &
worldrank, &
numerics_integrator
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,phase,instance,source,sourceOffset
integer(pInt) :: sizeState, sizeDotState, sizeDeltaState
integer(pInt) :: NofMyPhase
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- source_'//SOURCE_vacancy_thermalfluc_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_source == SOURCE_vacancy_thermalfluc_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(source_vacancy_thermalfluc_offset(material_Nphase), source=0_pInt)
allocate(source_vacancy_thermalfluc_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
source_vacancy_thermalfluc_instance(phase) = count(phase_source(:,1:phase) == source_vacancy_thermalfluc_ID)
do source = 1, phase_Nsources(phase)
if (phase_source(source,phase) == source_vacancy_thermalfluc_ID) &
source_vacancy_thermalfluc_offset(phase) = source
enddo
enddo
allocate(source_vacancy_thermalfluc_sizePostResults(maxNinstance), source=0_pInt)
allocate(source_vacancy_thermalfluc_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(source_vacancy_thermalfluc_output(maxval(phase_Noutput),maxNinstance))
source_vacancy_thermalfluc_output = ''
allocate(source_vacancy_thermalfluc_Noutput(maxNinstance), source=0_pInt)
allocate(source_vacancy_thermalfluc_amplitude(maxNinstance), source=0.0_pReal)
allocate(source_vacancy_thermalfluc_normVacancyEnergy(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_source(:,phase) == SOURCE_vacancy_thermalfluc_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = source_vacancy_thermalfluc_instance(phase) ! which instance of my vacancy is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('thermalfluctuation_amplitude')
source_vacancy_thermalfluc_amplitude(instance) = IO_floatValue(line,chunkPos,2_pInt)
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, material_Nphase
if (any(phase_source(:,phase) == SOURCE_vacancy_thermalfluc_ID)) then
NofMyPhase=count(material_phase==phase)
instance = source_vacancy_thermalfluc_instance(phase)
source_vacancy_thermalfluc_normVacancyEnergy(instance) = &
lattice_vacancyFormationEnergy(phase)/1.3806488e-23_pReal
sourceOffset = source_vacancy_thermalfluc_offset(phase)
sizeDotState = 1_pInt
sizeDeltaState = 1_pInt
sizeState = 1_pInt
sourceState(phase)%p(sourceOffset)%sizeState = sizeState
sourceState(phase)%p(sourceOffset)%sizeDotState = sizeDotState
sourceState(phase)%p(sourceOffset)%sizeDeltaState = sizeDeltaState
sourceState(phase)%p(sourceOffset)%sizePostResults = source_vacancy_thermalfluc_sizePostResults(instance)
allocate(sourceState(phase)%p(sourceOffset)%aTolState (sizeState), source=0.1_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal)
if (.not. analyticJaco) then
allocate(sourceState(phase)%p(sourceOffset)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 1_pInt)) then
allocate(sourceState(phase)%p(sourceOffset)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
endif
enddo initializeInstances
end subroutine source_vacancy_thermalfluc_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine source_vacancy_thermalfluc_deltaState(ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
integer(pInt) :: &
phase, constituent, sourceOffset
real(pReal) :: &
randNo
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
sourceOffset = source_vacancy_thermalfluc_offset(phase)
call random_number(randNo)
sourceState(phase)%p(sourceOffset)%deltaState(1,constituent) = &
randNo - 0.5_pReal - sourceState(phase)%p(sourceOffset)%state(1,constituent)
end subroutine source_vacancy_thermalfluc_deltaState
!--------------------------------------------------------------------------------------------------
!> @brief returns local vacancy generation rate
!--------------------------------------------------------------------------------------------------
subroutine source_vacancy_thermalfluc_getRateAndItsTangent(CvDot, dCvDot_dCv, ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
material_homog, &
temperature, &
thermalMapping, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(out) :: &
CvDot, dCvDot_dCv
integer(pInt) :: &
instance, phase, constituent, sourceOffset
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = source_vacancy_thermalfluc_instance(phase)
sourceOffset = source_vacancy_thermalfluc_offset(phase)
CvDot = source_vacancy_thermalfluc_amplitude(instance)* &
sourceState(phase)%p(sourceOffset)%state0(2,constituent)* &
exp(-source_vacancy_thermalfluc_normVacancyEnergy(instance)/ &
temperature(material_homog(ip,el))%p(thermalMapping(material_homog(ip,el))%p(ip,el)))
dCvDot_dCv = 0.0_pReal
end subroutine source_vacancy_thermalfluc_getRateAndItsTangent
end module source_vacancy_thermalfluc

View File

@ -1,414 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id: spectral_damage.f90 4082 2015-04-11 20:28:07Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Shaokang Zhang, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Spectral solver for nonlocal damage
!--------------------------------------------------------------------------------------------------
module spectral_damage
use prec, only: &
pInt, &
pReal
use math, only: &
math_I3
use spectral_utilities, only: &
tSolutionState, &
tSolutionParams
use numerics, only: &
worldrank, &
worldsize
implicit none
private
#include <petsc/finclude/petsc.h90>
character (len=*), parameter, public :: &
spectral_damage_label = 'spectraldamage'
!--------------------------------------------------------------------------------------------------
! derived types
type(tSolutionParams), private :: params
!--------------------------------------------------------------------------------------------------
! PETSc data
SNES, private :: damage_snes
Vec, private :: solution
PetscInt, private :: xstart, xend, ystart, yend, zstart, zend
real(pReal), private, dimension(:,:,:), allocatable :: &
damage_current, & !< field of current damage
damage_lastInc, & !< field of previous damage
damage_stagInc !< field of staggered damage
!--------------------------------------------------------------------------------------------------
! reference diffusion tensor, mobility etc.
integer(pInt), private :: totalIter = 0_pInt !< total iteration in current increment
real(pReal), dimension(3,3), private :: D_ref
real(pReal), private :: mobility_ref
character(len=1024), private :: incInfo
public :: &
spectral_damage_init, &
spectral_damage_solution, &
spectral_damage_forward, &
spectral_damage_destroy
external :: &
VecDestroy, &
DMDestroy, &
DMDACreate3D, &
DMCreateGlobalVector, &
DMDASNESSetFunctionLocal, &
PETScFinalize, &
SNESDestroy, &
SNESGetNumberFunctionEvals, &
SNESGetIterationNumber, &
SNESSolve, &
SNESSetDM, &
SNESGetConvergedReason, &
SNESSetConvergenceTest, &
SNESSetFromOptions, &
SNESCreate, &
MPI_Abort, &
MPI_Bcast, &
MPI_Allreduce
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields and fills them with data, potentially from restart info
!--------------------------------------------------------------------------------------------------
subroutine spectral_damage_init()
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use IO, only: &
IO_intOut, &
IO_read_realFile, &
IO_timeStamp
use spectral_utilities, only: &
wgt
use mesh, only: &
grid, &
grid3
use damage_nonlocal, only: &
damage_nonlocal_getDiffusion33, &
damage_nonlocal_getMobility
implicit none
DM :: damage_grid
Vec :: uBound, lBound
PetscErrorCode :: ierr
PetscObject :: dummy
integer(pInt), dimension(:), allocatable :: localK
integer(pInt) :: proc
integer(pInt) :: i, j, k, cell
character(len=100) :: snes_type
mainProcess: if (worldrank == 0_pInt) then
write(6,'(/,a)') ' <<<+- spectral_damage init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
!--------------------------------------------------------------------------------------------------
! initialize solver specific parts of PETSc
call SNESCreate(PETSC_COMM_WORLD,damage_snes,ierr); CHKERRQ(ierr)
call SNESSetOptionsPrefix(damage_snes,'damage_',ierr);CHKERRQ(ierr)
allocate(localK(worldsize), source = 0); localK(worldrank+1) = grid3
do proc = 1, worldsize
call MPI_Bcast(localK(proc),1,MPI_INTEGER,proc-1,PETSC_COMM_WORLD,ierr)
enddo
call DMDACreate3d(PETSC_COMM_WORLD, &
DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & !< cut off stencil at boundary
DMDA_STENCIL_BOX, & !< Moore (26) neighborhood around central point
grid(1),grid(2),grid(3), & !< global grid
1, 1, worldsize, &
1, 0, & !< #dof (damage phase field), ghost boundary width (domain overlap)
grid(1),grid(2),localK, & !< local grid
damage_grid,ierr) !< handle, error
CHKERRQ(ierr)
call SNESSetDM(damage_snes,damage_grid,ierr); CHKERRQ(ierr) !< connect snes to da
call DMCreateGlobalVector(damage_grid,solution,ierr); CHKERRQ(ierr) !< global solution vector (grid x 1, i.e. every def grad tensor)
call DMDASNESSetFunctionLocal(damage_grid,INSERT_VALUES,spectral_damage_formResidual,dummy,ierr) !< residual vector of same shape as solution vector
CHKERRQ(ierr)
call SNESSetFromOptions(damage_snes,ierr); CHKERRQ(ierr) !< pull it all together with additional cli arguments
call SNESGetType(damage_snes,snes_type,ierr); CHKERRQ(ierr)
if (trim(snes_type) == 'vinewtonrsls' .or. &
trim(snes_type) == 'vinewtonssls') then
call DMGetGlobalVector(damage_grid,lBound,ierr); CHKERRQ(ierr)
call DMGetGlobalVector(damage_grid,uBound,ierr); CHKERRQ(ierr)
call VecSet(lBound,0.0,ierr); CHKERRQ(ierr)
call VecSet(uBound,1.0,ierr); CHKERRQ(ierr)
call SNESVISetVariableBounds(damage_snes,lBound,uBound,ierr) !< variable bounds for variational inequalities like contact mechanics, damage etc.
call DMRestoreGlobalVector(damage_grid,lBound,ierr); CHKERRQ(ierr)
call DMRestoreGlobalVector(damage_grid,uBound,ierr); CHKERRQ(ierr)
endif
!--------------------------------------------------------------------------------------------------
! init fields
call DMDAGetCorners(damage_grid,xstart,ystart,zstart,xend,yend,zend,ierr)
CHKERRQ(ierr)
xend = xstart + xend - 1
yend = ystart + yend - 1
zend = zstart + zend - 1
call VecSet(solution,1.0,ierr); CHKERRQ(ierr)
allocate(damage_current(grid(1),grid(2),grid3), source=1.0_pReal)
allocate(damage_lastInc(grid(1),grid(2),grid3), source=1.0_pReal)
allocate(damage_stagInc(grid(1),grid(2),grid3), source=1.0_pReal)
!--------------------------------------------------------------------------------------------------
! damage reference diffusion update
cell = 0_pInt
D_ref = 0.0_pReal
mobility_ref = 0.0_pReal
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
D_ref = D_ref + damage_nonlocal_getDiffusion33(1,cell)
mobility_ref = mobility_ref + damage_nonlocal_getMobility(1,cell)
enddo; enddo; enddo
D_ref = D_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,D_ref,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
mobility_ref = mobility_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,mobility_ref,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
end subroutine spectral_damage_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the spectral damage scheme with internal iterations
!--------------------------------------------------------------------------------------------------
type(tSolutionState) function spectral_damage_solution(guess,timeinc,timeinc_old,loadCaseTime)
use numerics, only: &
itmax, &
err_damage_tolAbs, &
err_damage_tolRel
use spectral_utilities, only: &
tBoundaryCondition, &
Utilities_maskedCompliance, &
Utilities_updateGamma
use mesh, only: &
grid, &
grid3
use damage_nonlocal, only: &
damage_nonlocal_putNonLocalDamage
implicit none
!--------------------------------------------------------------------------------------------------
! input data for solution
real(pReal), intent(in) :: &
timeinc, & !< increment in time for current solution
timeinc_old, & !< increment in time of last increment
loadCaseTime !< remaining time of current load case
logical, intent(in) :: guess
integer(pInt) :: i, j, k, cell
PetscInt ::position
PetscReal :: minDamage, maxDamage, stagNorm, solnNorm
!--------------------------------------------------------------------------------------------------
! PETSc Data
PetscErrorCode :: ierr
SNESConvergedReason :: reason
spectral_damage_solution%converged =.false.
!--------------------------------------------------------------------------------------------------
! set module wide availabe data
params%timeinc = timeinc
params%timeincOld = timeinc_old
call SNESSolve(damage_snes,PETSC_NULL_OBJECT,solution,ierr); CHKERRQ(ierr)
call SNESGetConvergedReason(damage_snes,reason,ierr); CHKERRQ(ierr)
if (reason < 1) then
spectral_damage_solution%converged = .false.
spectral_damage_solution%iterationsNeeded = itmax
else
spectral_damage_solution%converged = .true.
spectral_damage_solution%iterationsNeeded = totalIter
endif
stagNorm = maxval(abs(damage_current - damage_stagInc))
solnNorm = maxval(abs(damage_current))
call MPI_Allreduce(MPI_IN_PLACE,stagNorm,1,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr)
call MPI_Allreduce(MPI_IN_PLACE,solnNorm,1,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr)
damage_stagInc = damage_current
spectral_damage_solution%stagConverged = stagNorm < err_damage_tolAbs &
.or. stagNorm < err_damage_tolRel*solnNorm
!--------------------------------------------------------------------------------------------------
! updating damage state
cell = 0_pInt !< material point = 0
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt !< material point increase
call damage_nonlocal_putNonLocalDamage(damage_current(i,j,k),1,cell)
enddo; enddo; enddo
call VecMin(solution,position,minDamage,ierr); CHKERRQ(ierr)
call VecMax(solution,position,maxDamage,ierr); CHKERRQ(ierr)
if (worldrank == 0) then
if (spectral_damage_solution%converged) &
write(6,'(/,a)') ' ... nonlocal damage converged .....................................'
write(6,'(/,a,f8.6,2x,f8.6,2x,f8.6,/)',advance='no') ' Minimum|Maximum|Delta Damage = ',&
minDamage, maxDamage, stagNorm
write(6,'(/,a)') ' ==========================================================================='
flush(6)
endif
end function spectral_damage_solution
!--------------------------------------------------------------------------------------------------
!> @brief forms the spectral damage residual vector
!--------------------------------------------------------------------------------------------------
subroutine spectral_damage_formResidual(in,x_scal,f_scal,dummy,ierr)
use numerics, only: &
residualStiffness
use mesh, only: &
grid, &
grid3
use math, only: &
math_mul33x3
use spectral_utilities, only: &
scalarField_real, &
vectorField_real, &
utilities_FFTvectorForward, &
utilities_FFTvectorBackward, &
utilities_FFTscalarForward, &
utilities_FFTscalarBackward, &
utilities_fourierGreenConvolution, &
utilities_fourierScalarGradient, &
utilities_fourierVectorDivergence
use damage_nonlocal, only: &
damage_nonlocal_getSourceAndItsTangent,&
damage_nonlocal_getDiffusion33, &
damage_nonlocal_getMobility
implicit none
DMDALocalInfo, dimension(DMDA_LOCAL_INFO_SIZE) :: &
in
PetscScalar, dimension( &
XG_RANGE,YG_RANGE,ZG_RANGE) :: &
x_scal
PetscScalar, dimension( &
X_RANGE,Y_RANGE,Z_RANGE) :: &
f_scal
PetscObject :: dummy
PetscErrorCode :: ierr
integer(pInt) :: i, j, k, cell
real(pReal) :: phiDot, dPhiDot_dPhi, mobility
damage_current = x_scal
!--------------------------------------------------------------------------------------------------
! evaluate polarization field
scalarField_real = 0.0_pReal
scalarField_real(1:grid(1),1:grid(2),1:grid3) = damage_current
call utilities_FFTscalarForward()
call utilities_fourierScalarGradient() !< calculate gradient of damage field
call utilities_FFTvectorBackward()
cell = 0_pInt
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
vectorField_real(1:3,i,j,k) = math_mul33x3(damage_nonlocal_getDiffusion33(1,cell) - D_ref, &
vectorField_real(1:3,i,j,k))
enddo; enddo; enddo
call utilities_FFTvectorForward()
call utilities_fourierVectorDivergence() !< calculate damage divergence in fourier field
call utilities_FFTscalarBackward()
cell = 0_pInt
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
call damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, damage_current(i,j,k), 1, cell)
mobility = damage_nonlocal_getMobility(1,cell)
scalarField_real(i,j,k) = params%timeinc*scalarField_real(i,j,k) + &
params%timeinc*phiDot + &
mobility*damage_lastInc(i,j,k) - &
mobility*damage_current(i,j,k) + &
mobility_ref*damage_current(i,j,k)
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! convolution of damage field with green operator
call utilities_FFTscalarForward()
call utilities_fourierGreenConvolution(D_ref, mobility_ref, params%timeinc)
call utilities_FFTscalarBackward()
where(scalarField_real(1:grid(1),1:grid(2),1:grid3) > damage_lastInc) &
scalarField_real(1:grid(1),1:grid(2),1:grid3) = damage_lastInc
where(scalarField_real(1:grid(1),1:grid(2),1:grid3) < residualStiffness) &
scalarField_real(1:grid(1),1:grid(2),1:grid3) = residualStiffness
!--------------------------------------------------------------------------------------------------
! constructing residual
f_scal = scalarField_real(1:grid(1),1:grid(2),1:grid3) - damage_current
end subroutine spectral_damage_formResidual
!--------------------------------------------------------------------------------------------------
!> @brief spectral damage forwarding routine
!--------------------------------------------------------------------------------------------------
subroutine spectral_damage_forward(guess,timeinc,timeinc_old,loadCaseTime)
use mesh, only: &
grid, &
grid3
use spectral_utilities, only: &
cutBack, &
wgt
use damage_nonlocal, only: &
damage_nonlocal_putNonLocalDamage, &
damage_nonlocal_getDiffusion33, &
damage_nonlocal_getMobility
implicit none
real(pReal), intent(in) :: &
timeinc_old, &
timeinc, &
loadCaseTime !< remaining time of current load case
logical, intent(in) :: guess
PetscErrorCode :: ierr
integer(pInt) :: i, j, k, cell
DM :: dm_local
PetscScalar, dimension(:,:,:), pointer :: x_scal
if (cutBack) then
damage_current = damage_lastInc
damage_stagInc = damage_lastInc
!--------------------------------------------------------------------------------------------------
! reverting damage field state
cell = 0_pInt
call SNESGetDM(damage_snes,dm_local,ierr); CHKERRQ(ierr)
call DMDAVecGetArrayF90(dm_local,solution,x_scal,ierr); CHKERRQ(ierr) !< get the data out of PETSc to work with
x_scal(xstart:xend,ystart:yend,zstart:zend) = damage_current
call DMDAVecRestoreArrayF90(dm_local,solution,x_scal,ierr); CHKERRQ(ierr)
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
call damage_nonlocal_putNonLocalDamage(damage_current(i,j,k),1,cell)
enddo; enddo; enddo
else
!--------------------------------------------------------------------------------------------------
! update rate and forward last inc
damage_lastInc = damage_current
cell = 0_pInt
D_ref = 0.0_pReal
mobility_ref = 0.0_pReal
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
D_ref = D_ref + damage_nonlocal_getDiffusion33(1,cell)
mobility_ref = mobility_ref + damage_nonlocal_getMobility(1,cell)
enddo; enddo; enddo
D_ref = D_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,D_ref,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
mobility_ref = mobility_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,mobility_ref,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
endif
end subroutine spectral_damage_forward
!--------------------------------------------------------------------------------------------------
!> @brief destroy routine
!--------------------------------------------------------------------------------------------------
subroutine spectral_damage_destroy()
implicit none
PetscErrorCode :: ierr
call VecDestroy(solution,ierr); CHKERRQ(ierr)
call SNESDestroy(damage_snes,ierr); CHKERRQ(ierr)
end subroutine spectral_damage_destroy
end module spectral_damage

View File

@ -1,568 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Interfacing between the spectral solver and the material subroutines provided
!! by DAMASK
!> @details Interfacing between the spectral solver and the material subroutines provided
!> by DAMASK. Interpretating the command line arguments or, in case of called from f2py,
!> the arguments parsed to the init routine to get load case, geometry file, working
!> directory, etc.
!--------------------------------------------------------------------------------------------------
module DAMASK_interface
use prec, only: &
pInt
implicit none
private
#ifdef PETSc
#include <petsc/finclude/petscsys.h>
#endif
logical, public, protected :: appendToOutFile = .false. !< Append to existing spectralOut file (in case of restart, not in case of regridding)
integer(pInt), public, protected :: spectralRestartInc = 1_pInt !< Increment at which calculation starts
character(len=1024), public, protected :: &
geometryFile = '', & !< parameter given for geometry file
loadCaseFile = '' !< parameter given for load case file
character(len=1024), private :: workingDirectory !< accessed by getSolverWorkingDirectoryName for compatibility reasons
public :: &
getSolverWorkingDirectoryName, &
getSolverJobName, &
DAMASK_interface_init
private :: &
storeWorkingDirectory, &
getGeometryFile, &
getLoadCaseFile, &
rectifyPath, &
makeRelativePath, &
getPathSep, &
IIO_stringValue, &
IIO_intValue, &
IIO_lc, &
IIO_stringPos
contains
!--------------------------------------------------------------------------------------------------
!> @brief initializes the solver by interpreting the command line arguments. Also writes
!! information on computation to screen
!--------------------------------------------------------------------------------------------------
subroutine DAMASK_interface_init(loadCaseParameterIn,geometryParameterIn)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
implicit none
character(len=1024), optional, intent(in) :: &
loadCaseParameterIn, & !< if using the f2py variant, the -l argument of DAMASK_spectral.exe
geometryParameterIn !< if using the f2py variant, the -g argument of DAMASK_spectral.exe
character(len=1024) :: &
commandLine, & !< command line call as string
loadCaseArg ='', & !< -l argument given to DAMASK_spectral.exe
geometryArg ='', & !< -g argument given to DAMASK_spectral.exe
workingDirArg ='', & !< -w argument given to DAMASK_spectral.exe
hostName, & !< name of machine on which DAMASK_spectral.exe is execute (might require export HOSTNAME)
userName, & !< name of user calling DAMASK_spectral.exe
tag
integer :: &
i, &
worldrank = 0
integer, allocatable, dimension(:) :: &
chunkPos
integer, dimension(8) :: &
dateAndTime ! type default integer
#ifdef PETSc
PetscErrorCode :: ierr
#endif
external :: &
quit,&
MPI_Comm_rank,&
PETScInitialize, &
MPI_abort
!--------------------------------------------------------------------------------------------------
! PETSc Init
#ifdef PETSc
call PetscInitialize(PETSC_NULL_CHARACTER,ierr) ! according to PETSc manual, that should be the first line in the code
CHKERRQ(ierr) ! this is a macro definition, it is case sensitive
open(6, encoding='UTF-8') ! modern fortran compilers (gfortran >4.4, ifort >11 support it)
call MPI_Comm_rank(PETSC_COMM_WORLD,worldrank,ierr);CHKERRQ(ierr)
#endif
mainProcess: if (worldrank == 0) then
call date_and_time(values = dateAndTime)
write(6,'(/,a)') ' <<<+- DAMASK_spectral -+>>>'
write(6,'(/,a)') ' Version: '//DAMASKVERSION
write(6,'(a,2(i2.2,a),i4.4)') ' Date: ',dateAndTime(3),'/',&
dateAndTime(2),'/',&
dateAndTime(1)
write(6,'(a,2(i2.2,a),i2.2)') ' Time: ',dateAndTime(5),':',&
dateAndTime(6),':',&
dateAndTime(7)
write(6,'(/,a)') ' <<<+- DAMASK_interface init -+>>>'
#include "compilation_info.f90"
endif mainProcess
if ( present(loadcaseParameterIn) .and. present(geometryParameterIn)) then ! both mandatory parameters given in function call
geometryArg = geometryParameterIn
loadcaseArg = loadcaseParameterIn
commandLine = 'n/a'
else if ( .not.( present(loadcaseParameterIn) .and. present(geometryParameterIn))) then ! none parameters given in function call, trying to get them from command line
call get_command(commandLine)
chunkPos = IIO_stringPos(commandLine)
do i = 1, chunkPos(1)
tag = IIO_lc(IIO_stringValue(commandLine,chunkPos,i)) ! extract key
select case(tag)
case ('-h','--help')
mainProcess2: if (worldrank == 0) then
write(6,'(a)') ' #######################################################################'
write(6,'(a)') ' DAMASK_spectral:'
write(6,'(a)') ' The spectral method boundary value problem solver for'
write(6,'(a)') ' the Düsseldorf Advanced Material Simulation Kit'
write(6,'(a,/)')' #######################################################################'
write(6,'(a,/)')' Valid command line switches:'
write(6,'(a)') ' --geom (-g, --geometry)'
write(6,'(a)') ' --load (-l, --loadcase)'
write(6,'(a)') ' --workingdir (-w, --wd, --workingdirectory, -d, --directory)'
write(6,'(a)') ' --restart (-r, --rs)'
write(6,'(a)') ' --regrid (--rg)'
write(6,'(a)') ' --help (-h)'
write(6,'(/,a)')' -----------------------------------------------------------------------'
write(6,'(a)') ' Mandatory arguments:'
write(6,'(/,a)')' --geom PathToGeomFile/NameOfGeom.geom'
write(6,'(a)') ' Specifies the location of the geometry definition file,'
write(6,'(a)') ' if no extension is given, .geom will be appended.'
write(6,'(a)') ' "PathToGeomFile" will be the working directory if not specified'
write(6,'(a)') ' via --workingdir.'
write(6,'(a)') ' Make sure the file "material.config" exists in the working'
write(6,'(a)') ' directory.'
write(6,'(a)') ' For further configuration place "numerics.config"'
write(6,'(a)')' and "numerics.config" in that directory.'
write(6,'(/,a)')' --load PathToLoadFile/NameOfLoadFile.load'
write(6,'(a)') ' Specifies the location of the load case definition file,'
write(6,'(a)') ' if no extension is given, .load will be appended.'
write(6,'(/,a)')' -----------------------------------------------------------------------'
write(6,'(a)') ' Optional arguments:'
write(6,'(/,a)')' --workingdirectory PathToWorkingDirectory'
write(6,'(a)') ' Specifies the working directory and overwrites the default'
write(6,'(a)') ' "PathToGeomFile".'
write(6,'(a)') ' Make sure the file "material.config" exists in the working'
write(6,'(a)') ' directory.'
write(6,'(a)') ' For further configuration place "numerics.config"'
write(6,'(a)')' and "numerics.config" in that directory.'
write(6,'(/,a)')' --restart XX'
write(6,'(a)') ' Reads in total increment No. XX-1 and continues to'
write(6,'(a)') ' calculate total increment No. XX.'
write(6,'(a)') ' Appends to existing results file '
write(6,'(a)') ' "NameOfGeom_NameOfLoadFile.spectralOut".'
write(6,'(a)') ' Works only if the restart information for total increment'
write(6,'(a)') ' No. XX-1 is available in the working directory.'
write(6,'(/,a)')' --regrid XX'
write(6,'(a)') ' Reads in total increment No. XX-1 and continues to'
write(6,'(a)') ' calculate total increment No. XX.'
write(6,'(a)') ' Attention: Overwrites existing results file '
write(6,'(a)') ' "NameOfGeom_NameOfLoadFile.spectralOut".'
write(6,'(a)') ' Works only if the restart information for total increment'
write(6,'(a)') ' No. XX-1 is available in the working directory.'
write(6,'(/,a)')' -----------------------------------------------------------------------'
write(6,'(a)') ' Help:'
write(6,'(/,a)')' --help'
write(6,'(a,/)')' Prints this message and exits'
call quit(0_pInt) ! normal Termination
endif mainProcess2
case ('-l', '--load', '--loadcase')
loadcaseArg = IIO_stringValue(commandLine,chunkPos,i+1_pInt)
case ('-g', '--geom', '--geometry')
geometryArg = IIO_stringValue(commandLine,chunkPos,i+1_pInt)
case ('-w', '-d', '--wd', '--directory', '--workingdir', '--workingdirectory')
workingDirArg = IIO_stringValue(commandLine,chunkPos,i+1_pInt)
case ('-r', '--rs', '--restart')
spectralRestartInc = IIO_IntValue(commandLine,chunkPos,i+1_pInt)
appendToOutFile = .true.
case ('--rg', '--regrid')
spectralRestartInc = IIO_IntValue(commandLine,chunkPos,i+1_pInt)
appendToOutFile = .false.
end select
enddo
endif
if (len(trim(loadcaseArg)) == 0 .or. len(trim(geometryArg)) == 0) then
write(6,'(a)') ' Please specify geometry AND load case (-h for help)'
call quit(1_pInt)
endif
workingDirectory = storeWorkingDirectory(trim(workingDirArg),trim(geometryArg))
geometryFile = getGeometryFile(geometryArg)
loadCaseFile = getLoadCaseFile(loadCaseArg)
call get_environment_variable('HOSTNAME',hostName)
call get_environment_variable('USER',userName)
mainProcess3: if (worldrank == 0) then
write(6,'(a,a)') ' Host name: ', trim(hostName)
write(6,'(a,a)') ' User name: ', trim(userName)
write(6,'(a,a)') ' Path separator: ', getPathSep()
write(6,'(a,a)') ' Command line call: ', trim(commandLine)
if (len(trim(workingDirArg))>0) &
write(6,'(a,a)') ' Working dir argument: ', trim(workingDirArg)
write(6,'(a,a)') ' Geometry argument: ', trim(geometryArg)
write(6,'(a,a)') ' Loadcase argument: ', trim(loadcaseArg)
write(6,'(a,a)') ' Working directory: ', trim(getSolverWorkingDirectoryName())
write(6,'(a,a)') ' Geometry file: ', trim(geometryFile)
write(6,'(a,a)') ' Loadcase file: ', trim(loadCaseFile)
write(6,'(a,a)') ' Solver job name: ', trim(getSolverJobName())
if (SpectralRestartInc > 1_pInt) &
write(6,'(a,i6.6)') ' Restart at increment: ', spectralRestartInc
write(6,'(a,l1,/)') ' Append to result file: ', appendToOutFile
endif mainProcess3
end subroutine DAMASK_interface_init
!--------------------------------------------------------------------------------------------------
!> @brief extract working directory from given argument or from location of geometry file,
!! possibly converting relative arguments to absolut path
!> @todo change working directory with call chdir(storeWorkingDirectory)?
!--------------------------------------------------------------------------------------------------
character(len=1024) function storeWorkingDirectory(workingDirectoryArg,geometryArg)
#ifdef __INTEL_COMPILER
use IFPORT
#endif
implicit none
character(len=*), intent(in) :: workingDirectoryArg !< working directory argument
character(len=*), intent(in) :: geometryArg !< geometry argument
character(len=1024) :: cwd
character :: pathSep
logical :: dirExists
external :: quit
integer :: error
pathSep = getPathSep()
if (len(workingDirectoryArg)>0) then ! got working directory as input
if (workingDirectoryArg(1:1) == pathSep) then ! absolute path given as command line argument
storeWorkingDirectory = workingDirectoryArg
else
error = getcwd(cwd) ! relative path given as command line argument
storeWorkingDirectory = trim(cwd)//pathSep//workingDirectoryArg
endif
if (storeWorkingDirectory(len(trim(storeWorkingDirectory)):len(trim(storeWorkingDirectory))) & ! if path seperator is not given, append it
/= pathSep) storeWorkingDirectory = trim(storeWorkingDirectory)//pathSep
#ifdef __INTEL_COMPILER
inquire(directory = trim(storeWorkingDirectory)//'.', exist=dirExists)
#else
inquire(file = trim(storeWorkingDirectory), exist=dirExists)
#endif
if(.not. dirExists) then ! check if the directory exists
write(6,'(a20,a,a16)') ' working directory "',trim(storeWorkingDirectory),'" does not exist'
call quit(1_pInt)
endif
else ! using path to geometry file as working dir
if (geometryArg(1:1) == pathSep) then ! absolute path given as command line argument
storeWorkingDirectory = geometryArg(1:scan(geometryArg,pathSep,back=.true.))
else
error = getcwd(cwd) ! relative path given as command line argument
storeWorkingDirectory = trim(cwd)//pathSep//&
geometryArg(1:scan(geometryArg,pathSep,back=.true.))
endif
endif
storeWorkingDirectory = rectifyPath(storeWorkingDirectory)
end function storeWorkingDirectory
!--------------------------------------------------------------------------------------------------
!> @brief simply returns the private string workingDir
!--------------------------------------------------------------------------------------------------
character(len=1024) function getSolverWorkingDirectoryName()
implicit none
getSolverWorkingDirectoryName = workingDirectory
end function getSolverWorkingDirectoryName
!--------------------------------------------------------------------------------------------------
!> @brief solver job name (no extension) as combination of geometry and load case name
!--------------------------------------------------------------------------------------------------
character(len=1024) function getSolverJobName()
implicit none
integer :: posExt,posSep
character :: pathSep
character(len=1024) :: tempString
pathSep = getPathSep()
tempString = geometryFile
posExt = scan(tempString,'.',back=.true.)
posSep = scan(tempString,pathSep,back=.true.)
getSolverJobName = tempString(posSep+1:posExt-1)
tempString = loadCaseFile
posExt = scan(tempString,'.',back=.true.)
posSep = scan(tempString,pathSep,back=.true.)
getSolverJobName = trim(getSolverJobName)//'_'//tempString(posSep+1:posExt-1)
end function getSolverJobName
!--------------------------------------------------------------------------------------------------
!> @brief basename of geometry file with extension from command line arguments
!--------------------------------------------------------------------------------------------------
character(len=1024) function getGeometryFile(geometryParameter)
#ifdef __INTEL_COMPILER
use IFPORT
#endif
implicit none
character(len=1024), intent(in) :: &
geometryParameter
character(len=1024) :: &
cwd
integer :: posExt, posSep
character :: pathSep
integer :: error
getGeometryFile = geometryParameter
pathSep = getPathSep()
posExt = scan(getGeometryFile,'.',back=.true.)
posSep = scan(getGeometryFile,pathSep,back=.true.)
if (posExt <= posSep) getGeometryFile = trim(getGeometryFile)//('.geom') ! no extension present
if (scan(getGeometryFile,pathSep) /= 1) then ! relative path given as command line argument
error = getcwd(cwd)
getGeometryFile = rectifyPath(trim(cwd)//pathSep//getGeometryFile)
else
getGeometryFile = rectifyPath(getGeometryFile)
endif
getGeometryFile = makeRelativePath(getSolverWorkingDirectoryName(), getGeometryFile)
end function getGeometryFile
!--------------------------------------------------------------------------------------------------
!> @brief relative path of loadcase from command line arguments
!--------------------------------------------------------------------------------------------------
character(len=1024) function getLoadCaseFile(loadCaseParameter)
#ifdef __INTEL_COMPILER
use IFPORT
#endif
implicit none
character(len=1024), intent(in) :: &
loadCaseParameter
character(len=1024) :: &
cwd
integer :: posExt, posSep, error
character :: pathSep
getLoadCaseFile = loadcaseParameter
pathSep = getPathSep()
posExt = scan(getLoadCaseFile,'.',back=.true.)
posSep = scan(getLoadCaseFile,pathSep,back=.true.)
if (posExt <= posSep) getLoadCaseFile = trim(getLoadCaseFile)//('.load') ! no extension present
if (scan(getLoadCaseFile,pathSep) /= 1) then ! relative path given as command line argument
error = getcwd(cwd)
getLoadCaseFile = rectifyPath(trim(cwd)//pathSep//getLoadCaseFile)
else
getLoadCaseFile = rectifyPath(getLoadCaseFile)
endif
getLoadCaseFile = makeRelativePath(getSolverWorkingDirectoryName(), getLoadCaseFile)
end function getLoadCaseFile
!--------------------------------------------------------------------------------------------------
!> @brief remove ../ and /./ from path
!--------------------------------------------------------------------------------------------------
function rectifyPath(path)
implicit none
character(len=*) :: path
character(len=len_trim(path)) :: rectifyPath
character :: pathSep
integer :: i,j,k,l ! no pInt
pathSep = getPathSep()
!--------------------------------------------------------------------------------------------------
! remove /./ from path
l = len_trim(path)
rectifyPath = path
do i = l,3,-1
if (rectifyPath(i-2:i) == pathSep//'.'//pathSep) &
rectifyPath(i-1:l) = rectifyPath(i+1:l)//' '
enddo
!--------------------------------------------------------------------------------------------------
! remove ../ and corresponding directory from rectifyPath
l = len_trim(rectifyPath)
i = index(rectifyPath(i:l),'..'//pathSep)
j = 0
do while (i > j)
j = scan(rectifyPath(1:i-2),pathSep,back=.true.)
rectifyPath(j+1:l) = rectifyPath(i+3:l)//repeat(' ',2+i-j)
if (rectifyPath(j+1:j+1) == pathSep) then !search for '//' that appear in case of XXX/../../XXX
k = len_trim(rectifyPath)
rectifyPath(j+1:k-1) = rectifyPath(j+2:k)
rectifyPath(k:k) = ' '
endif
i = j+index(rectifyPath(j+1:l),'..'//pathSep)
enddo
if(len_trim(rectifyPath) == 0) rectifyPath = pathSep
end function rectifyPath
!--------------------------------------------------------------------------------------------------
!> @brief relative path from absolute a to absolute b
!--------------------------------------------------------------------------------------------------
character(len=1024) function makeRelativePath(a,b)
implicit none
character (len=*) :: a,b
character :: pathSep
integer :: i,posLastCommonSlash,remainingSlashes !no pInt
pathSep = getPathSep()
posLastCommonSlash = 0
remainingSlashes = 0
do i = 1, min(1024,len_trim(a),len_trim(b))
if (a(i:i) /= b(i:i)) exit
if (a(i:i) == pathSep) posLastCommonSlash = i
enddo
do i = posLastCommonSlash+1,len_trim(a)
if (a(i:i) == pathSep) remainingSlashes = remainingSlashes + 1
enddo
makeRelativePath = repeat('..'//pathSep,remainingSlashes)//b(posLastCommonSlash+1:len_trim(b))
end function makeRelativePath
!--------------------------------------------------------------------------------------------------
!> @brief counting / and \ in $PATH System variable the character occuring more often is assumed
! to be the path separator
!--------------------------------------------------------------------------------------------------
character function getPathSep()
implicit none
character(len=2048) :: &
path
integer(pInt) :: &
backslash = 0_pInt, &
slash = 0_pInt
integer :: i
call get_environment_variable('PATH',path)
do i=1, len(trim(path))
if (path(i:i)=='/') slash = slash + 1_pInt
if (path(i:i)=='\') backslash = backslash + 1_pInt
enddo
if (backslash>slash) then
getPathSep = '\'
else
getPathSep = '/'
endif
end function getPathSep
!--------------------------------------------------------------------------------------------------
!> @brief taken from IO, check IO_stringValue for documentation
!--------------------------------------------------------------------------------------------------
pure function IIO_stringValue(string,chunkPos,myChunk)
implicit none
integer(pInt), dimension(:), intent(in) :: chunkPos !< positions of start and end of each tag/chunk in given string
integer(pInt), intent(in) :: myChunk !< position number of desired chunk
character(len=1+chunkPos(myChunk*2+1)-chunkPos(myChunk*2)) :: IIO_stringValue
character(len=*), intent(in) :: string !< raw input with known start and end of each chunk
valuePresent: if (myChunk > chunkPos(1) .or. myChunk < 1_pInt) then
IIO_stringValue = ''
else valuePresent
IIO_stringValue = string(chunkPos(myChunk*2):chunkPos(myChunk*2+1))
endif valuePresent
end function IIO_stringValue
!--------------------------------------------------------------------------------------------------
!> @brief taken from IO, check IO_intValue for documentation
!--------------------------------------------------------------------------------------------------
integer(pInt) pure function IIO_intValue(string,chunkPos,myChunk)
implicit none
character(len=*), intent(in) :: string !< raw input with known start and end of each chunk
integer(pInt), intent(in) :: myChunk !< position number of desired sub string
integer(pInt), dimension(:), intent(in) :: chunkPos !< positions of start and end of each tag/chunk in given string
valuePresent: if (myChunk > chunkPos(1) .or. myChunk < 1_pInt) then
IIO_intValue = 0_pInt
else valuePresent
read(UNIT=string(chunkPos(myChunk*2):chunkPos(myChunk*2+1)),ERR=100,FMT=*) IIO_intValue
endif valuePresent
return
100 IIO_intValue = huge(1_pInt)
end function IIO_intValue
!--------------------------------------------------------------------------------------------------
!> @brief taken from IO, check IO_lc for documentation
!--------------------------------------------------------------------------------------------------
pure function IIO_lc(string)
implicit none
character(len=*), intent(in) :: string !< string to convert
character(len=len(string)) :: IIO_lc
character(26), parameter :: LOWER = 'abcdefghijklmnopqrstuvwxyz'
character(26), parameter :: UPPER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
integer :: i,n ! no pInt (len returns default integer)
IIO_lc = string
do i=1,len(string)
n = index(UPPER,IIO_lc(i:i))
if (n/=0) IIO_lc(i:i) = LOWER(n:n)
enddo
end function IIO_lc
!--------------------------------------------------------------------------------------------------
!> @brief taken from IO, check IO_stringPos for documentation
!--------------------------------------------------------------------------------------------------
pure function IIO_stringPos(string)
implicit none
integer(pInt), dimension(:), allocatable :: IIO_stringPos
character(len=*), intent(in) :: string !< string in which chunks are searched for
character(len=*), parameter :: SEP=achar(44)//achar(32)//achar(9)//achar(10)//achar(13) ! comma and whitespaces
integer :: left, right ! no pInt (verify and scan return default integer)
allocate(IIO_stringPos(1), source=0_pInt)
right = 0
do while (verify(string(right+1:),SEP)>0)
left = right + verify(string(right+1:),SEP)
right = left + scan(string(left:),SEP) - 2
if ( string(left:left) == '#' ) exit
IIO_stringPos = [IIO_stringPos,int(left, pInt), int(right, pInt)]
IIO_stringPos(1) = IIO_stringPos(1)+1_pInt
enddo
end function IIO_stringPos
end module

View File

@ -1,715 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief AL scheme solver
!--------------------------------------------------------------------------------------------------
module spectral_mech_AL
use prec, only: &
pInt, &
pReal
use math, only: &
math_I3
use spectral_utilities, only: &
tSolutionState, &
tSolutionParams
implicit none
private
#include <petsc/finclude/petsc.h90>
character (len=*), parameter, public :: &
DAMASK_spectral_solverAL_label = 'al'
!--------------------------------------------------------------------------------------------------
! derived types
type(tSolutionParams), private :: params
real(pReal), private, dimension(3,3) :: mask_stress = 0.0_pReal
!--------------------------------------------------------------------------------------------------
! PETSc data
DM, private :: da
SNES, private :: snes
Vec, private :: solution_vec
!--------------------------------------------------------------------------------------------------
! common pointwise data
real(pReal), private, dimension(:,:,:,:,:), allocatable :: &
F_lastInc, & !< field of previous compatible deformation gradients
F_lambda_lastInc, & !< field of previous incompatible deformation gradient
Fdot, & !< field of assumed rate of compatible deformation gradient
F_lambdaDot !< field of assumed rate of incopatible deformation gradient
!--------------------------------------------------------------------------------------------------
! stress, stiffness and compliance average etc.
real(pReal), private, dimension(3,3) :: &
F_aimDot, & !< assumed rate of average deformation gradient
F_aim = math_I3, & !< current prescribed deformation gradient
F_aim_lastInc = math_I3, & !< previous average deformation gradient
F_av = 0.0_pReal, & !< average incompatible def grad field
P_av = 0.0_pReal, & !< average 1st Piola--Kirchhoff stress
P_avLastEval = 0.0_pReal !< average 1st Piola--Kirchhoff stress last call of CPFEM_general
character(len=1024), private :: incInfo !< time and increment information
real(pReal), private, dimension(3,3,3,3) :: &
C_volAvg = 0.0_pReal, & !< current volume average stiffness
C_volAvgLastInc = 0.0_pReal, & !< previous volume average stiffness
C_minMaxAvg = 0.0_pReal, & !< current (min+max)/2 stiffness
S = 0.0_pReal, & !< current compliance (filled up with zeros)
C_scale = 0.0_pReal, &
S_scale = 0.0_pReal
real(pReal), private :: &
err_BC, & !< deviation from stress BC
err_curl, & !< RMS of curl of F
err_div !< RMS of div of P
logical, private :: ForwardData
integer(pInt), private :: &
totalIter = 0_pInt !< total iteration in current increment
public :: &
AL_init, &
AL_solution, &
AL_forward, &
AL_destroy
external :: &
VecDestroy, &
DMDestroy, &
DMDACreate3D, &
DMCreateGlobalVector, &
DMDASNESSetFunctionLocal, &
PETScFinalize, &
SNESDestroy, &
SNESGetNumberFunctionEvals, &
SNESGetIterationNumber, &
SNESSolve, &
SNESSetDM, &
SNESGetConvergedReason, &
SNESSetConvergenceTest, &
SNESSetFromOptions, &
SNESCreate, &
MPI_Abort, &
MPI_Bcast, &
MPI_Allreduce
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields and fills them with data, potentially from restart info
!> @todo use sourced allocation, e.g. allocate(Fdot,source = F_lastInc)
!--------------------------------------------------------------------------------------------------
subroutine AL_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use IO, only: &
IO_intOut, &
IO_read_realFile, &
IO_timeStamp
use debug, only: &
debug_level, &
debug_spectral, &
debug_spectralRestart
use FEsolving, only: &
restartInc
use numerics, only: &
worldrank, &
worldsize
use DAMASK_interface, only: &
getSolverJobName
use spectral_utilities, only: &
Utilities_constitutiveResponse, &
Utilities_updateGamma, &
Utilities_updateIPcoords
use mesh, only: &
grid, &
grid3
use math, only: &
math_invSym3333
implicit none
real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: P
real(pReal), dimension(3,3) :: &
temp33_Real = 0.0_pReal
PetscErrorCode :: ierr
PetscObject :: dummy
PetscScalar, pointer, dimension(:,:,:,:) :: xx_psc, F, F_lambda
integer(pInt), dimension(:), allocatable :: localK
integer(pInt) :: proc
character(len=1024) :: rankStr
if (worldrank == 0_pInt) then
write(6,'(/,a)') ' <<<+- DAMASK_spectral_solverAL init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif
!--------------------------------------------------------------------------------------------------
! allocate global fields
allocate (F_lastInc (3,3,grid(1),grid(2),grid3),source = 0.0_pReal)
allocate (Fdot (3,3,grid(1),grid(2),grid3),source = 0.0_pReal)
allocate (F_lambda_lastInc(3,3,grid(1),grid(2),grid3),source = 0.0_pReal)
allocate (F_lambdaDot (3,3,grid(1),grid(2),grid3),source = 0.0_pReal)
!--------------------------------------------------------------------------------------------------
! PETSc Init
call SNESCreate(PETSC_COMM_WORLD,snes,ierr); CHKERRQ(ierr)
call SNESSetOptionsPrefix(snes,'mech_',ierr);CHKERRQ(ierr)
allocate(localK(worldsize), source = 0); localK(worldrank+1) = grid3
do proc = 1, worldsize
call MPI_Bcast(localK(proc),1,MPI_INTEGER,proc-1,PETSC_COMM_WORLD,ierr)
enddo
call DMDACreate3d(PETSC_COMM_WORLD, &
DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & ! cut off stencil at boundary
DMDA_STENCIL_BOX, & ! Moore (26) neighborhood around central point
grid(1),grid(2),grid(3), & ! global grid
1 , 1, worldsize, &
18, 0, & ! #dof (F tensor), ghost boundary width (domain overlap)
grid(1),grid(2),localK, & ! local grid
da,ierr) ! handle, error
CHKERRQ(ierr)
call SNESSetDM(snes,da,ierr); CHKERRQ(ierr)
call DMCreateGlobalVector(da,solution_vec,ierr); CHKERRQ(ierr)
call DMDASNESSetFunctionLocal(da,INSERT_VALUES,AL_formResidual,dummy,ierr)
CHKERRQ(ierr)
call SNESSetConvergenceTest(snes,AL_converged,dummy,PETSC_NULL_FUNCTION,ierr)
CHKERRQ(ierr)
call SNESSetFromOptions(snes,ierr); CHKERRQ(ierr)
!--------------------------------------------------------------------------------------------------
! init fields
call DMDAVecGetArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr) ! places pointer xx_psc on PETSc data
F => xx_psc(0:8,:,:,:)
F_lambda => xx_psc(9:17,:,:,:)
restart: if (restartInc > 1_pInt) then
if (iand(debug_level(debug_spectral),debug_spectralRestart)/= 0 .and. worldrank == 0_pInt) &
write(6,'(/,a,'//IO_intOut(restartInc-1_pInt)//',a)') &
'reading values of increment ', restartInc - 1_pInt, ' from file'
flush(6)
write(rankStr,'(a1,i0)')'_',worldrank
call IO_read_realFile(777,'F'//trim(rankStr), trim(getSolverJobName()),size(F))
read (777,rec=1) F
close (777)
call IO_read_realFile(777,'F_lastInc'//trim(rankStr), trim(getSolverJobName()),size(F_lastInc))
read (777,rec=1) F_lastInc
close (777)
call IO_read_realFile(777,'F_lambda'//trim(rankStr),trim(getSolverJobName()),size(F_lambda))
read (777,rec=1) F_lambda
close (777)
call IO_read_realFile(777,'F_lambda_lastInc'//trim(rankStr),&
trim(getSolverJobName()),size(F_lambda_lastInc))
read (777,rec=1) F_lambda_lastInc
close (777)
call IO_read_realFile(777,'F_aim', trim(getSolverJobName()),size(F_aim))
read (777,rec=1) F_aim
close (777)
call IO_read_realFile(777,'F_aim_lastInc', trim(getSolverJobName()),size(F_aim_lastInc))
read (777,rec=1) F_aim_lastInc
close (777)
call IO_read_realFile(777,'F_aimDot',trim(getSolverJobName()),size(f_aimDot))
read (777,rec=1) f_aimDot
close (777)
elseif (restartInc == 1_pInt) then restart
F_lastInc = spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid3) ! initialize to identity
F = reshape(F_lastInc,[9,grid(1),grid(2),grid3])
F_lambda = F
F_lambda_lastInc = F_lastInc
endif restart
call Utilities_updateIPcoords(reshape(F,shape(F_lastInc)))
call Utilities_constitutiveResponse(F_lastInc, reshape(F,shape(F_lastInc)), &
0.0_pReal,P,C_volAvg,C_minMaxAvg,temp33_Real,.false.,math_I3)
nullify(F)
nullify(F_lambda)
call DMDAVecRestoreArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr) ! write data back to PETSc
readRestart: if (restartInc > 1_pInt) then
if (iand(debug_level(debug_spectral),debug_spectralRestart)/= 0 .and. worldrank == 0_pInt) &
write(6,'(/,a,'//IO_intOut(restartInc-1_pInt)//',a)') &
'reading more values of increment', restartInc - 1_pInt, 'from file'
flush(6)
call IO_read_realFile(777,'C_volAvg',trim(getSolverJobName()),size(C_volAvg))
read (777,rec=1) C_volAvg
close (777)
call IO_read_realFile(777,'C_volAvgLastInc',trim(getSolverJobName()),size(C_volAvgLastInc))
read (777,rec=1) C_volAvgLastInc
close (777)
call IO_read_realFile(777,'C_ref',trim(getSolverJobName()),size(C_minMaxAvg))
read (777,rec=1) C_minMaxAvg
close (777)
endif readRestart
call Utilities_updateGamma(C_minMaxAvg,.True.)
C_scale = C_minMaxAvg
S_scale = math_invSym3333(C_minMaxAvg)
end subroutine AL_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the AL scheme with internal iterations
!--------------------------------------------------------------------------------------------------
type(tSolutionState) function &
AL_solution(incInfoIn,guess,timeinc,timeinc_old,loadCaseTime,P_BC,F_BC,rotation_BC)
use IO, only: &
IO_error
use numerics, only: &
update_gamma
use math, only: &
math_invSym3333
use spectral_utilities, only: &
tBoundaryCondition, &
Utilities_maskedCompliance, &
Utilities_updateGamma
use FEsolving, only: &
restartWrite, &
terminallyIll
implicit none
!--------------------------------------------------------------------------------------------------
! input data for solution
real(pReal), intent(in) :: &
timeinc, & !< increment in time for current solution
timeinc_old, & !< increment in time of last increment
loadCaseTime !< remaining time of current load case
logical, intent(in) :: &
guess
type(tBoundaryCondition), intent(in) :: &
P_BC, &
F_BC
character(len=*), intent(in) :: &
incInfoIn
real(pReal), dimension(3,3), intent(in) :: rotation_BC
!--------------------------------------------------------------------------------------------------
! PETSc Data
PetscErrorCode :: ierr
SNESConvergedReason :: reason
incInfo = incInfoIn
!--------------------------------------------------------------------------------------------------
! update stiffness (and gamma operator)
S = Utilities_maskedCompliance(rotation_BC,P_BC%maskLogical,C_volAvg)
if (update_gamma) then
call Utilities_updateGamma(C_minMaxAvg,restartWrite)
C_scale = C_minMaxAvg
S_scale = math_invSym3333(C_minMaxAvg)
endif
!--------------------------------------------------------------------------------------------------
! set module wide availabe data
mask_stress = P_BC%maskFloat
params%P_BC = P_BC%values
params%rotation_BC = rotation_BC
params%timeinc = timeinc
params%timeincOld = timeinc_old
!--------------------------------------------------------------------------------------------------
! solve BVP
call SNESSolve(snes,PETSC_NULL_OBJECT,solution_vec,ierr)
CHKERRQ(ierr)
!--------------------------------------------------------------------------------------------------
! check convergence
call SNESGetConvergedReason(snes,reason,ierr)
CHKERRQ(ierr)
AL_solution%termIll = terminallyIll
terminallyIll = .false.
if (reason == -4) call IO_error(893_pInt)
if (reason < 1) AL_solution%converged = .false.
AL_solution%iterationsNeeded = totalIter
end function AL_solution
!--------------------------------------------------------------------------------------------------
!> @brief forms the AL residual vector
!--------------------------------------------------------------------------------------------------
subroutine AL_formResidual(in,x_scal,f_scal,dummy,ierr)
use numerics, only: &
itmax, &
itmin, &
polarAlpha, &
polarBeta, &
worldrank
use mesh, only: &
grid3, &
grid
use IO, only: &
IO_intOut
use math, only: &
math_rotate_backward33, &
math_transpose33, &
math_mul3333xx33, &
math_invSym3333, &
math_mul33x33
use spectral_utilities, only: &
wgt, &
tensorField_real, &
utilities_FFTtensorForward, &
utilities_fourierGammaConvolution, &
utilities_FFTtensorBackward, &
Utilities_constitutiveResponse, &
Utilities_divergenceRMS, &
Utilities_curlRMS
use debug, only: &
debug_level, &
debug_spectral, &
debug_spectralRotation
use homogenization, only: &
materialpoint_dPdF
use FEsolving, only: &
terminallyIll
implicit none
!--------------------------------------------------------------------------------------------------
! strange syntax in the next line because otherwise macros expand beyond 132 character limit
DMDALocalInfo, dimension(&
DMDA_LOCAL_INFO_SIZE) :: &
in
PetscScalar, target, dimension(3,3,2, &
XG_RANGE,YG_RANGE,ZG_RANGE) :: &
x_scal
PetscScalar, target, dimension(3,3,2, &
X_RANGE,Y_RANGE,Z_RANGE) :: &
f_scal
PetscScalar, pointer, dimension(:,:,:,:,:) :: &
F, &
F_lambda, &
residual_F, &
residual_F_lambda
PetscInt :: &
PETScIter, &
nfuncs
PetscObject :: dummy
PetscErrorCode :: ierr
integer(pInt) :: &
i, j, k, e
F => x_scal(1:3,1:3,1,&
XG_RANGE,YG_RANGE,ZG_RANGE)
F_lambda => x_scal(1:3,1:3,2,&
XG_RANGE,YG_RANGE,ZG_RANGE)
residual_F => f_scal(1:3,1:3,1,&
X_RANGE,Y_RANGE,Z_RANGE)
residual_F_lambda => f_scal(1:3,1:3,2,&
X_RANGE,Y_RANGE,Z_RANGE)
call SNESGetNumberFunctionEvals(snes,nfuncs,ierr); CHKERRQ(ierr)
call SNESGetIterationNumber(snes,PETScIter,ierr); CHKERRQ(ierr)
F_av = sum(sum(sum(F,dim=5),dim=4),dim=3) * wgt
call MPI_Allreduce(MPI_IN_PLACE,F_av,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
if(nfuncs== 0 .and. PETScIter == 0) totalIter = -1_pInt ! new increment
newIteration: if(totalIter <= PETScIter) then
!--------------------------------------------------------------------------------------------------
! report begin of new iteration
totalIter = totalIter + 1_pInt
if (worldrank == 0_pInt) then
write(6,'(1x,a,3(a,'//IO_intOut(itmax)//'))') trim(incInfo), &
' @ Iteration ', itmin, '≤',totalIter, '≤', itmax
if (iand(debug_level(debug_spectral),debug_spectralRotation) /= 0) &
write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' deformation gradient aim (lab) =', &
math_transpose33(math_rotate_backward33(F_aim,params%rotation_BC))
write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' deformation gradient aim =', &
math_transpose33(F_aim)
flush(6)
endif
endif newIteration
!--------------------------------------------------------------------------------------------------
!
tensorField_real = 0.0_pReal
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid(1)
tensorField_real(1:3,1:3,i,j,k) = &
polarBeta*math_mul3333xx33(C_scale,F(1:3,1:3,i,j,k) - math_I3) -&
polarAlpha*math_mul33x33(F(1:3,1:3,i,j,k), &
math_mul3333xx33(C_scale,F_lambda(1:3,1:3,i,j,k) - math_I3))
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! doing convolution in Fourier space
call utilities_FFTtensorForward()
call utilities_fourierGammaConvolution(math_rotate_backward33(polarBeta*F_aim,params%rotation_BC))
call utilities_FFTtensorBackward()
!--------------------------------------------------------------------------------------------------
! constructing residual
residual_F_lambda = polarBeta*F - tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3)
!--------------------------------------------------------------------------------------------------
! evaluate constitutive response
P_avLastEval = P_av
call Utilities_constitutiveResponse(F_lastInc,F - residual_F_lambda/polarBeta,params%timeinc, &
residual_F,C_volAvg,C_minMaxAvg,P_av,ForwardData,params%rotation_BC)
call MPI_Allreduce(MPI_IN_PLACE,terminallyIll,1,MPI_LOGICAL,MPI_LOR,PETSC_COMM_WORLD,ierr)
ForwardData = .False.
!--------------------------------------------------------------------------------------------------
! calculate divergence
tensorField_real = 0.0_pReal
tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = residual_F
call utilities_FFTtensorForward()
err_div = Utilities_divergenceRMS()
call utilities_FFTtensorBackward()
!--------------------------------------------------------------------------------------------------
! constructing residual
e = 0_pInt
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid(1)
e = e + 1_pInt
residual_F(1:3,1:3,i,j,k) = math_mul3333xx33(math_invSym3333(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,e) + C_scale), &
residual_F(1:3,1:3,i,j,k) - &
math_mul33x33(F(1:3,1:3,i,j,k), &
math_mul3333xx33(C_scale,F_lambda(1:3,1:3,i,j,k) - math_I3))) &
+ residual_F_lambda(1:3,1:3,i,j,k)
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! calculating curl
tensorField_real = 0.0_pReal
tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = F
call utilities_FFTtensorForward()
err_curl = Utilities_curlRMS()
call utilities_FFTtensorBackward()
end subroutine AL_formResidual
!--------------------------------------------------------------------------------------------------
!> @brief convergence check
!--------------------------------------------------------------------------------------------------
subroutine AL_converged(snes_local,PETScIter,xnorm,snorm,fnorm,reason,dummy,ierr)
use numerics, only: &
itmax, &
itmin, &
err_div_tolRel, &
err_div_tolAbs, &
err_curl_tolRel, &
err_curl_tolAbs, &
err_stress_tolAbs, &
err_stress_tolRel, &
worldrank
use math, only: &
math_mul3333xx33
use FEsolving, only: &
terminallyIll
implicit none
SNES :: snes_local
PetscInt :: PETScIter
PetscReal :: &
xnorm, &
snorm, &
fnorm
SNESConvergedReason :: reason
PetscObject :: dummy
PetscErrorCode ::ierr
real(pReal) :: &
curlTol, &
divTol, &
BC_tol
!--------------------------------------------------------------------------------------------------
! stress BC handling
F_aim = F_aim - math_mul3333xx33(S, ((P_av - params%P_BC))) ! S = 0.0 for no bc
err_BC = maxval(abs((-mask_stress+1.0_pReal)*math_mul3333xx33(C_scale,F_aim-F_av) + &
mask_stress *(P_av - params%P_BC))) ! mask = 0.0 for no bc
!--------------------------------------------------------------------------------------------------
! error calculation
curlTol = max(maxval(abs(F_aim-math_I3))*err_curl_tolRel,err_curl_tolAbs)
divTol = max(maxval(abs(P_av)) *err_div_tolRel,err_div_tolAbs)
BC_tol = max(maxval(abs(P_av)) *err_stress_tolrel,err_stress_tolabs)
converged: if ((totalIter >= itmin .and. &
all([ err_div/divTol, &
err_curl/curlTol, &
err_BC/BC_tol ] < 1.0_pReal)) &
.or. terminallyIll) then
reason = 1
elseif (totalIter >= itmax) then converged
reason = -1
else converged
reason = 0
endif converged
!--------------------------------------------------------------------------------------------------
! report
if (worldrank == 0_pInt) then
write(6,'(1/,a)') ' ... reporting .............................................................'
write(6,'(/,a,f12.2,a,es8.2,a,es9.2,a)') ' error curl = ', &
err_curl/curlTol,' (',err_curl,' -, tol =',curlTol,')'
write(6,' (a,f12.2,a,es8.2,a,es9.2,a)') ' error divergence = ', &
err_div/divTol, ' (',err_div, ' / m, tol =',divTol,')'
write(6,' (a,f12.2,a,es8.2,a,es9.2,a)') ' error BC = ', &
err_BC/BC_tol, ' (',err_BC, ' Pa, tol =',BC_tol,')'
write(6,'(/,a)') ' ==========================================================================='
flush(6)
endif
end subroutine AL_converged
!--------------------------------------------------------------------------------------------------
!> @brief forwarding routine
!--------------------------------------------------------------------------------------------------
subroutine AL_forward(guess,timeinc,timeinc_old,loadCaseTime,F_BC,P_BC,rotation_BC)
use math, only: &
math_mul33x33, &
math_mul3333xx33, &
math_transpose33, &
math_rotate_backward33
use numerics, only: &
worldrank
use mesh, only: &
grid3, &
grid
use spectral_utilities, only: &
Utilities_calculateRate, &
Utilities_forwardField, &
Utilities_updateIPcoords, &
tBoundaryCondition, &
cutBack
use IO, only: &
IO_write_JobRealFile
use FEsolving, only: &
restartWrite
implicit none
real(pReal), intent(in) :: &
timeinc_old, &
timeinc, &
loadCaseTime !< remaining time of current load case
type(tBoundaryCondition), intent(in) :: &
P_BC, &
F_BC
real(pReal), dimension(3,3), intent(in) :: rotation_BC
logical, intent(in) :: &
guess
PetscErrorCode :: ierr
PetscScalar, dimension(:,:,:,:), pointer :: xx_psc, F, F_lambda
integer(pInt) :: i, j, k
real(pReal), dimension(3,3) :: F_lambda33
character(len=1024) :: rankStr
!--------------------------------------------------------------------------------------------------
! update coordinates and rate and forward last inc
call DMDAVecGetArrayF90(da,solution_vec,xx_psc,ierr)
F => xx_psc(0:8,:,:,:)
F_lambda => xx_psc(9:17,:,:,:)
if (restartWrite) then
if (worldrank == 0_pInt) then
write(6,'(/,a)') ' writing converged results for restart'
flush(6)
endif
write(rankStr,'(a1,i0)')'_',worldrank
call IO_write_jobRealFile(777,'F'//trim(rankStr),size(F)) ! writing deformation gradient field to file
write (777,rec=1) F
close (777)
call IO_write_jobRealFile(777,'F_lastInc'//trim(rankStr),size(F_lastInc)) ! writing F_lastInc field to file
write (777,rec=1) F_lastInc
close (777)
call IO_write_jobRealFile(777,'F_lambda'//trim(rankStr),size(F_lambda)) ! writing deformation gradient field to file
write (777,rec=1) F_lambda
close (777)
call IO_write_jobRealFile(777,'F_lambda_lastInc'//trim(rankStr),size(F_lambda_lastInc)) ! writing F_lastInc field to file
write (777,rec=1) F_lambda_lastInc
close (777)
if (worldrank == 0_pInt) then
call IO_write_jobRealFile(777,'F_aim',size(F_aim))
write (777,rec=1) F_aim
close(777)
call IO_write_jobRealFile(777,'F_aim_lastInc',size(F_aim_lastInc))
write (777,rec=1) F_aim_lastInc
close(777)
call IO_write_jobRealFile(777,'F_aimDot',size(F_aimDot))
write (777,rec=1) F_aimDot
close(777)
call IO_write_jobRealFile(777,'C_volAvg',size(C_volAvg))
write (777,rec=1) C_volAvg
close(777)
call IO_write_jobRealFile(777,'C_volAvgLastInc',size(C_volAvgLastInc))
write (777,rec=1) C_volAvgLastInc
close(777)
endif
endif
call utilities_updateIPcoords(F)
if (cutBack) then
F_aim = F_aim_lastInc
F_lambda = reshape(F_lambda_lastInc,[9,grid(1),grid(2),grid3])
F = reshape(F_lastInc, [9,grid(1),grid(2),grid3])
C_volAvg = C_volAvgLastInc
else
ForwardData = .True.
C_volAvgLastInc = C_volAvg
!--------------------------------------------------------------------------------------------------
! calculate rate for aim
if (F_BC%myType=='l') then ! calculate f_aimDot from given L and current F
f_aimDot = F_BC%maskFloat * math_mul33x33(F_BC%values, F_aim)
elseif(F_BC%myType=='fdot') then ! f_aimDot is prescribed
f_aimDot = F_BC%maskFloat * F_BC%values
elseif(F_BC%myType=='f') then ! aim at end of load case is prescribed
f_aimDot = F_BC%maskFloat * (F_BC%values -F_aim)/loadCaseTime
endif
if (guess) f_aimDot = f_aimDot + P_BC%maskFloat * (F_aim - F_aim_lastInc)/timeinc_old
F_aim_lastInc = F_aim
!--------------------------------------------------------------------------------------------------
! update coordinates and rate and forward last inc
call utilities_updateIPcoords(F)
Fdot = Utilities_calculateRate(math_rotate_backward33(f_aimDot,rotation_BC), &
timeinc_old,guess,F_lastInc,reshape(F,[3,3,grid(1),grid(2),grid3]))
F_lambdaDot = Utilities_calculateRate(math_rotate_backward33(f_aimDot,rotation_BC), &
timeinc_old,guess,F_lambda_lastInc,reshape(F_lambda,[3,3,grid(1),grid(2),grid3]))
F_lastInc = reshape(F, [3,3,grid(1),grid(2),grid3])
F_lambda_lastInc = reshape(F_lambda,[3,3,grid(1),grid(2),grid3])
endif
F_aim = F_aim + f_aimDot * timeinc
!--------------------------------------------------------------------------------------------------
! update local deformation gradient
F = reshape(Utilities_forwardField(timeinc,F_lastInc,Fdot, & ! ensure that it matches rotated F_aim
math_rotate_backward33(F_aim,rotation_BC)), &
[9,grid(1),grid(2),grid3])
F_lambda = reshape(Utilities_forwardField(timeinc,F_lambda_lastInc,F_lambdadot), &
[9,grid(1),grid(2),grid3]) ! does not have any average value as boundary condition
if (.not. guess) then ! large strain forwarding
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid(1)
F_lambda33 = reshape(F_lambda(1:9,i,j,k),[3,3])
F_lambda33 = math_mul3333xx33(S_scale,math_mul33x33(F_lambda33, &
math_mul3333xx33(C_scale,&
math_mul33x33(math_transpose33(F_lambda33),&
F_lambda33) -math_I3))*0.5_pReal)&
+ math_I3
F_lambda(1:9,i,j,k) = reshape(F_lambda33,[9])
enddo; enddo; enddo
endif
call DMDAVecRestoreArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr)
end subroutine AL_forward
!--------------------------------------------------------------------------------------------------
!> @brief destroy routine
!--------------------------------------------------------------------------------------------------
subroutine AL_destroy()
use spectral_utilities, only: &
Utilities_destroy
implicit none
PetscErrorCode :: ierr
call VecDestroy(solution_vec,ierr); CHKERRQ(ierr)
call SNESDestroy(snes,ierr); CHKERRQ(ierr)
call DMDestroy(da,ierr); CHKERRQ(ierr)
end subroutine AL_destroy
end module spectral_mech_AL

View File

@ -1,569 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Basic scheme PETSc solver
!--------------------------------------------------------------------------------------------------
module spectral_mech_basic
use prec, only: &
pInt, &
pReal
use math, only: &
math_I3
use spectral_utilities, only: &
tSolutionState, &
tSolutionParams
implicit none
private
#include <petsc/finclude/petsc.h90>
character (len=*), parameter, public :: &
DAMASK_spectral_SolverBasicPETSC_label = 'basicpetsc'
!--------------------------------------------------------------------------------------------------
! derived types
type(tSolutionParams), private :: params
!--------------------------------------------------------------------------------------------------
! PETSc data
DM, private :: da
SNES, private :: snes
Vec, private :: solution_vec
!--------------------------------------------------------------------------------------------------
! common pointwise data
real(pReal), private, dimension(:,:,:,:,:), allocatable :: F_lastInc, Fdot
!--------------------------------------------------------------------------------------------------
! stress, stiffness and compliance average etc.
real(pReal), private, dimension(3,3) :: &
F_aim = math_I3, &
F_aim_lastIter = math_I3, &
F_aim_lastInc = math_I3, &
P_av = 0.0_pReal, &
F_aimDot=0.0_pReal
character(len=1024), private :: incInfo
real(pReal), private, dimension(3,3,3,3) :: &
C_volAvg = 0.0_pReal, & !< current volume average stiffness
C_volAvgLastInc = 0.0_pReal, & !< previous volume average stiffness
C_minMaxAvg = 0.0_pReal, & !< current (min+max)/2 stiffness
S = 0.0_pReal !< current compliance (filled up with zeros)
real(pReal), private :: err_stress, err_div
logical, private :: ForwardData
integer(pInt), private :: &
totalIter = 0_pInt !< total iteration in current increment
real(pReal), private, dimension(3,3) :: mask_stress = 0.0_pReal
public :: &
basicPETSc_init, &
basicPETSc_solution, &
BasicPETSc_forward, &
basicPETSc_destroy
external :: &
VecDestroy, &
DMDestroy, &
DMDACreate3D, &
DMCreateGlobalVector, &
DMDASNESSetFunctionLocal, &
PETScFinalize, &
SNESDestroy, &
SNESGetNumberFunctionEvals, &
SNESGetIterationNumber, &
SNESSolve, &
SNESSetDM, &
SNESGetConvergedReason, &
SNESSetConvergenceTest, &
SNESSetFromOptions, &
SNESCreate, &
MPI_Abort, &
MPI_Bcast, &
MPI_Allreduce
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields and fills them with data, potentially from restart info
!--------------------------------------------------------------------------------------------------
subroutine basicPETSc_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use IO, only: &
IO_intOut, &
IO_read_realFile, &
IO_timeStamp
use debug, only: &
debug_level, &
debug_spectral, &
debug_spectralRestart
use FEsolving, only: &
restartInc
use numerics, only: &
worldrank, &
worldsize
use DAMASK_interface, only: &
getSolverJobName
use spectral_utilities, only: &
Utilities_constitutiveResponse, &
Utilities_updateGamma, &
utilities_updateIPcoords, &
wgt
use mesh, only: &
grid, &
grid3
use math, only: &
math_invSym3333
implicit none
real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: P
PetscScalar, dimension(:,:,:,:), pointer :: F
PetscErrorCode :: ierr
PetscObject :: dummy
real(pReal), dimension(3,3) :: &
temp33_Real = 0.0_pReal
integer(pInt), dimension(:), allocatable :: localK
integer(pInt) :: proc
character(len=1024) :: rankStr
mainProcess: if (worldrank == 0_pInt) then
write(6,'(/,a)') ' <<<+- DAMASK_spectral_solverBasicPETSc init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
!--------------------------------------------------------------------------------------------------
! allocate global fields
allocate (F_lastInc (3,3,grid(1),grid(2),grid3),source = 0.0_pReal)
allocate (Fdot (3,3,grid(1),grid(2),grid3),source = 0.0_pReal)
!--------------------------------------------------------------------------------------------------
! initialize solver specific parts of PETSc
call SNESCreate(PETSC_COMM_WORLD,snes,ierr); CHKERRQ(ierr)
call SNESSetOptionsPrefix(snes,'mech_',ierr);CHKERRQ(ierr)
allocate(localK(worldsize), source = 0); localK(worldrank+1) = grid3
do proc = 1, worldsize
call MPI_Bcast(localK(proc),1,MPI_INTEGER,proc-1,PETSC_COMM_WORLD,ierr)
enddo
call DMDACreate3d(PETSC_COMM_WORLD, &
DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & ! cut off stencil at boundary
DMDA_STENCIL_BOX, & ! Moore (26) neighborhood around central point
grid(1),grid(2),grid(3), & ! global grid
1, 1, worldsize, &
9, 0, & ! #dof (F tensor), ghost boundary width (domain overlap)
grid (1),grid (2),localK, & ! local grid
da,ierr) ! handle, error
CHKERRQ(ierr)
call SNESSetDM(snes,da,ierr); CHKERRQ(ierr)
call DMCreateGlobalVector(da,solution_vec,ierr); CHKERRQ(ierr) ! global solution vector (grid x 9, i.e. every def grad tensor)
call DMDASNESSetFunctionLocal(da,INSERT_VALUES,BasicPETSC_formResidual,dummy,ierr) ! residual vector of same shape as solution vector
CHKERRQ(ierr)
call SNESSetDM(snes,da,ierr); CHKERRQ(ierr) ! connect snes to da
call SNESSetConvergenceTest(snes,BasicPETSC_converged,dummy,PETSC_NULL_FUNCTION,ierr) ! specify custom convergence check function "_converged"
CHKERRQ(ierr)
call SNESSetFromOptions(snes,ierr); CHKERRQ(ierr) ! pull it all together with additional cli arguments
!--------------------------------------------------------------------------------------------------
! init fields
call DMDAVecGetArrayF90(da,solution_vec,F,ierr); CHKERRQ(ierr) ! get the data out of PETSc to work with
restart: if (restartInc > 1_pInt) then
if (iand(debug_level(debug_spectral),debug_spectralRestart)/= 0 .and. worldrank == 0_pInt) &
write(6,'(/,a,'//IO_intOut(restartInc-1_pInt)//',a)') &
'reading values of increment ', restartInc - 1_pInt, ' from file'
flush(6)
write(rankStr,'(a1,i0)')'_',worldrank
call IO_read_realFile(777,'F'//trim(rankStr),trim(getSolverJobName()),size(F))
read (777,rec=1) F
close (777)
call IO_read_realFile(777,'F_lastInc'//trim(rankStr),trim(getSolverJobName()),size(F_lastInc))
read (777,rec=1) F_lastInc
close (777)
call IO_read_realFile(777,'F_aimDot',trim(getSolverJobName()),size(f_aimDot))
read (777,rec=1) f_aimDot
close (777)
F_aim = reshape(sum(sum(sum(F,dim=4),dim=3),dim=2) * wgt, [3,3]) ! average of F
F_aim_lastInc = sum(sum(sum(F_lastInc,dim=5),dim=4),dim=3) * wgt ! average of F_lastInc
elseif (restartInc == 1_pInt) then restart
F_lastInc = spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid3) ! initialize to identity
F = reshape(F_lastInc,[9,grid(1),grid(2),grid3])
endif restart
call Utilities_updateIPcoords(reshape(F,shape(F_lastInc)))
call Utilities_constitutiveResponse(F_lastInc, reshape(F,shape(F_lastInc)), &
0.0_pReal, &
P, &
C_volAvg,C_minMaxAvg, & ! global average of stiffness and (min+max)/2
temp33_Real, &
.false., &
math_I3)
call DMDAVecRestoreArrayF90(da,solution_vec,F,ierr); CHKERRQ(ierr) ! write data back to PETSc
restartRead: if (restartInc > 1_pInt) then
if (iand(debug_level(debug_spectral),debug_spectralRestart)/= 0 .and. worldrank == 0_pInt) &
write(6,'(/,a,'//IO_intOut(restartInc-1_pInt)//',a)') &
'reading more values of increment', restartInc - 1_pInt, 'from file'
flush(6)
call IO_read_realFile(777,'C_volAvg',trim(getSolverJobName()),size(C_volAvg))
read (777,rec=1) C_volAvg
close (777)
call IO_read_realFile(777,'C_volAvgLastInc',trim(getSolverJobName()),size(C_volAvgLastInc))
read (777,rec=1) C_volAvgLastInc
close (777)
call IO_read_realFile(777,'C_ref',trim(getSolverJobName()),size(C_minMaxAvg))
read (777,rec=1) C_minMaxAvg
close (777)
endif restartRead
call Utilities_updateGamma(C_minmaxAvg,.True.)
end subroutine basicPETSc_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the Basic PETSC scheme with internal iterations
!--------------------------------------------------------------------------------------------------
type(tSolutionState) function &
basicPETSc_solution(incInfoIn,guess,timeinc,timeinc_old,loadCaseTime,P_BC,F_BC,rotation_BC)
use IO, only: &
IO_error
use numerics, only: &
update_gamma
use spectral_utilities, only: &
tBoundaryCondition, &
Utilities_maskedCompliance, &
Utilities_updateGamma
use FEsolving, only: &
restartWrite, &
terminallyIll
implicit none
!--------------------------------------------------------------------------------------------------
! input data for solution
real(pReal), intent(in) :: &
timeinc, & !< increment in time for current solution
timeinc_old, & !< increment in time of last increment
loadCaseTime !< remaining time of current load case
type(tBoundaryCondition), intent(in) :: &
P_BC, &
F_BC
character(len=*), intent(in) :: &
incInfoIn
real(pReal), dimension(3,3), intent(in) :: rotation_BC
logical, intent(in) :: &
guess
!--------------------------------------------------------------------------------------------------
! PETSc Data
PetscErrorCode :: ierr
SNESConvergedReason :: reason
incInfo = incInfoIn
!--------------------------------------------------------------------------------------------------
! update stiffness (and gamma operator)
S = Utilities_maskedCompliance(rotation_BC,P_BC%maskLogical,C_volAvg)
if (update_gamma) call Utilities_updateGamma(C_minmaxAvg,restartWrite)
!--------------------------------------------------------------------------------------------------
! set module wide availabe data
mask_stress = P_BC%maskFloat
params%P_BC = P_BC%values
params%rotation_BC = rotation_BC
params%timeinc = timeinc
params%timeincOld = timeinc_old
!--------------------------------------------------------------------------------------------------
! solve BVP
call SNESSolve(snes,PETSC_NULL_OBJECT,solution_vec,ierr)
CHKERRQ(ierr)
!--------------------------------------------------------------------------------------------------
! check convergence
call SNESGetConvergedReason(snes,reason,ierr)
CHKERRQ(ierr)
basicPETSc_solution%termIll = terminallyIll
terminallyIll = .false.
BasicPETSc_solution%converged =.true.
if (reason == -4) call IO_error(893_pInt)
if (reason < 1) basicPETSC_solution%converged = .false.
basicPETSC_solution%iterationsNeeded = totalIter
end function BasicPETSc_solution
!--------------------------------------------------------------------------------------------------
!> @brief forms the AL residual vector
!--------------------------------------------------------------------------------------------------
subroutine BasicPETSC_formResidual(in,x_scal,f_scal,dummy,ierr)
use numerics, only: &
itmax, &
itmin
use numerics, only: &
worldrank
use mesh, only: &
grid, &
grid3
use math, only: &
math_rotate_backward33, &
math_transpose33, &
math_mul3333xx33
use debug, only: &
debug_level, &
debug_spectral, &
debug_spectralRotation
use spectral_utilities, only: &
tensorField_real, &
utilities_FFTtensorForward, &
utilities_FFTtensorBackward, &
utilities_fourierGammaConvolution, &
Utilities_constitutiveResponse, &
Utilities_divergenceRMS
use IO, only: &
IO_intOut
use FEsolving, only: &
terminallyIll
implicit none
DMDALocalInfo, dimension(DMDA_LOCAL_INFO_SIZE) :: &
in
PetscScalar, dimension(3,3, &
XG_RANGE,YG_RANGE,ZG_RANGE) :: &
x_scal
PetscScalar, dimension(3,3, &
X_RANGE,Y_RANGE,Z_RANGE) :: &
f_scal
PetscInt :: &
PETScIter, &
nfuncs
PetscObject :: dummy
PetscErrorCode :: ierr
call SNESGetNumberFunctionEvals(snes,nfuncs,ierr); CHKERRQ(ierr)
call SNESGetIterationNumber(snes,PETScIter,ierr); CHKERRQ(ierr)
if(nfuncs== 0 .and. PETScIter == 0) totalIter = -1_pInt ! new increment
newIteration: if (totalIter <= PETScIter) then
!--------------------------------------------------------------------------------------------------
! report begin of new iteration
totalIter = totalIter + 1_pInt
if (worldrank == 0_pInt) then
write(6,'(1x,a,3(a,'//IO_intOut(itmax)//'))') trim(incInfo), &
' @ Iteration ', itmin, '≤',totalIter, '≤', itmax
if (iand(debug_level(debug_spectral),debug_spectralRotation) /= 0) &
write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' deformation gradient aim (lab) =', &
math_transpose33(math_rotate_backward33(F_aim,params%rotation_BC))
write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' deformation gradient aim =', &
math_transpose33(F_aim)
flush(6)
endif
endif newIteration
!--------------------------------------------------------------------------------------------------
! evaluate constitutive response
call Utilities_constitutiveResponse(F_lastInc,x_scal,params%timeinc, &
f_scal,C_volAvg,C_minmaxAvg,P_av,ForwardData,params%rotation_BC)
call MPI_Allreduce(MPI_IN_PLACE,terminallyIll,1,MPI_LOGICAL,MPI_LOR,PETSC_COMM_WORLD,ierr)
ForwardData = .false.
!--------------------------------------------------------------------------------------------------
! stress BC handling
F_aim_lastIter = F_aim
F_aim = F_aim - math_mul3333xx33(S, ((P_av - params%P_BC))) ! S = 0.0 for no bc
err_stress = maxval(abs(mask_stress * (P_av - params%P_BC))) ! mask = 0.0 for no bc
!--------------------------------------------------------------------------------------------------
! updated deformation gradient using fix point algorithm of basic scheme
tensorField_real = 0.0_pReal
tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = f_scal
call utilities_FFTtensorForward()
err_div = Utilities_divergenceRMS()
call utilities_fourierGammaConvolution(math_rotate_backward33(F_aim_lastIter-F_aim,params%rotation_BC))
call utilities_FFTtensorBackward()
!--------------------------------------------------------------------------------------------------
! constructing residual
f_scal = tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3)
end subroutine BasicPETSc_formResidual
!--------------------------------------------------------------------------------------------------
!> @brief convergence check
!--------------------------------------------------------------------------------------------------
subroutine BasicPETSc_converged(snes_local,PETScIter,xnorm,snorm,fnorm,reason,dummy,ierr)
use numerics, only: &
itmax, &
itmin, &
err_div_tolRel, &
err_div_tolAbs, &
err_stress_tolRel, &
err_stress_tolAbs, &
worldrank
use FEsolving, only: &
terminallyIll
implicit none
SNES :: snes_local
PetscInt :: PETScIter
PetscReal :: &
xnorm, &
snorm, &
fnorm
SNESConvergedReason :: reason
PetscObject :: dummy
PetscErrorCode :: ierr
real(pReal) :: &
divTol, &
stressTol
divTol = max(maxval(abs(P_av))*err_div_tolRel,err_div_tolAbs)
stressTol = max(maxval(abs(P_av))*err_stress_tolrel,err_stress_tolabs)
converged: if ((totalIter >= itmin .and. &
all([ err_div/divTol, &
err_stress/stressTol ] < 1.0_pReal)) &
.or. terminallyIll) then
reason = 1
elseif (totalIter >= itmax) then converged
reason = -1
else converged
reason = 0
endif converged
!--------------------------------------------------------------------------------------------------
! report
if (worldrank == 0_pInt) then
write(6,'(1/,a)') ' ... reporting .............................................................'
write(6,'(1/,a,f12.2,a,es8.2,a,es9.2,a)') ' error divergence = ', &
err_div/divTol, ' (',err_div,' / m, tol =',divTol,')'
write(6,'(a,f12.2,a,es8.2,a,es9.2,a)') ' error stress BC = ', &
err_stress/stressTol, ' (',err_stress, ' Pa, tol =',stressTol,')'
write(6,'(/,a)') ' ==========================================================================='
flush(6)
endif
end subroutine BasicPETSc_converged
!--------------------------------------------------------------------------------------------------
!> @brief forwarding routine
!--------------------------------------------------------------------------------------------------
subroutine BasicPETSc_forward(guess,timeinc,timeinc_old,loadCaseTime,F_BC,P_BC,rotation_BC)
use math, only: &
math_mul33x33 ,&
math_rotate_backward33
use mesh, only: &
grid, &
grid3
use spectral_utilities, only: &
Utilities_calculateRate, &
Utilities_forwardField, &
utilities_updateIPcoords, &
tBoundaryCondition, &
cutBack
use IO, only: &
IO_write_JobRealFile
use FEsolving, only: &
restartWrite
use numerics, only: &
worldrank
implicit none
real(pReal), intent(in) :: &
timeinc_old, &
timeinc, &
loadCaseTime !< remaining time of current load case
type(tBoundaryCondition), intent(in) :: &
P_BC, &
F_BC
real(pReal), dimension(3,3), intent(in) :: rotation_BC
logical, intent(in) :: &
guess
PetscScalar, pointer :: F(:,:,:,:)
PetscErrorCode :: ierr
character(len=1024) :: rankStr
call DMDAVecGetArrayF90(da,solution_vec,F,ierr)
!--------------------------------------------------------------------------------------------------
! restart information for spectral solver
if (restartWrite) then
if (worldrank == 0_pInt) then
write(6,'(/,a)') ' writing converged results for restart'
flush(6)
endif
write(rankStr,'(a1,i0)')'_',worldrank
call IO_write_jobRealFile(777,'F'//trim(rankStr),size(F)) ! writing deformation gradient field to file
write (777,rec=1) F
close (777)
call IO_write_jobRealFile(777,'F_lastInc'//trim(rankStr),size(F_lastInc)) ! writing F_lastInc field to file
write (777,rec=1) F_lastInc
close (777)
if (worldrank == 0_pInt) then
call IO_write_jobRealFile(777,'F_aimDot',size(F_aimDot))
write (777,rec=1) F_aimDot
close(777)
call IO_write_jobRealFile(777,'C_volAvg',size(C_volAvg))
write (777,rec=1) C_volAvg
close(777)
call IO_write_jobRealFile(777,'C_volAvgLastInc',size(C_volAvgLastInc))
write (777,rec=1) C_volAvgLastInc
close(777)
endif
endif
call utilities_updateIPcoords(F)
if (cutBack) then
F_aim = F_aim_lastInc
F = reshape(F_lastInc, [9,grid(1),grid(2),grid3])
C_volAvg = C_volAvgLastInc
else
ForwardData = .True.
C_volAvgLastInc = C_volAvg
!--------------------------------------------------------------------------------------------------
! calculate rate for aim
if (F_BC%myType=='l') then ! calculate f_aimDot from given L and current F
f_aimDot = F_BC%maskFloat * math_mul33x33(F_BC%values, F_aim)
elseif(F_BC%myType=='fdot') then ! f_aimDot is prescribed
f_aimDot = F_BC%maskFloat * F_BC%values
elseif(F_BC%myType=='f') then ! aim at end of load case is prescribed
f_aimDot = F_BC%maskFloat * (F_BC%values -F_aim)/loadCaseTime
endif
if (guess) f_aimDot = f_aimDot + P_BC%maskFloat * (F_aim - F_aim_lastInc)/timeinc_old
F_aim_lastInc = F_aim
!--------------------------------------------------------------------------------------------------
! update coordinates and rate and forward last inc
call utilities_updateIPcoords(F)
Fdot = Utilities_calculateRate(math_rotate_backward33(f_aimDot,rotation_BC), &
timeinc_old,guess,F_lastInc,reshape(F,[3,3,grid(1),grid(2),grid3]))
F_lastInc = reshape(F, [3,3,grid(1),grid(2),grid3])
endif
F_aim = F_aim + f_aimDot * timeinc
!--------------------------------------------------------------------------------------------------
! update local deformation gradient
F = reshape(Utilities_forwardField(timeinc,F_lastInc,Fdot, & ! ensure that it matches rotated F_aim
math_rotate_backward33(F_aim,rotation_BC)),[9,grid(1),grid(2),grid3])
call DMDAVecRestoreArrayF90(da,solution_vec,F,ierr); CHKERRQ(ierr)
end subroutine BasicPETSc_forward
!--------------------------------------------------------------------------------------------------
!> @brief destroy routine
!--------------------------------------------------------------------------------------------------
subroutine BasicPETSc_destroy()
use spectral_utilities, only: &
Utilities_destroy
implicit none
PetscErrorCode :: ierr
call VecDestroy(solution_vec,ierr); CHKERRQ(ierr)
call SNESDestroy(snes,ierr); CHKERRQ(ierr)
call DMDestroy(da,ierr); CHKERRQ(ierr)
end subroutine BasicPETSc_destroy
end module spectral_mech_basic

View File

@ -1,712 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Polarisation scheme solver
!--------------------------------------------------------------------------------------------------
module spectral_mech_Polarisation
use prec, only: &
pInt, &
pReal
use math, only: &
math_I3
use spectral_utilities, only: &
tSolutionState, &
tSolutionParams
implicit none
private
#include <petsc/finclude/petsc.h90>
character (len=*), parameter, public :: &
DAMASK_spectral_solverPolarisation_label = 'polarisation'
!--------------------------------------------------------------------------------------------------
! derived types
type(tSolutionParams), private :: params
real(pReal), private, dimension(3,3) :: mask_stress = 0.0_pReal
!--------------------------------------------------------------------------------------------------
! PETSc data
DM, private :: da
SNES, private :: snes
Vec, private :: solution_vec
!--------------------------------------------------------------------------------------------------
! common pointwise data
real(pReal), private, dimension(:,:,:,:,:), allocatable :: &
F_lastInc, & !< field of previous compatible deformation gradients
F_tau_lastInc, & !< field of previous incompatible deformation gradient
Fdot, & !< field of assumed rate of compatible deformation gradient
F_tauDot !< field of assumed rate of incopatible deformation gradient
!--------------------------------------------------------------------------------------------------
! stress, stiffness and compliance average etc.
real(pReal), private, dimension(3,3) :: &
F_aimDot, & !< assumed rate of average deformation gradient
F_aim = math_I3, & !< current prescribed deformation gradient
F_aim_lastInc = math_I3, & !< previous average deformation gradient
F_av = 0.0_pReal, & !< average incompatible def grad field
P_av = 0.0_pReal, & !< average 1st Piola--Kirchhoff stress
P_avLastEval = 0.0_pReal !< average 1st Piola--Kirchhoff stress last call of CPFEM_general
character(len=1024), private :: incInfo !< time and increment information
real(pReal), private, dimension(3,3,3,3) :: &
C_volAvg = 0.0_pReal, & !< current volume average stiffness
C_volAvgLastInc = 0.0_pReal, & !< previous volume average stiffness
C_minMaxAvg = 0.0_pReal, & !< current (min+max)/2 stiffness
S = 0.0_pReal, & !< current compliance (filled up with zeros)
C_scale = 0.0_pReal, &
S_scale = 0.0_pReal
real(pReal), private :: &
err_BC, & !< deviation from stress BC
err_curl, & !< RMS of curl of F
err_div !< RMS of div of P
logical, private :: ForwardData
integer(pInt), private :: &
totalIter = 0_pInt !< total iteration in current increment
public :: &
Polarisation_init, &
Polarisation_solution, &
Polarisation_forward, &
Polarisation_destroy
external :: &
VecDestroy, &
DMDestroy, &
DMDACreate3D, &
DMCreateGlobalVector, &
DMDASNESSetFunctionLocal, &
PETScFinalize, &
SNESDestroy, &
SNESGetNumberFunctionEvals, &
SNESGetIterationNumber, &
SNESSolve, &
SNESSetDM, &
SNESGetConvergedReason, &
SNESSetConvergenceTest, &
SNESSetFromOptions, &
SNESCreate, &
MPI_Abort, &
MPI_Bcast, &
MPI_Allreduce
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields and fills them with data, potentially from restart info
!> @todo use sourced allocation, e.g. allocate(Fdot,source = F_lastInc)
!--------------------------------------------------------------------------------------------------
subroutine Polarisation_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use IO, only: &
IO_intOut, &
IO_read_realFile, &
IO_timeStamp
use debug, only: &
debug_level, &
debug_spectral, &
debug_spectralRestart
use FEsolving, only: &
restartInc
use numerics, only: &
worldrank, &
worldsize
use DAMASK_interface, only: &
getSolverJobName
use spectral_utilities, only: &
Utilities_constitutiveResponse, &
Utilities_updateGamma, &
Utilities_updateIPcoords
use mesh, only: &
grid, &
grid3
use math, only: &
math_invSym3333
implicit none
real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: P
real(pReal), dimension(3,3) :: &
temp33_Real = 0.0_pReal
PetscErrorCode :: ierr
PetscObject :: dummy
PetscScalar, pointer, dimension(:,:,:,:) :: xx_psc, F, F_tau
integer(pInt), dimension(:), allocatable :: localK
integer(pInt) :: proc
character(len=1024) :: rankStr
if (worldrank == 0_pInt) then
write(6,'(/,a)') ' <<<+- DAMASK_spectral_solverPolarisation init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif
!--------------------------------------------------------------------------------------------------
! allocate global fields
allocate (F_lastInc (3,3,grid(1),grid(2),grid3),source = 0.0_pReal)
allocate (Fdot (3,3,grid(1),grid(2),grid3),source = 0.0_pReal)
allocate (F_tau_lastInc(3,3,grid(1),grid(2),grid3),source = 0.0_pReal)
allocate (F_tauDot (3,3,grid(1),grid(2),grid3),source = 0.0_pReal)
!--------------------------------------------------------------------------------------------------
! PETSc Init
call SNESCreate(PETSC_COMM_WORLD,snes,ierr); CHKERRQ(ierr)
call SNESSetOptionsPrefix(snes,'mech_',ierr);CHKERRQ(ierr)
allocate(localK(worldsize), source = 0); localK(worldrank+1) = grid3
do proc = 1, worldsize
call MPI_Bcast(localK(proc),1,MPI_INTEGER,proc-1,PETSC_COMM_WORLD,ierr)
enddo
call DMDACreate3d(PETSC_COMM_WORLD, &
DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & ! cut off stencil at boundary
DMDA_STENCIL_BOX, & ! Moore (26) neighborhood around central point
grid(1),grid(2),grid(3), & ! global grid
1 , 1, worldsize, &
18, 0, & ! #dof (F tensor), ghost boundary width (domain overlap)
grid (1),grid (2),localK, & ! local grid
da,ierr) ! handle, error
CHKERRQ(ierr)
call SNESSetDM(snes,da,ierr); CHKERRQ(ierr)
call DMCreateGlobalVector(da,solution_vec,ierr); CHKERRQ(ierr)
call DMDASNESSetFunctionLocal(da,INSERT_VALUES,Polarisation_formResidual,dummy,ierr)
CHKERRQ(ierr)
call SNESSetConvergenceTest(snes,Polarisation_converged,dummy,PETSC_NULL_FUNCTION,ierr)
CHKERRQ(ierr)
call SNESSetFromOptions(snes,ierr); CHKERRQ(ierr)
!--------------------------------------------------------------------------------------------------
! init fields
call DMDAVecGetArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr) ! places pointer xx_psc on PETSc data
F => xx_psc(0:8,:,:,:)
F_tau => xx_psc(9:17,:,:,:)
restart: if (restartInc > 1_pInt) then
if (iand(debug_level(debug_spectral),debug_spectralRestart)/= 0 .and. worldrank == 0_pInt) &
write(6,'(/,a,'//IO_intOut(restartInc-1_pInt)//',a)') &
'reading values of increment', restartInc - 1_pInt, 'from file'
flush(6)
write(rankStr,'(a1,i0)')'_',worldrank
call IO_read_realFile(777,'F'//trim(rankStr),trim(getSolverJobName()),size(F))
read (777,rec=1) F
close (777)
call IO_read_realFile(777,'F_lastInc'//trim(rankStr),trim(getSolverJobName()),size(F_lastInc))
read (777,rec=1) F_lastInc
close (777)
call IO_read_realFile(777,'F_tau'//trim(rankStr),trim(getSolverJobName()),size(F_tau))
read (777,rec=1) F_tau
close (777)
call IO_read_realFile(777,'F_tau_lastInc'//trim(rankStr),&
trim(getSolverJobName()),size(F_tau_lastInc))
read (777,rec=1) F_tau_lastInc
close (777)
call IO_read_realFile(777,'F_aim', trim(getSolverJobName()),size(F_aim))
read (777,rec=1) F_aim
close (777)
call IO_read_realFile(777,'F_aim_lastInc', trim(getSolverJobName()),size(F_aim_lastInc))
read (777,rec=1) F_aim_lastInc
close (777)
call IO_read_realFile(777,'F_aimDot',trim(getSolverJobName()),size(f_aimDot))
read (777,rec=1) f_aimDot
close (777)
elseif (restartInc == 1_pInt) then restart
F_lastInc = spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid3) ! initialize to identity
F = reshape(F_lastInc,[9,grid(1),grid(2),grid3])
F_tau = 2.0_pReal* F
F_tau_lastInc = 2.0_pReal*F_lastInc
endif restart
call Utilities_updateIPcoords(reshape(F,shape(F_lastInc)))
call Utilities_constitutiveResponse(F_lastInc, reshape(F,shape(F_lastInc)), &
0.0_pReal,P,C_volAvg,C_minMaxAvg,temp33_Real,.false.,math_I3)
nullify(F)
nullify(F_tau)
call DMDAVecRestoreArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr) ! write data back to PETSc
readRestart: if (restartInc > 1_pInt) then
if (iand(debug_level(debug_spectral),debug_spectralRestart)/= 0 .and. worldrank == 0_pInt) &
write(6,'(/,a,'//IO_intOut(restartInc-1_pInt)//',a)') &
'reading more values of increment', restartInc - 1_pInt, 'from file'
flush(6)
call IO_read_realFile(777,'C_volAvg',trim(getSolverJobName()),size(C_volAvg))
read (777,rec=1) C_volAvg
close (777)
call IO_read_realFile(777,'C_volAvgLastInc',trim(getSolverJobName()),size(C_volAvgLastInc))
read (777,rec=1) C_volAvgLastInc
close (777)
call IO_read_realFile(777,'C_ref',trim(getSolverJobName()),size(C_minMaxAvg))
read (777,rec=1) C_minMaxAvg
close (777)
endif readRestart
call Utilities_updateGamma(C_minMaxAvg,.True.)
C_scale = C_minMaxAvg
S_scale = math_invSym3333(C_minMaxAvg)
end subroutine Polarisation_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the Polarisation scheme with internal iterations
!--------------------------------------------------------------------------------------------------
type(tSolutionState) function &
Polarisation_solution(incInfoIn,guess,timeinc,timeinc_old,loadCaseTime,P_BC,F_BC,rotation_BC)
use IO, only: &
IO_error
use numerics, only: &
update_gamma
use math, only: &
math_invSym3333
use spectral_utilities, only: &
tBoundaryCondition, &
Utilities_maskedCompliance, &
Utilities_updateGamma
use FEsolving, only: &
restartWrite, &
terminallyIll
implicit none
!--------------------------------------------------------------------------------------------------
! input data for solution
real(pReal), intent(in) :: &
timeinc, & !< increment in time for current solution
timeinc_old, & !< increment in time of last increment
loadCaseTime !< remaining time of current load case
logical, intent(in) :: &
guess
type(tBoundaryCondition), intent(in) :: &
P_BC, &
F_BC
character(len=*), intent(in) :: &
incInfoIn
real(pReal), dimension(3,3), intent(in) :: rotation_BC
!--------------------------------------------------------------------------------------------------
! PETSc Data
PetscErrorCode :: ierr
SNESConvergedReason :: reason
incInfo = incInfoIn
!--------------------------------------------------------------------------------------------------
! update stiffness (and gamma operator)
S = Utilities_maskedCompliance(rotation_BC,P_BC%maskLogical,C_volAvg)
if (update_gamma) then
call Utilities_updateGamma(C_minMaxAvg,restartWrite)
C_scale = C_minMaxAvg
S_scale = math_invSym3333(C_minMaxAvg)
endif
!--------------------------------------------------------------------------------------------------
! set module wide availabe data
mask_stress = P_BC%maskFloat
params%P_BC = P_BC%values
params%rotation_BC = rotation_BC
params%timeinc = timeinc
params%timeincOld = timeinc_old
!--------------------------------------------------------------------------------------------------
! solve BVP
call SNESSolve(snes,PETSC_NULL_OBJECT,solution_vec,ierr)
CHKERRQ(ierr)
!--------------------------------------------------------------------------------------------------
! check convergence
call SNESGetConvergedReason(snes,reason,ierr)
CHKERRQ(ierr)
Polarisation_solution%termIll = terminallyIll
terminallyIll = .false.
if (reason == -4) call IO_error(893_pInt)
if (reason < 1) Polarisation_solution%converged = .false.
Polarisation_solution%iterationsNeeded = totalIter
end function Polarisation_solution
!--------------------------------------------------------------------------------------------------
!> @brief forms the Polarisation residual vector
!--------------------------------------------------------------------------------------------------
subroutine Polarisation_formResidual(in,x_scal,f_scal,dummy,ierr)
use numerics, only: &
itmax, &
itmin, &
polarAlpha, &
polarBeta, &
worldrank
use mesh, only: &
grid3, &
grid
use IO, only: &
IO_intOut
use math, only: &
math_rotate_backward33, &
math_transpose33, &
math_mul3333xx33, &
math_invSym3333, &
math_mul33x33
use spectral_utilities, only: &
wgt, &
tensorField_real, &
utilities_FFTtensorForward, &
utilities_fourierGammaConvolution, &
utilities_FFTtensorBackward, &
Utilities_constitutiveResponse, &
Utilities_divergenceRMS, &
Utilities_curlRMS
use debug, only: &
debug_level, &
debug_spectral, &
debug_spectralRotation
use homogenization, only: &
materialpoint_dPdF
use FEsolving, only: &
terminallyIll
implicit none
!--------------------------------------------------------------------------------------------------
! strange syntax in the next line because otherwise macros expand beyond 132 character limit
DMDALocalInfo, dimension(&
DMDA_LOCAL_INFO_SIZE) :: &
in
PetscScalar, target, dimension(3,3,2, &
XG_RANGE,YG_RANGE,ZG_RANGE) :: &
x_scal
PetscScalar, target, dimension(3,3,2, &
X_RANGE,Y_RANGE,Z_RANGE) :: &
f_scal
PetscScalar, pointer, dimension(:,:,:,:,:) :: &
F, &
F_tau, &
residual_F, &
residual_F_tau
PetscInt :: &
PETScIter, &
nfuncs
PetscObject :: dummy
PetscErrorCode :: ierr
integer(pInt) :: &
i, j, k, e
F => x_scal(1:3,1:3,1,&
XG_RANGE,YG_RANGE,ZG_RANGE)
F_tau => x_scal(1:3,1:3,2,&
XG_RANGE,YG_RANGE,ZG_RANGE)
residual_F => f_scal(1:3,1:3,1,&
X_RANGE,Y_RANGE,Z_RANGE)
residual_F_tau => f_scal(1:3,1:3,2,&
X_RANGE,Y_RANGE,Z_RANGE)
call SNESGetNumberFunctionEvals(snes,nfuncs,ierr); CHKERRQ(ierr)
call SNESGetIterationNumber(snes,PETScIter,ierr); CHKERRQ(ierr)
F_av = sum(sum(sum(F,dim=5),dim=4),dim=3) * wgt
call MPI_Allreduce(MPI_IN_PLACE,F_av,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
if(nfuncs== 0 .and. PETScIter == 0) totalIter = -1_pInt ! new increment
newIteration: if(totalIter <= PETScIter) then
!--------------------------------------------------------------------------------------------------
! report begin of new iteration
totalIter = totalIter + 1_pInt
if (worldrank == 0_pInt) then
write(6,'(1x,a,3(a,'//IO_intOut(itmax)//'))') trim(incInfo), &
' @ Iteration ', itmin, '≤',totalIter, '≤', itmax
if (iand(debug_level(debug_spectral),debug_spectralRotation) /= 0) &
write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' deformation gradient aim (lab) =', &
math_transpose33(math_rotate_backward33(F_aim,params%rotation_BC))
write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' deformation gradient aim =', &
math_transpose33(F_aim)
flush(6)
endif
endif newIteration
!--------------------------------------------------------------------------------------------------
!
tensorField_real = 0.0_pReal
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid(1)
tensorField_real(1:3,1:3,i,j,k) = &
polarBeta*math_mul3333xx33(C_scale,F(1:3,1:3,i,j,k) - math_I3) -&
polarAlpha*math_mul33x33(F(1:3,1:3,i,j,k), &
math_mul3333xx33(C_scale,F_tau(1:3,1:3,i,j,k) - F(1:3,1:3,i,j,k) - math_I3))
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! doing convolution in Fourier space
call utilities_FFTtensorForward()
call utilities_fourierGammaConvolution(math_rotate_backward33(polarBeta*F_aim,params%rotation_BC))
call utilities_FFTtensorBackward()
!--------------------------------------------------------------------------------------------------
! constructing residual
residual_F_tau = polarBeta*F - tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3)
!--------------------------------------------------------------------------------------------------
! evaluate constitutive response
P_avLastEval = P_av
call Utilities_constitutiveResponse(F_lastInc,F - residual_F_tau/polarBeta,params%timeinc, &
residual_F,C_volAvg,C_minMaxAvg,P_av,ForwardData,params%rotation_BC)
call MPI_Allreduce(MPI_IN_PLACE,terminallyIll,1,MPI_LOGICAL,MPI_LOR,PETSC_COMM_WORLD,ierr)
ForwardData = .False.
!--------------------------------------------------------------------------------------------------
! calculate divergence
tensorField_real = 0.0_pReal
tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = residual_F
call utilities_FFTtensorForward()
err_div = Utilities_divergenceRMS()
call utilities_FFTtensorBackward()
!--------------------------------------------------------------------------------------------------
! constructing residual
e = 0_pInt
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid(1)
e = e + 1_pInt
residual_F(1:3,1:3,i,j,k) = &
math_mul3333xx33(math_invSym3333(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,e) + C_scale), &
residual_F(1:3,1:3,i,j,k) - math_mul33x33(F(1:3,1:3,i,j,k), &
math_mul3333xx33(C_scale,F_tau(1:3,1:3,i,j,k) - F(1:3,1:3,i,j,k) - math_I3))) &
+ residual_F_tau(1:3,1:3,i,j,k)
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! calculating curl
tensorField_real = 0.0_pReal
tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = F
call utilities_FFTtensorForward()
err_curl = Utilities_curlRMS()
call utilities_FFTtensorBackward()
end subroutine Polarisation_formResidual
!--------------------------------------------------------------------------------------------------
!> @brief convergence check
!--------------------------------------------------------------------------------------------------
subroutine Polarisation_converged(snes_local,PETScIter,xnorm,snorm,fnorm,reason,dummy,ierr)
use numerics, only: &
itmax, &
itmin, &
err_div_tolRel, &
err_div_tolAbs, &
err_curl_tolRel, &
err_curl_tolAbs, &
err_stress_tolAbs, &
err_stress_tolRel, &
worldrank
use math, only: &
math_mul3333xx33
use FEsolving, only: &
terminallyIll
implicit none
SNES :: snes_local
PetscInt :: PETScIter
PetscReal :: &
xnorm, &
snorm, &
fnorm
SNESConvergedReason :: reason
PetscObject :: dummy
PetscErrorCode ::ierr
real(pReal) :: &
curlTol, &
divTol, &
BC_tol
!--------------------------------------------------------------------------------------------------
! stress BC handling
F_aim = F_aim - math_mul3333xx33(S, ((P_av - params%P_BC))) ! S = 0.0 for no bc
err_BC = maxval(abs((-mask_stress+1.0_pReal)*math_mul3333xx33(C_scale,F_aim-F_av) + &
mask_stress *(P_av - params%P_BC))) ! mask = 0.0 for no bc
!--------------------------------------------------------------------------------------------------
! error calculation
curlTol = max(maxval(abs(F_aim-math_I3))*err_curl_tolRel,err_curl_tolAbs)
divTol = max(maxval(abs(P_av)) *err_div_tolRel,err_div_tolAbs)
BC_tol = max(maxval(abs(P_av)) *err_stress_tolrel,err_stress_tolabs)
converged: if ((totalIter >= itmin .and. &
all([ err_div/divTol, &
err_curl/curlTol, &
err_BC/BC_tol ] < 1.0_pReal)) &
.or. terminallyIll) then
reason = 1
elseif (totalIter >= itmax) then converged
reason = -1
else converged
reason = 0
endif converged
!--------------------------------------------------------------------------------------------------
! report
if (worldrank == 0_pInt) then
write(6,'(1/,a)') ' ... reporting .............................................................'
write(6,'(/,a,f12.2,a,es8.2,a,es9.2,a)') ' error curl = ', &
err_curl/curlTol,' (',err_curl,' -, tol =',curlTol,')'
write(6,' (a,f12.2,a,es8.2,a,es9.2,a)') ' error divergence = ', &
err_div/divTol, ' (',err_div, ' / m, tol =',divTol,')'
write(6,' (a,f12.2,a,es8.2,a,es9.2,a)') ' error BC = ', &
err_BC/BC_tol, ' (',err_BC, ' Pa, tol =',BC_tol,')'
write(6,'(/,a)') ' ==========================================================================='
flush(6)
endif
end subroutine Polarisation_converged
!--------------------------------------------------------------------------------------------------
!> @brief forwarding routine
!--------------------------------------------------------------------------------------------------
subroutine Polarisation_forward(guess,timeinc,timeinc_old,loadCaseTime,F_BC,P_BC,rotation_BC)
use math, only: &
math_mul33x33, &
math_mul3333xx33, &
math_transpose33, &
math_rotate_backward33
use numerics, only: &
worldrank
use mesh, only: &
grid3, &
grid
use spectral_utilities, only: &
Utilities_calculateRate, &
Utilities_forwardField, &
Utilities_updateIPcoords, &
tBoundaryCondition, &
cutBack
use IO, only: &
IO_write_JobRealFile
use FEsolving, only: &
restartWrite
implicit none
real(pReal), intent(in) :: &
timeinc_old, &
timeinc, &
loadCaseTime !< remaining time of current load case
type(tBoundaryCondition), intent(in) :: &
P_BC, &
F_BC
real(pReal), dimension(3,3), intent(in) :: rotation_BC
logical, intent(in) :: &
guess
PetscErrorCode :: ierr
PetscScalar, dimension(:,:,:,:), pointer :: xx_psc, F, F_tau
integer(pInt) :: i, j, k
real(pReal), dimension(3,3) :: F_lambda33
character(len=1024) :: rankStr
!--------------------------------------------------------------------------------------------------
! update coordinates and rate and forward last inc
call DMDAVecGetArrayF90(da,solution_vec,xx_psc,ierr)
F => xx_psc(0:8,:,:,:)
F_tau => xx_psc(9:17,:,:,:)
if (restartWrite) then
if (worldrank == 0_pInt) write(6,'(/,a)') ' writing converged results for restart'
flush(6)
write(rankStr,'(a1,i0)')'_',worldrank
call IO_write_jobRealFile(777,'F'//trim(rankStr),size(F)) ! writing deformation gradient field to file
write (777,rec=1) F
close (777)
call IO_write_jobRealFile(777,'F_lastInc'//trim(rankStr),size(F_lastInc)) ! writing F_lastInc field to file
write (777,rec=1) F_lastInc
close (777)
call IO_write_jobRealFile(777,'F_tau'//trim(rankStr),size(F_tau)) ! writing deformation gradient field to file
write (777,rec=1) F_tau
close (777)
call IO_write_jobRealFile(777,'F_tau_lastInc'//trim(rankStr),size(F_tau_lastInc)) ! writing F_lastInc field to file
write (777,rec=1) F_tau_lastInc
close (777)
if (worldrank == 0_pInt) then
call IO_write_jobRealFile(777,'F_aim',size(F_aim))
write (777,rec=1) F_aim
close(777)
call IO_write_jobRealFile(777,'F_aim_lastInc',size(F_aim_lastInc))
write (777,rec=1) F_aim_lastInc
close (777)
call IO_write_jobRealFile(777,'F_aimDot',size(F_aimDot))
write (777,rec=1) F_aimDot
close(777)
call IO_write_jobRealFile(777,'C_volAvg',size(C_volAvg))
write (777,rec=1) C_volAvg
close(777)
call IO_write_jobRealFile(777,'C_volAvgLastInc',size(C_volAvgLastInc))
write (777,rec=1) C_volAvgLastInc
close(777)
endif
endif
call utilities_updateIPcoords(F)
if (cutBack) then
F_aim = F_aim_lastInc
F_tau= reshape(F_tau_lastInc,[9,grid(1),grid(2),grid3])
F = reshape(F_lastInc, [9,grid(1),grid(2),grid3])
C_volAvg = C_volAvgLastInc
else
ForwardData = .True.
C_volAvgLastInc = C_volAvg
!--------------------------------------------------------------------------------------------------
! calculate rate for aim
if (F_BC%myType=='l') then ! calculate f_aimDot from given L and current F
f_aimDot = F_BC%maskFloat * math_mul33x33(F_BC%values, F_aim)
elseif(F_BC%myType=='fdot') then ! f_aimDot is prescribed
f_aimDot = F_BC%maskFloat * F_BC%values
elseif(F_BC%myType=='f') then ! aim at end of load case is prescribed
f_aimDot = F_BC%maskFloat * (F_BC%values -F_aim)/loadCaseTime
endif
if (guess) f_aimDot = f_aimDot + P_BC%maskFloat * (F_aim - F_aim_lastInc)/timeinc_old
F_aim_lastInc = F_aim
!--------------------------------------------------------------------------------------------------
! update coordinates and rate and forward last inc
call utilities_updateIPcoords(F)
Fdot = Utilities_calculateRate(math_rotate_backward33(f_aimDot,rotation_BC), &
timeinc_old,guess,F_lastInc, &
reshape(F,[3,3,grid(1),grid(2),grid3]))
F_tauDot = Utilities_calculateRate(math_rotate_backward33(2.0_pReal*f_aimDot,rotation_BC), &
timeinc_old,guess,F_tau_lastInc, &
reshape(F_tau,[3,3,grid(1),grid(2),grid3]))
F_lastInc = reshape(F, [3,3,grid(1),grid(2),grid3])
F_tau_lastInc = reshape(F_tau,[3,3,grid(1),grid(2),grid3])
endif
F_aim = F_aim + f_aimDot * timeinc
!--------------------------------------------------------------------------------------------------
! update local deformation gradient
F = reshape(Utilities_forwardField(timeinc,F_lastInc,Fdot, & ! ensure that it matches rotated F_aim
math_rotate_backward33(F_aim,rotation_BC)), &
[9,grid(1),grid(2),grid3])
F_tau = reshape(Utilities_forwardField(timeinc,F_tau_lastInc,F_taudot), & ! does not have any average value as boundary condition
[9,grid(1),grid(2),grid3])
if (.not. guess) then ! large strain forwarding
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid(1)
F_lambda33 = reshape(F_tau(1:9,i,j,k)-F(1:9,i,j,k),[3,3])
F_lambda33 = math_mul3333xx33(S_scale,math_mul33x33(F_lambda33, &
math_mul3333xx33(C_scale,&
math_mul33x33(math_transpose33(F_lambda33),&
F_lambda33) -math_I3))*0.5_pReal)&
+ math_I3
F_tau(1:9,i,j,k) = reshape(F_lambda33,[9])+F(1:9,i,j,k)
enddo; enddo; enddo
endif
call DMDAVecRestoreArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr)
end subroutine Polarisation_forward
!--------------------------------------------------------------------------------------------------
!> @brief destroy routine
!--------------------------------------------------------------------------------------------------
subroutine Polarisation_destroy()
use spectral_utilities, only: &
Utilities_destroy
implicit none
PetscErrorCode :: ierr
call VecDestroy(solution_vec,ierr); CHKERRQ(ierr)
call SNESDestroy(snes,ierr); CHKERRQ(ierr)
call DMDestroy(da,ierr); CHKERRQ(ierr)
end subroutine Polarisation_destroy
end module spectral_mech_Polarisation

View File

@ -1,419 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id: spectral_thermal.f90 4082 2015-04-11 20:28:07Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Shaokang Zhang, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Spectral solver for thermal conduction
!--------------------------------------------------------------------------------------------------
module spectral_thermal
use prec, only: &
pInt, &
pReal
use math, only: &
math_I3
use spectral_utilities, only: &
tSolutionState, &
tSolutionParams
use numerics, only: &
worldrank, &
worldsize
implicit none
private
#include <petsc/finclude/petsc.h90>
character (len=*), parameter, public :: &
spectral_thermal_label = 'spectralthermal'
!--------------------------------------------------------------------------------------------------
! derived types
type(tSolutionParams), private :: params
!--------------------------------------------------------------------------------------------------
! PETSc data
SNES, private :: thermal_snes
Vec, private :: solution
PetscInt, private :: xstart, xend, ystart, yend, zstart, zend
real(pReal), private, dimension(:,:,:), allocatable :: &
temperature_current, & !< field of current temperature
temperature_lastInc, & !< field of previous temperature
temperature_stagInc !< field of staggered temperature
!--------------------------------------------------------------------------------------------------
! reference diffusion tensor, mobility etc.
integer(pInt), private :: totalIter = 0_pInt !< total iteration in current increment
real(pReal), dimension(3,3), private :: D_ref
real(pReal), private :: mobility_ref
character(len=1024), private :: incInfo
public :: &
spectral_thermal_init, &
spectral_thermal_solution, &
spectral_thermal_forward, &
spectral_thermal_destroy
external :: &
VecDestroy, &
DMDestroy, &
DMDACreate3D, &
DMCreateGlobalVector, &
DMDASNESSetFunctionLocal, &
PETScFinalize, &
SNESDestroy, &
SNESGetNumberFunctionEvals, &
SNESGetIterationNumber, &
SNESSolve, &
SNESSetDM, &
SNESGetConvergedReason, &
SNESSetConvergenceTest, &
SNESSetFromOptions, &
SNESCreate, &
MPI_Abort, &
MPI_Bcast, &
MPI_Allreduce
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields and fills them with data, potentially from restart info
!--------------------------------------------------------------------------------------------------
subroutine spectral_thermal_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use IO, only: &
IO_intOut, &
IO_read_realFile, &
IO_timeStamp
use spectral_utilities, only: &
wgt
use mesh, only: &
grid, &
grid3
use thermal_conduction, only: &
thermal_conduction_getConductivity33, &
thermal_conduction_getMassDensity, &
thermal_conduction_getSpecificHeat
use material, only: &
mappingHomogenization, &
temperature, &
thermalMapping
implicit none
integer(pInt), dimension(:), allocatable :: localK
integer(pInt) :: proc
integer(pInt) :: i, j, k, cell
DM :: thermal_grid
PetscScalar, pointer :: x_scal(:,:,:)
PetscErrorCode :: ierr
PetscObject :: dummy
mainProcess: if (worldrank == 0_pInt) then
write(6,'(/,a)') ' <<<+- spectral_thermal init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
!--------------------------------------------------------------------------------------------------
! initialize solver specific parts of PETSc
call SNESCreate(PETSC_COMM_WORLD,thermal_snes,ierr); CHKERRQ(ierr)
call SNESSetOptionsPrefix(thermal_snes,'thermal_',ierr);CHKERRQ(ierr)
allocate(localK(worldsize), source = 0); localK(worldrank+1) = grid3
do proc = 1, worldsize
call MPI_Bcast(localK(proc),1,MPI_INTEGER,proc-1,PETSC_COMM_WORLD,ierr)
enddo
call DMDACreate3d(PETSC_COMM_WORLD, &
DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & ! cut off stencil at boundary
DMDA_STENCIL_BOX, & ! Moore (26) neighborhood around central point
grid(1),grid(2),grid(3), & ! global grid
1, 1, worldsize, &
1, 0, & ! #dof (temperature field), ghost boundary width (domain overlap)
grid (1),grid(2),localK, & ! local grid
thermal_grid,ierr) ! handle, error
CHKERRQ(ierr)
call SNESSetDM(thermal_snes,thermal_grid,ierr); CHKERRQ(ierr) ! connect snes to da
call DMCreateGlobalVector(thermal_grid,solution ,ierr); CHKERRQ(ierr) ! global solution vector (grid x 1, i.e. every def grad tensor)
call DMDASNESSetFunctionLocal(thermal_grid,INSERT_VALUES,spectral_thermal_formResidual,dummy,ierr) ! residual vector of same shape as solution vector
CHKERRQ(ierr)
call SNESSetFromOptions(thermal_snes,ierr); CHKERRQ(ierr) ! pull it all together with additional cli arguments
!--------------------------------------------------------------------------------------------------
! init fields
call DMDAGetCorners(thermal_grid,xstart,ystart,zstart,xend,yend,zend,ierr)
CHKERRQ(ierr)
xend = xstart + xend - 1
yend = ystart + yend - 1
zend = zstart + zend - 1
allocate(temperature_current(grid(1),grid(2),grid3), source=0.0_pReal)
allocate(temperature_lastInc(grid(1),grid(2),grid3), source=0.0_pReal)
allocate(temperature_stagInc(grid(1),grid(2),grid3), source=0.0_pReal)
cell = 0_pInt
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
temperature_current(i,j,k) = temperature(mappingHomogenization(2,1,cell))% &
p(thermalMapping(mappingHomogenization(2,1,cell))%p(1,cell))
temperature_lastInc(i,j,k) = temperature_current(i,j,k)
temperature_stagInc(i,j,k) = temperature_current(i,j,k)
enddo; enddo; enddo
call DMDAVecGetArrayF90(thermal_grid,solution,x_scal,ierr); CHKERRQ(ierr) !< get the data out of PETSc to work with
x_scal(xstart:xend,ystart:yend,zstart:zend) = temperature_current
call DMDAVecRestoreArrayF90(thermal_grid,solution,x_scal,ierr); CHKERRQ(ierr)
cell = 0_pInt
D_ref = 0.0_pReal
mobility_ref = 0.0_pReal
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
D_ref = D_ref + thermal_conduction_getConductivity33(1,cell)
mobility_ref = mobility_ref + thermal_conduction_getMassDensity(1,cell)* &
thermal_conduction_getSpecificHeat(1,cell)
enddo; enddo; enddo
D_ref = D_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,D_ref,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
mobility_ref = mobility_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,mobility_ref,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
end subroutine spectral_thermal_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the Basic PETSC scheme with internal iterations
!--------------------------------------------------------------------------------------------------
type(tSolutionState) function spectral_thermal_solution(guess,timeinc,timeinc_old,loadCaseTime)
use numerics, only: &
itmax, &
err_thermal_tolAbs, &
err_thermal_tolRel
use spectral_utilities, only: &
tBoundaryCondition, &
Utilities_maskedCompliance, &
Utilities_updateGamma
use mesh, only: &
grid, &
grid3
use thermal_conduction, only: &
thermal_conduction_putTemperatureAndItsRate
implicit none
!--------------------------------------------------------------------------------------------------
! input data for solution
real(pReal), intent(in) :: &
timeinc, & !< increment in time for current solution
timeinc_old, & !< increment in time of last increment
loadCaseTime !< remaining time of current load case
logical, intent(in) :: guess
integer(pInt) :: i, j, k, cell
PetscInt :: position
PetscReal :: minTemperature, maxTemperature, stagNorm, solnNorm
!--------------------------------------------------------------------------------------------------
! PETSc Data
PetscErrorCode :: ierr
SNESConvergedReason :: reason
spectral_thermal_solution%converged =.false.
!--------------------------------------------------------------------------------------------------
! set module wide availabe data
params%timeinc = timeinc
params%timeincOld = timeinc_old
call SNESSolve(thermal_snes,PETSC_NULL_OBJECT,solution,ierr); CHKERRQ(ierr)
call SNESGetConvergedReason(thermal_snes,reason,ierr); CHKERRQ(ierr)
if (reason < 1) then
spectral_thermal_solution%converged = .false.
spectral_thermal_solution%iterationsNeeded = itmax
else
spectral_thermal_solution%converged = .true.
spectral_thermal_solution%iterationsNeeded = totalIter
endif
stagNorm = maxval(abs(temperature_current - temperature_stagInc))
solnNorm = maxval(abs(temperature_current))
call MPI_Allreduce(MPI_IN_PLACE,stagNorm,1,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr)
call MPI_Allreduce(MPI_IN_PLACE,solnNorm,1,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr)
temperature_stagInc = temperature_current
spectral_thermal_solution%stagConverged = stagNorm < err_thermal_tolAbs &
.or. stagNorm < err_thermal_tolRel*solnNorm
!--------------------------------------------------------------------------------------------------
! updating thermal state
cell = 0_pInt !< material point = 0
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt !< material point increase
call thermal_conduction_putTemperatureAndItsRate(temperature_current(i,j,k), &
(temperature_current(i,j,k)-temperature_lastInc(i,j,k))/params%timeinc, &
1,cell)
enddo; enddo; enddo
call VecMin(solution,position,minTemperature,ierr); CHKERRQ(ierr)
call VecMax(solution,position,maxTemperature,ierr); CHKERRQ(ierr)
if (worldrank == 0) then
if (spectral_thermal_solution%converged) &
write(6,'(/,a)') ' ... thermal conduction converged ..................................'
write(6,'(/,a,f8.4,2x,f8.4,2x,f8.4,/)',advance='no') ' Minimum|Maximum|Delta Temperature = ',&
minTemperature, maxTemperature, stagNorm
write(6,'(/,a)') ' ==========================================================================='
flush(6)
endif
end function spectral_thermal_solution
!--------------------------------------------------------------------------------------------------
!> @brief forms the spectral thermal residual vector
!--------------------------------------------------------------------------------------------------
subroutine spectral_thermal_formResidual(in,x_scal,f_scal,dummy,ierr)
use mesh, only: &
grid, &
grid3
use math, only: &
math_mul33x3
use spectral_utilities, only: &
scalarField_real, &
vectorField_real, &
utilities_FFTvectorForward, &
utilities_FFTvectorBackward, &
utilities_FFTscalarForward, &
utilities_FFTscalarBackward, &
utilities_fourierGreenConvolution, &
utilities_fourierScalarGradient, &
utilities_fourierVectorDivergence
use thermal_conduction, only: &
thermal_conduction_getSourceAndItsTangent, &
thermal_conduction_getConductivity33, &
thermal_conduction_getMassDensity, &
thermal_conduction_getSpecificHeat
implicit none
DMDALocalInfo, dimension(DMDA_LOCAL_INFO_SIZE) :: &
in
PetscScalar, dimension( &
XG_RANGE,YG_RANGE,ZG_RANGE) :: &
x_scal
PetscScalar, dimension( &
X_RANGE,Y_RANGE,Z_RANGE) :: &
f_scal
PetscObject :: dummy
PetscErrorCode :: ierr
integer(pInt) :: i, j, k, cell
real(pReal) :: Tdot, dTdot_dT
temperature_current = x_scal
!--------------------------------------------------------------------------------------------------
! evaluate polarization field
scalarField_real = 0.0_pReal
scalarField_real(1:grid(1),1:grid(2),1:grid3) = temperature_current
call utilities_FFTscalarForward()
call utilities_fourierScalarGradient() !< calculate gradient of damage field
call utilities_FFTvectorBackward()
cell = 0_pInt
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
vectorField_real(1:3,i,j,k) = math_mul33x3(thermal_conduction_getConductivity33(1,cell) - D_ref, &
vectorField_real(1:3,i,j,k))
enddo; enddo; enddo
call utilities_FFTvectorForward()
call utilities_fourierVectorDivergence() !< calculate damage divergence in fourier field
call utilities_FFTscalarBackward()
cell = 0_pInt
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
call thermal_conduction_getSourceAndItsTangent(Tdot, dTdot_dT, temperature_current(i,j,k), 1, cell)
scalarField_real(i,j,k) = params%timeinc*scalarField_real(i,j,k) + &
params%timeinc*Tdot + &
thermal_conduction_getMassDensity (1,cell)* &
thermal_conduction_getSpecificHeat(1,cell)*(temperature_lastInc(i,j,k) - &
temperature_current(i,j,k)) + &
mobility_ref*temperature_current(i,j,k)
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! convolution of damage field with green operator
call utilities_FFTscalarForward()
call utilities_fourierGreenConvolution(D_ref, mobility_ref, params%timeinc)
call utilities_FFTscalarBackward()
!--------------------------------------------------------------------------------------------------
! constructing residual
f_scal = temperature_current - scalarField_real(1:grid(1),1:grid(2),1:grid3)
end subroutine spectral_thermal_formResidual
!--------------------------------------------------------------------------------------------------
!> @brief forwarding routine
!--------------------------------------------------------------------------------------------------
subroutine spectral_thermal_forward(guess,timeinc,timeinc_old,loadCaseTime)
use mesh, only: &
grid, &
grid3
use spectral_utilities, only: &
cutBack, &
wgt
use thermal_conduction, only: &
thermal_conduction_putTemperatureAndItsRate, &
thermal_conduction_getConductivity33, &
thermal_conduction_getMassDensity, &
thermal_conduction_getSpecificHeat
implicit none
real(pReal), intent(in) :: &
timeinc_old, &
timeinc, &
loadCaseTime !< remaining time of current load case
logical, intent(in) :: guess
integer(pInt) :: i, j, k, cell
DM :: dm_local
PetscScalar, pointer :: x_scal(:,:,:)
PetscErrorCode :: ierr
if (cutBack) then
temperature_current = temperature_lastInc
temperature_stagInc = temperature_lastInc
!--------------------------------------------------------------------------------------------------
! reverting thermal field state
cell = 0_pInt !< material point = 0
call SNESGetDM(thermal_snes,dm_local,ierr); CHKERRQ(ierr)
call DMDAVecGetArrayF90(dm_local,solution,x_scal,ierr); CHKERRQ(ierr) !< get the data out of PETSc to work with
x_scal(xstart:xend,ystart:yend,zstart:zend) = temperature_current
call DMDAVecRestoreArrayF90(dm_local,solution,x_scal,ierr); CHKERRQ(ierr)
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt !< material point increase
call thermal_conduction_putTemperatureAndItsRate(temperature_current(i,j,k), &
(temperature_current(i,j,k) - &
temperature_lastInc(i,j,k))/params%timeinc, &
1,cell)
enddo; enddo; enddo
else
!--------------------------------------------------------------------------------------------------
! update rate and forward last inc
temperature_lastInc = temperature_current
cell = 0_pInt
D_ref = 0.0_pReal
mobility_ref = 0.0_pReal
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
D_ref = D_ref + thermal_conduction_getConductivity33(1,cell)
mobility_ref = mobility_ref + thermal_conduction_getMassDensity(1,cell)* &
thermal_conduction_getSpecificHeat(1,cell)
enddo; enddo; enddo
D_ref = D_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,D_ref,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
mobility_ref = mobility_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,mobility_ref,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
endif
end subroutine spectral_thermal_forward
!--------------------------------------------------------------------------------------------------
!> @brief destroy routine
!--------------------------------------------------------------------------------------------------
subroutine spectral_thermal_destroy()
implicit none
PetscErrorCode :: ierr
call VecDestroy(solution,ierr); CHKERRQ(ierr)
call SNESDestroy(thermal_snes,ierr); CHKERRQ(ierr)
end subroutine spectral_thermal_destroy
end module spectral_thermal

File diff suppressed because it is too large Load Diff

View File

@ -1,422 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for adiabatic temperature evolution
!> @details to be done
!--------------------------------------------------------------------------------------------------
module thermal_adiabatic
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
thermal_adiabatic_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
thermal_adiabatic_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
thermal_adiabatic_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
thermal_adiabatic_Noutput !< number of outputs per instance of this thermal model
enum, bind(c)
enumerator :: undefined_ID, &
temperature_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
thermal_adiabatic_outputID !< ID of each post result output
public :: &
thermal_adiabatic_init, &
thermal_adiabatic_updateState, &
thermal_adiabatic_getSourceAndItsTangent, &
thermal_adiabatic_getSpecificHeat, &
thermal_adiabatic_getMassDensity, &
thermal_adiabatic_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
thermal_type, &
thermal_typeInstance, &
homogenization_Noutput, &
THERMAL_ADIABATIC_label, &
THERMAL_adiabatic_ID, &
material_homog, &
mappingHomogenization, &
thermalState, &
thermalMapping, &
thermal_initialT, &
temperature, &
temperatureRate, &
material_partHomogenization
use numerics,only: &
worldrank
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,mySize=0_pInt,section,instance,o
integer(pInt) :: sizeState
integer(pInt) :: NofMyHomog
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- thermal_'//THERMAL_ADIABATIC_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(thermal_type == THERMAL_adiabatic_ID),pInt)
if (maxNinstance == 0_pInt) return
allocate(thermal_adiabatic_sizePostResults(maxNinstance), source=0_pInt)
allocate(thermal_adiabatic_sizePostResult (maxval(homogenization_Noutput),maxNinstance),source=0_pInt)
allocate(thermal_adiabatic_output (maxval(homogenization_Noutput),maxNinstance))
thermal_adiabatic_output = ''
allocate(thermal_adiabatic_outputID (maxval(homogenization_Noutput),maxNinstance),source=undefined_ID)
allocate(thermal_adiabatic_Noutput (maxNinstance), source=0_pInt)
rewind(fileUnit)
section = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to <homogenization>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of homog part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next homog section
section = section + 1_pInt ! advance homog section counter
cycle ! skip to next line
endif
if (section > 0_pInt ) then; if (thermal_type(section) == THERMAL_adiabatic_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = thermal_typeInstance(section) ! which instance of my thermal is present homog
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('temperature')
thermal_adiabatic_Noutput(instance) = thermal_adiabatic_Noutput(instance) + 1_pInt
thermal_adiabatic_outputID(thermal_adiabatic_Noutput(instance),instance) = temperature_ID
thermal_adiabatic_output(thermal_adiabatic_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
end select
endif; endif
enddo parsingFile
initializeInstances: do section = 1_pInt, size(thermal_type)
if (thermal_type(section) == THERMAL_adiabatic_ID) then
NofMyHomog=count(material_homog==section)
instance = thermal_typeInstance(section)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,thermal_adiabatic_Noutput(instance)
select case(thermal_adiabatic_outputID(o,instance))
case(temperature_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
thermal_adiabatic_sizePostResult(o,instance) = mySize
thermal_adiabatic_sizePostResults(instance) = thermal_adiabatic_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! allocate state arrays
sizeState = 1_pInt
thermalState(section)%sizeState = sizeState
thermalState(section)%sizePostResults = thermal_adiabatic_sizePostResults(instance)
allocate(thermalState(section)%state0 (sizeState,NofMyHomog), source=thermal_initialT(section))
allocate(thermalState(section)%subState0(sizeState,NofMyHomog), source=thermal_initialT(section))
allocate(thermalState(section)%state (sizeState,NofMyHomog), source=thermal_initialT(section))
nullify(thermalMapping(section)%p)
thermalMapping(section)%p => mappingHomogenization(1,:,:)
deallocate(temperature(section)%p)
temperature(section)%p => thermalState(section)%state(1,:)
deallocate(temperatureRate(section)%p)
allocate (temperatureRate(section)%p(NofMyHomog), source=0.0_pReal)
endif
enddo initializeInstances
end subroutine thermal_adiabatic_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates adiabatic change in temperature based on local heat generation model
!--------------------------------------------------------------------------------------------------
function thermal_adiabatic_updateState(subdt, ip, el)
use numerics, only: &
err_thermal_tolAbs, &
err_thermal_tolRel
use material, only: &
mappingHomogenization, &
thermalState, &
temperature, &
temperatureRate, &
thermalMapping
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
subdt
logical, dimension(2) :: &
thermal_adiabatic_updateState
integer(pInt) :: &
homog, &
offset
real(pReal) :: &
T, Tdot, dTdot_dT
homog = mappingHomogenization(2,ip,el)
offset = mappingHomogenization(1,ip,el)
T = thermalState(homog)%subState0(1,offset)
call thermal_adiabatic_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
T = T + subdt*Tdot/(thermal_adiabatic_getSpecificHeat(ip,el)*thermal_adiabatic_getMassDensity(ip,el))
thermal_adiabatic_updateState = [ abs(T - thermalState(homog)%state(1,offset)) &
<= err_thermal_tolAbs &
.or. abs(T - thermalState(homog)%state(1,offset)) &
<= err_thermal_tolRel*abs(thermalState(homog)%state(1,offset)), &
.true.]
temperature (homog)%p(thermalMapping(homog)%p(ip,el)) = T
temperatureRate(homog)%p(thermalMapping(homog)%p(ip,el)) = &
(thermalState(homog)%state(1,offset) - thermalState(homog)%subState0(1,offset))/(subdt+tiny(0.0_pReal))
end function thermal_adiabatic_updateState
!--------------------------------------------------------------------------------------------------
!> @brief returns heat generation rate
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
use math, only: &
math_Mandel6to33
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
phaseAt, phasememberAt, &
thermal_typeInstance, &
phase_Nsources, &
phase_source, &
SOURCE_thermal_dissipation_ID, &
SOURCE_thermal_externalheat_ID
use source_thermal_dissipation, only: &
source_thermal_dissipation_getRateAndItsTangent
use source_thermal_externalheat, only: &
source_thermal_externalheat_getRateAndItsTangent
use crystallite, only: &
crystallite_Tstar_v, &
crystallite_Lp
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
T
real(pReal), intent(out) :: &
Tdot, dTdot_dT
real(pReal) :: &
my_Tdot, my_dTdot_dT
integer(pInt) :: &
phase, &
homog, &
offset, &
instance, &
grain, &
source
homog = mappingHomogenization(2,ip,el)
offset = mappingHomogenization(1,ip,el)
instance = thermal_typeInstance(homog)
Tdot = 0.0_pReal
dTdot_dT = 0.0_pReal
do grain = 1, homogenization_Ngrains(homog)
phase = phaseAt(grain,ip,el)
do source = 1, phase_Nsources(phase)
select case(phase_source(source,phase))
case (SOURCE_thermal_dissipation_ID)
call source_thermal_dissipation_getRateAndItsTangent(my_Tdot, my_dTdot_dT, &
crystallite_Tstar_v(1:6,grain,ip,el), &
crystallite_Lp(1:3,1:3,grain,ip,el), &
grain, ip, el)
case (SOURCE_thermal_externalheat_ID)
call source_thermal_externalheat_getRateAndItsTangent(my_Tdot, my_dTdot_dT, &
grain, ip, el)
case default
my_Tdot = 0.0_pReal
my_dTdot_dT = 0.0_pReal
end select
Tdot = Tdot + my_Tdot
dTdot_dT = dTdot_dT + my_dTdot_dT
enddo
enddo
Tdot = Tdot/homogenization_Ngrains(homog)
dTdot_dT = dTdot_dT/homogenization_Ngrains(homog)
end subroutine thermal_adiabatic_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized specific heat capacity
!--------------------------------------------------------------------------------------------------
function thermal_adiabatic_getSpecificHeat(ip,el)
use lattice, only: &
lattice_specificHeat
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
material_phase
use mesh, only: &
mesh_element
use crystallite, only: &
crystallite_push33ToRef
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_adiabatic_getSpecificHeat
integer(pInt) :: &
homog, grain
thermal_adiabatic_getSpecificHeat = 0.0_pReal
homog = mappingHomogenization(2,ip,el)
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
thermal_adiabatic_getSpecificHeat = thermal_adiabatic_getSpecificHeat + &
lattice_specificHeat(material_phase(grain,ip,el))
enddo
thermal_adiabatic_getSpecificHeat = &
thermal_adiabatic_getSpecificHeat/ &
homogenization_Ngrains(mesh_element(3,el))
end function thermal_adiabatic_getSpecificHeat
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized mass density
!--------------------------------------------------------------------------------------------------
function thermal_adiabatic_getMassDensity(ip,el)
use lattice, only: &
lattice_massDensity
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
material_phase
use mesh, only: &
mesh_element
use crystallite, only: &
crystallite_push33ToRef
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_adiabatic_getMassDensity
integer(pInt) :: &
homog, grain
thermal_adiabatic_getMassDensity = 0.0_pReal
homog = mappingHomogenization(2,ip,el)
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
thermal_adiabatic_getMassDensity = thermal_adiabatic_getMassDensity + &
lattice_massDensity(material_phase(grain,ip,el))
enddo
thermal_adiabatic_getMassDensity = &
thermal_adiabatic_getMassDensity/ &
homogenization_Ngrains(mesh_element(3,el))
end function thermal_adiabatic_getMassDensity
!--------------------------------------------------------------------------------------------------
!> @brief return array of thermal results
!--------------------------------------------------------------------------------------------------
function thermal_adiabatic_postResults(ip,el)
use material, only: &
mappingHomogenization, &
thermal_typeInstance, &
thermalMapping, &
temperature
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point
el !< element
real(pReal), dimension(thermal_adiabatic_sizePostResults(thermal_typeInstance(mappingHomogenization(2,ip,el)))) :: &
thermal_adiabatic_postResults
integer(pInt) :: &
instance, homog, offset, o, c
homog = mappingHomogenization(2,ip,el)
offset = thermalMapping(homog)%p(ip,el)
instance = thermal_typeInstance(homog)
c = 0_pInt
thermal_adiabatic_postResults = 0.0_pReal
do o = 1_pInt,thermal_adiabatic_Noutput(instance)
select case(thermal_adiabatic_outputID(o,instance))
case (temperature_ID)
thermal_adiabatic_postResults(c+1_pInt) = temperature(homog)%p(offset)
c = c + 1
end select
enddo
end function thermal_adiabatic_postResults
end module thermal_adiabatic

View File

@ -1,444 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for temperature evolution from heat conduction
!> @details to be done
!--------------------------------------------------------------------------------------------------
module thermal_conduction
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
thermal_conduction_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
thermal_conduction_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
thermal_conduction_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
thermal_conduction_Noutput !< number of outputs per instance of this damage
enum, bind(c)
enumerator :: undefined_ID, &
temperature_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
thermal_conduction_outputID !< ID of each post result output
public :: &
thermal_conduction_init, &
thermal_conduction_getSourceAndItsTangent, &
thermal_conduction_getConductivity33, &
thermal_conduction_getSpecificHeat, &
thermal_conduction_getMassDensity, &
thermal_conduction_putTemperatureAndItsRate, &
thermal_conduction_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
thermal_type, &
thermal_typeInstance, &
homogenization_Noutput, &
THERMAL_conduction_label, &
THERMAL_conduction_ID, &
material_homog, &
mappingHomogenization, &
thermalState, &
thermalMapping, &
thermal_initialT, &
temperature, &
temperatureRate, &
material_partHomogenization
use numerics,only: &
worldrank
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,mySize=0_pInt,section,instance,o
integer(pInt) :: sizeState
integer(pInt) :: NofMyHomog
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- thermal_'//THERMAL_CONDUCTION_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(thermal_type == THERMAL_conduction_ID),pInt)
if (maxNinstance == 0_pInt) return
allocate(thermal_conduction_sizePostResults(maxNinstance), source=0_pInt)
allocate(thermal_conduction_sizePostResult (maxval(homogenization_Noutput),maxNinstance),source=0_pInt)
allocate(thermal_conduction_output (maxval(homogenization_Noutput),maxNinstance))
thermal_conduction_output = ''
allocate(thermal_conduction_outputID (maxval(homogenization_Noutput),maxNinstance),source=undefined_ID)
allocate(thermal_conduction_Noutput (maxNinstance), source=0_pInt)
rewind(fileUnit)
section = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to <homogenization>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of homog part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next homog section
section = section + 1_pInt ! advance homog section counter
cycle ! skip to next line
endif
if (section > 0_pInt ) then; if (thermal_type(section) == THERMAL_conduction_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = thermal_typeInstance(section) ! which instance of my thermal is present homog
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('temperature')
thermal_conduction_Noutput(instance) = thermal_conduction_Noutput(instance) + 1_pInt
thermal_conduction_outputID(thermal_conduction_Noutput(instance),instance) = temperature_ID
thermal_conduction_output(thermal_conduction_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
end select
endif; endif
enddo parsingFile
initializeInstances: do section = 1_pInt, size(thermal_type)
if (thermal_type(section) == THERMAL_conduction_ID) then
NofMyHomog=count(material_homog==section)
instance = thermal_typeInstance(section)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,thermal_conduction_Noutput(instance)
select case(thermal_conduction_outputID(o,instance))
case(temperature_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
thermal_conduction_sizePostResult(o,instance) = mySize
thermal_conduction_sizePostResults(instance) = thermal_conduction_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! allocate state arrays
sizeState = 0_pInt
thermalState(section)%sizeState = sizeState
thermalState(section)%sizePostResults = thermal_conduction_sizePostResults(instance)
allocate(thermalState(section)%state0 (sizeState,NofMyHomog))
allocate(thermalState(section)%subState0(sizeState,NofMyHomog))
allocate(thermalState(section)%state (sizeState,NofMyHomog))
nullify(thermalMapping(section)%p)
thermalMapping(section)%p => mappingHomogenization(1,:,:)
deallocate(temperature (section)%p)
allocate (temperature (section)%p(NofMyHomog), source=thermal_initialT(section))
deallocate(temperatureRate(section)%p)
allocate (temperatureRate(section)%p(NofMyHomog), source=0.0_pReal)
endif
enddo initializeInstances
end subroutine thermal_conduction_init
!--------------------------------------------------------------------------------------------------
!> @brief returns heat generation rate
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
use math, only: &
math_Mandel6to33
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
phaseAt, phasememberAt, &
thermal_typeInstance, &
phase_Nsources, &
phase_source, &
SOURCE_thermal_dissipation_ID, &
SOURCE_thermal_externalheat_ID
use source_thermal_dissipation, only: &
source_thermal_dissipation_getRateAndItsTangent
use source_thermal_externalheat, only: &
source_thermal_externalheat_getRateAndItsTangent
use crystallite, only: &
crystallite_Tstar_v, &
crystallite_Lp
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
T
real(pReal), intent(out) :: &
Tdot, dTdot_dT
real(pReal) :: &
my_Tdot, my_dTdot_dT
integer(pInt) :: &
phase, &
homog, &
offset, &
instance, &
grain, &
source
homog = mappingHomogenization(2,ip,el)
offset = mappingHomogenization(1,ip,el)
instance = thermal_typeInstance(homog)
Tdot = 0.0_pReal
dTdot_dT = 0.0_pReal
do grain = 1, homogenization_Ngrains(homog)
phase = phaseAt(grain,ip,el)
do source = 1, phase_Nsources(phase)
select case(phase_source(source,phase))
case (SOURCE_thermal_dissipation_ID)
call source_thermal_dissipation_getRateAndItsTangent(my_Tdot, my_dTdot_dT, &
crystallite_Tstar_v(1:6,grain,ip,el), &
crystallite_Lp(1:3,1:3,grain,ip,el), &
grain, ip, el)
case (SOURCE_thermal_externalheat_ID)
call source_thermal_externalheat_getRateAndItsTangent(my_Tdot, my_dTdot_dT, &
grain, ip, el)
case default
my_Tdot = 0.0_pReal
my_dTdot_dT = 0.0_pReal
end select
Tdot = Tdot + my_Tdot
dTdot_dT = dTdot_dT + my_dTdot_dT
enddo
enddo
Tdot = Tdot/homogenization_Ngrains(homog)
dTdot_dT = dTdot_dT/homogenization_Ngrains(homog)
end subroutine thermal_conduction_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized thermal conductivity in reference configuration
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getConductivity33(ip,el)
use lattice, only: &
lattice_thermalConductivity33
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
material_phase
use mesh, only: &
mesh_element
use crystallite, only: &
crystallite_push33ToRef
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
thermal_conduction_getConductivity33
integer(pInt) :: &
homog, &
grain
homog = mappingHomogenization(2,ip,el)
thermal_conduction_getConductivity33 = 0.0_pReal
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
thermal_conduction_getConductivity33 = thermal_conduction_getConductivity33 + &
crystallite_push33ToRef(grain,ip,el,lattice_thermalConductivity33(:,:,material_phase(grain,ip,el)))
enddo
thermal_conduction_getConductivity33 = &
thermal_conduction_getConductivity33/ &
homogenization_Ngrains(mesh_element(3,el))
end function thermal_conduction_getConductivity33
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized specific heat capacity
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getSpecificHeat(ip,el)
use lattice, only: &
lattice_specificHeat
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
material_phase
use mesh, only: &
mesh_element
use crystallite, only: &
crystallite_push33ToRef
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_conduction_getSpecificHeat
integer(pInt) :: &
homog, grain
thermal_conduction_getSpecificHeat = 0.0_pReal
homog = mappingHomogenization(2,ip,el)
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat + &
lattice_specificHeat(material_phase(grain,ip,el))
enddo
thermal_conduction_getSpecificHeat = &
thermal_conduction_getSpecificHeat/ &
homogenization_Ngrains(mesh_element(3,el))
end function thermal_conduction_getSpecificHeat
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized mass density
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getMassDensity(ip,el)
use lattice, only: &
lattice_massDensity
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
material_phase
use mesh, only: &
mesh_element
use crystallite, only: &
crystallite_push33ToRef
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_conduction_getMassDensity
integer(pInt) :: &
homog, grain
thermal_conduction_getMassDensity = 0.0_pReal
homog = mappingHomogenization(2,ip,el)
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
thermal_conduction_getMassDensity = thermal_conduction_getMassDensity + &
lattice_massDensity(material_phase(grain,ip,el))
enddo
thermal_conduction_getMassDensity = &
thermal_conduction_getMassDensity/ &
homogenization_Ngrains(mesh_element(3,el))
end function thermal_conduction_getMassDensity
!--------------------------------------------------------------------------------------------------
!> @brief updates thermal state with solution from heat conduction PDE
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_putTemperatureAndItsRate(T,Tdot,ip,el)
use material, only: &
mappingHomogenization, &
temperature, &
temperatureRate, &
thermalMapping
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
T, &
Tdot
integer(pInt) :: &
homog, &
offset
homog = mappingHomogenization(2,ip,el)
offset = thermalMapping(homog)%p(ip,el)
temperature (homog)%p(offset) = T
temperatureRate(homog)%p(offset) = Tdot
end subroutine thermal_conduction_putTemperatureAndItsRate
!--------------------------------------------------------------------------------------------------
!> @brief return array of thermal results
!--------------------------------------------------------------------------------------------------
function thermal_conduction_postResults(ip,el)
use material, only: &
mappingHomogenization, &
thermal_typeInstance, &
temperature, &
thermalMapping
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point
el !< element
real(pReal), dimension(thermal_conduction_sizePostResults(thermal_typeInstance(mappingHomogenization(2,ip,el)))) :: &
thermal_conduction_postResults
integer(pInt) :: &
instance, homog, offset, o, c
homog = mappingHomogenization(2,ip,el)
offset = thermalMapping(homog)%p(ip,el)
instance = thermal_typeInstance(homog)
c = 0_pInt
thermal_conduction_postResults = 0.0_pReal
do o = 1_pInt,thermal_conduction_Noutput(instance)
select case(thermal_conduction_outputID(o,instance))
case (temperature_ID)
thermal_conduction_postResults(c+1_pInt) = temperature(homog)%p(offset)
c = c + 1
end select
enddo
end function thermal_conduction_postResults
end module thermal_conduction

View File

@ -1,65 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for isothermal temperature field
!--------------------------------------------------------------------------------------------------
module thermal_isothermal
implicit none
private
public :: &
thermal_isothermal_init
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields, reads information from material configuration file
!--------------------------------------------------------------------------------------------------
subroutine thermal_isothermal_init()
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use prec, only: &
pReal, &
pInt
use IO, only: &
IO_timeStamp
use material
use numerics, only: &
worldrank
implicit none
integer(pInt) :: &
homog, &
NofMyHomog, &
sizeState
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- thermal_'//THERMAL_isothermal_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
initializeInstances: do homog = 1_pInt, material_Nhomogenization
myhomog: if (thermal_type(homog) == THERMAL_isothermal_ID) then
NofMyHomog = count(material_homog == homog)
sizeState = 0_pInt
thermalState(homog)%sizeState = sizeState
thermalState(homog)%sizePostResults = sizeState
allocate(thermalState(homog)%state0 (sizeState,NofMyHomog), source=0.0_pReal)
allocate(thermalState(homog)%subState0(sizeState,NofMyHomog), source=0.0_pReal)
allocate(thermalState(homog)%state (sizeState,NofMyHomog), source=0.0_pReal)
deallocate(temperature (homog)%p)
allocate (temperature (homog)%p(1), source=thermal_initialT(homog))
deallocate(temperatureRate(homog)%p)
allocate (temperatureRate(homog)%p(1), source=0.0_pReal)
endif myhomog
enddo initializeInstances
end subroutine thermal_isothermal_init
end module thermal_isothermal

View File

@ -1,606 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for conservative transport of vacancy concentration field
!> @details to be done
!--------------------------------------------------------------------------------------------------
module vacancyflux_cahnhilliard
use prec, only: &
pReal, &
pInt, &
p_vec
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
vacancyflux_cahnhilliard_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
vacancyflux_cahnhilliard_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
vacancyflux_cahnhilliard_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
vacancyflux_cahnhilliard_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, private :: &
vacancyflux_cahnhilliard_flucAmplitude
type(p_vec), dimension(:), allocatable, private :: &
vacancyflux_cahnhilliard_thermalFluc
real(pReal), parameter, private :: &
kB = 1.3806488e-23_pReal !< Boltzmann constant in J/Kelvin
enum, bind(c)
enumerator :: undefined_ID, &
vacancyConc_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
vacancyflux_cahnhilliard_outputID !< ID of each post result output
public :: &
vacancyflux_cahnhilliard_init, &
vacancyflux_cahnhilliard_getSourceAndItsTangent, &
vacancyflux_cahnhilliard_getMobility33, &
vacancyflux_cahnhilliard_getDiffusion33, &
vacancyflux_cahnhilliard_getChemPotAndItsTangent, &
vacancyflux_cahnhilliard_putVacancyConcAndItsRate, &
vacancyflux_cahnhilliard_postResults
private :: &
vacancyflux_cahnhilliard_getFormationEnergy, &
vacancyflux_cahnhilliard_getEntropicCoeff, &
vacancyflux_cahnhilliard_KinematicChemPotAndItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine vacancyflux_cahnhilliard_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
vacancyflux_type, &
vacancyflux_typeInstance, &
homogenization_Noutput, &
VACANCYFLUX_cahnhilliard_label, &
VACANCYFLUX_cahnhilliard_ID, &
material_homog, &
mappingHomogenization, &
vacancyfluxState, &
vacancyfluxMapping, &
vacancyConc, &
vacancyConcRate, &
vacancyflux_initialCv, &
material_partHomogenization, &
material_partPhase
use numerics,only: &
worldrank
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,mySize=0_pInt,section,instance,o,offset
integer(pInt) :: sizeState
integer(pInt) :: NofMyHomog
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- vacancyflux_'//VACANCYFLUX_cahnhilliard_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(vacancyflux_type == VACANCYFLUX_cahnhilliard_ID),pInt)
if (maxNinstance == 0_pInt) return
allocate(vacancyflux_cahnhilliard_sizePostResults(maxNinstance), source=0_pInt)
allocate(vacancyflux_cahnhilliard_sizePostResult (maxval(homogenization_Noutput),maxNinstance),source=0_pInt)
allocate(vacancyflux_cahnhilliard_output (maxval(homogenization_Noutput),maxNinstance))
vacancyflux_cahnhilliard_output = ''
allocate(vacancyflux_cahnhilliard_outputID (maxval(homogenization_Noutput),maxNinstance),source=undefined_ID)
allocate(vacancyflux_cahnhilliard_Noutput (maxNinstance), source=0_pInt)
allocate(vacancyflux_cahnhilliard_flucAmplitude (maxNinstance))
allocate(vacancyflux_cahnhilliard_thermalFluc (maxNinstance))
rewind(fileUnit)
section = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to <homogenization>
line = IO_read(fileUnit)
enddo
parsingHomog: do while (trim(line) /= IO_EOF) ! read through sections of homog part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next homog section
section = section + 1_pInt ! advance homog section counter
cycle ! skip to next line
endif
if (section > 0_pInt ) then; if (vacancyflux_type(section) == VACANCYFLUX_cahnhilliard_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = vacancyflux_typeInstance(section) ! which instance of my vacancyflux is present homog
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('vacancyconc')
vacancyflux_cahnhilliard_Noutput(instance) = vacancyflux_cahnhilliard_Noutput(instance) + 1_pInt
vacancyflux_cahnhilliard_outputID(vacancyflux_cahnhilliard_Noutput(instance),instance) = vacancyConc_ID
vacancyflux_cahnhilliard_output(vacancyflux_cahnhilliard_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
case ('vacancyflux_flucamplitude')
vacancyflux_cahnhilliard_flucAmplitude(instance) = IO_floatValue(line,chunkPos,2_pInt)
end select
endif; endif
enddo parsingHomog
initializeInstances: do section = 1_pInt, size(vacancyflux_type)
if (vacancyflux_type(section) == VACANCYFLUX_cahnhilliard_ID) then
NofMyHomog=count(material_homog==section)
instance = vacancyflux_typeInstance(section)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,vacancyflux_cahnhilliard_Noutput(instance)
select case(vacancyflux_cahnhilliard_outputID(o,instance))
case(vacancyConc_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
vacancyflux_cahnhilliard_sizePostResult(o,instance) = mySize
vacancyflux_cahnhilliard_sizePostResults(instance) = vacancyflux_cahnhilliard_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! allocate state arrays
sizeState = 0_pInt
vacancyfluxState(section)%sizeState = sizeState
vacancyfluxState(section)%sizePostResults = vacancyflux_cahnhilliard_sizePostResults(instance)
allocate(vacancyfluxState(section)%state0 (sizeState,NofMyHomog))
allocate(vacancyfluxState(section)%subState0(sizeState,NofMyHomog))
allocate(vacancyfluxState(section)%state (sizeState,NofMyHomog))
allocate(vacancyflux_cahnhilliard_thermalFluc(instance)%p(NofMyHomog))
do offset = 1_pInt, NofMyHomog
call random_number(vacancyflux_cahnhilliard_thermalFluc(instance)%p(offset))
vacancyflux_cahnhilliard_thermalFluc(instance)%p(offset) = &
1.0_pReal - &
vacancyflux_cahnhilliard_flucAmplitude(instance)* &
(vacancyflux_cahnhilliard_thermalFluc(instance)%p(offset) - 0.5_pReal)
enddo
nullify(vacancyfluxMapping(section)%p)
vacancyfluxMapping(section)%p => mappingHomogenization(1,:,:)
deallocate(vacancyConc (section)%p)
allocate (vacancyConc (section)%p(NofMyHomog), source=vacancyflux_initialCv(section))
deallocate(vacancyConcRate(section)%p)
allocate (vacancyConcRate(section)%p(NofMyHomog), source=0.0_pReal)
endif
enddo initializeInstances
end subroutine vacancyflux_cahnhilliard_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates homogenized vacancy driving forces
!--------------------------------------------------------------------------------------------------
subroutine vacancyflux_cahnhilliard_getSourceAndItsTangent(CvDot, dCvDot_dCv, Cv, ip, el)
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
phaseAt, phasememberAt, &
phase_source, &
phase_Nsources, &
SOURCE_vacancy_phenoplasticity_ID, &
SOURCE_vacancy_irradiation_ID, &
SOURCE_vacancy_thermalfluc_ID
use source_vacancy_phenoplasticity, only: &
source_vacancy_phenoplasticity_getRateAndItsTangent
use source_vacancy_irradiation, only: &
source_vacancy_irradiation_getRateAndItsTangent
use source_vacancy_thermalfluc, only: &
source_vacancy_thermalfluc_getRateAndItsTangent
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
Cv
integer(pInt) :: &
phase, &
grain, &
source
real(pReal) :: &
CvDot, dCvDot_dCv, localCvDot, dLocalCvDot_dCv
CvDot = 0.0_pReal
dCvDot_dCv = 0.0_pReal
do grain = 1, homogenization_Ngrains(mappingHomogenization(2,ip,el))
phase = phaseAt(grain,ip,el)
do source = 1_pInt, phase_Nsources(phase)
select case(phase_source(source,phase))
case (SOURCE_vacancy_phenoplasticity_ID)
call source_vacancy_phenoplasticity_getRateAndItsTangent (localCvDot, dLocalCvDot_dCv, grain, ip, el)
case (SOURCE_vacancy_irradiation_ID)
call source_vacancy_irradiation_getRateAndItsTangent (localCvDot, dLocalCvDot_dCv, grain, ip, el)
case (SOURCE_vacancy_thermalfluc_ID)
call source_vacancy_thermalfluc_getRateAndItsTangent(localCvDot, dLocalCvDot_dCv, grain, ip, el)
end select
CvDot = CvDot + localCvDot
dCvDot_dCv = dCvDot_dCv + dLocalCvDot_dCv
enddo
enddo
CvDot = CvDot/homogenization_Ngrains(mappingHomogenization(2,ip,el))
dCvDot_dCv = dCvDot_dCv/homogenization_Ngrains(mappingHomogenization(2,ip,el))
end subroutine vacancyflux_cahnhilliard_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized vacancy mobility tensor in reference configuration
!--------------------------------------------------------------------------------------------------
function vacancyflux_cahnhilliard_getMobility33(ip,el)
use lattice, only: &
lattice_vacancyfluxMobility33
use material, only: &
homogenization_Ngrains, &
material_phase
use mesh, only: &
mesh_element
use crystallite, only: &
crystallite_push33ToRef
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
vacancyflux_cahnhilliard_getMobility33
integer(pInt) :: &
grain
vacancyflux_cahnhilliard_getMobility33 = 0.0_pReal
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
vacancyflux_cahnhilliard_getMobility33 = vacancyflux_cahnhilliard_getMobility33 + &
crystallite_push33ToRef(grain,ip,el,lattice_vacancyfluxMobility33(:,:,material_phase(grain,ip,el)))
enddo
vacancyflux_cahnhilliard_getMobility33 = &
vacancyflux_cahnhilliard_getMobility33/ &
homogenization_Ngrains(mesh_element(3,el))
end function vacancyflux_cahnhilliard_getMobility33
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized vacancy diffusion tensor in reference configuration
!--------------------------------------------------------------------------------------------------
function vacancyflux_cahnhilliard_getDiffusion33(ip,el)
use lattice, only: &
lattice_vacancyfluxDiffusion33
use material, only: &
homogenization_Ngrains, &
material_phase
use mesh, only: &
mesh_element
use crystallite, only: &
crystallite_push33ToRef
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
vacancyflux_cahnhilliard_getDiffusion33
integer(pInt) :: &
grain
vacancyflux_cahnhilliard_getDiffusion33 = 0.0_pReal
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
vacancyflux_cahnhilliard_getDiffusion33 = vacancyflux_cahnhilliard_getDiffusion33 + &
crystallite_push33ToRef(grain,ip,el,lattice_vacancyfluxDiffusion33(:,:,material_phase(grain,ip,el)))
enddo
vacancyflux_cahnhilliard_getDiffusion33 = &
vacancyflux_cahnhilliard_getDiffusion33/ &
homogenization_Ngrains(mesh_element(3,el))
end function vacancyflux_cahnhilliard_getDiffusion33
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized vacancy formation energy
!--------------------------------------------------------------------------------------------------
real(pReal) function vacancyflux_cahnhilliard_getFormationEnergy(ip,el)
use lattice, only: &
lattice_vacancyFormationEnergy, &
lattice_vacancyVol, &
lattice_vacancySurfaceEnergy
use material, only: &
homogenization_Ngrains, &
material_phase
use mesh, only: &
mesh_element
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
integer(pInt) :: &
grain
vacancyflux_cahnhilliard_getFormationEnergy = 0.0_pReal
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
vacancyflux_cahnhilliard_getFormationEnergy = vacancyflux_cahnhilliard_getFormationEnergy + &
lattice_vacancyFormationEnergy(material_phase(grain,ip,el))/ &
lattice_vacancyVol(material_phase(grain,ip,el))/ &
lattice_vacancySurfaceEnergy(material_phase(grain,ip,el))
enddo
vacancyflux_cahnhilliard_getFormationEnergy = &
vacancyflux_cahnhilliard_getFormationEnergy/ &
homogenization_Ngrains(mesh_element(3,el))
end function vacancyflux_cahnhilliard_getFormationEnergy
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized vacancy entropy coefficient
!--------------------------------------------------------------------------------------------------
real(pReal) function vacancyflux_cahnhilliard_getEntropicCoeff(ip,el)
use lattice, only: &
lattice_vacancyVol, &
lattice_vacancySurfaceEnergy
use material, only: &
homogenization_Ngrains, &
material_homog, &
material_phase, &
temperature, &
thermalMapping
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
integer(pInt) :: &
grain
vacancyflux_cahnhilliard_getEntropicCoeff = 0.0_pReal
do grain = 1, homogenization_Ngrains(material_homog(ip,el))
vacancyflux_cahnhilliard_getEntropicCoeff = vacancyflux_cahnhilliard_getEntropicCoeff + &
kB/ &
lattice_vacancyVol(material_phase(grain,ip,el))/ &
lattice_vacancySurfaceEnergy(material_phase(grain,ip,el))
enddo
vacancyflux_cahnhilliard_getEntropicCoeff = &
vacancyflux_cahnhilliard_getEntropicCoeff* &
temperature(material_homog(ip,el))%p(thermalMapping(material_homog(ip,el))%p(ip,el))/ &
homogenization_Ngrains(material_homog(ip,el))
end function vacancyflux_cahnhilliard_getEntropicCoeff
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized kinematic contribution to chemical potential
!--------------------------------------------------------------------------------------------------
subroutine vacancyflux_cahnhilliard_KinematicChemPotAndItsTangent(KPot, dKPot_dCv, Cv, ip, el)
use lattice, only: &
lattice_vacancySurfaceEnergy
use material, only: &
homogenization_Ngrains, &
material_homog, &
phase_kinematics, &
phase_Nkinematics, &
material_phase, &
KINEMATICS_vacancy_strain_ID
use crystallite, only: &
crystallite_Tstar_v, &
crystallite_Fi0, &
crystallite_Fi
use kinematics_vacancy_strain, only: &
kinematics_vacancy_strain_ChemPotAndItsTangent
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
Cv
real(pReal), intent(out) :: &
KPot, dKPot_dCv
real(pReal) :: &
my_KPot, my_dKPot_dCv
integer(pInt) :: &
grain, kinematics
KPot = 0.0_pReal
dKPot_dCv = 0.0_pReal
do grain = 1_pInt,homogenization_Ngrains(material_homog(ip,el))
do kinematics = 1_pInt, phase_Nkinematics(material_phase(grain,ip,el))
select case (phase_kinematics(kinematics,material_phase(grain,ip,el)))
case (KINEMATICS_vacancy_strain_ID)
call kinematics_vacancy_strain_ChemPotAndItsTangent(my_KPot, my_dKPot_dCv, &
crystallite_Tstar_v(1:6,grain,ip,el), &
crystallite_Fi0(1:3,1:3,grain,ip,el), &
crystallite_Fi (1:3,1:3,grain,ip,el), &
grain,ip, el)
case default
my_KPot = 0.0_pReal
my_dKPot_dCv = 0.0_pReal
end select
KPot = KPot + my_KPot/lattice_vacancySurfaceEnergy(material_phase(grain,ip,el))
dKPot_dCv = dKPot_dCv + my_dKPot_dCv/lattice_vacancySurfaceEnergy(material_phase(grain,ip,el))
enddo
enddo
KPot = KPot/homogenization_Ngrains(material_homog(ip,el))
dKPot_dCv = dKPot_dCv/homogenization_Ngrains(material_homog(ip,el))
end subroutine vacancyflux_cahnhilliard_KinematicChemPotAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized chemical potential and its tangent
!--------------------------------------------------------------------------------------------------
subroutine vacancyflux_cahnhilliard_getChemPotAndItsTangent(ChemPot,dChemPot_dCv,Cv,ip,el)
use numerics, only: &
vacancyBoundPenalty, &
vacancyPolyOrder
use material, only: &
mappingHomogenization, &
vacancyflux_typeInstance, &
porosity, &
porosityMapping
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
Cv
real(pReal), intent(out) :: &
ChemPot, &
dChemPot_dCv
real(pReal) :: &
VoidPhaseFrac, kBT, KPot, dKPot_dCv
integer(pInt) :: &
homog, o
homog = mappingHomogenization(2,ip,el)
VoidPhaseFrac = porosity(homog)%p(porosityMapping(homog)%p(ip,el))
kBT = vacancyflux_cahnhilliard_getEntropicCoeff(ip,el)
ChemPot = vacancyflux_cahnhilliard_getFormationEnergy(ip,el)
dChemPot_dCv = 0.0_pReal
do o = 1_pInt, vacancyPolyOrder
ChemPot = ChemPot + kBT*((2.0_pReal*Cv - 1.0_pReal)**real(2_pInt*o-1_pInt,pReal))/ &
real(2_pInt*o-1_pInt,pReal)
dChemPot_dCv = dChemPot_dCv + 2.0_pReal*kBT*(2.0_pReal*Cv - 1.0_pReal)**real(2_pInt*o-2_pInt,pReal)
enddo
ChemPot = VoidPhaseFrac*VoidPhaseFrac*ChemPot &
- 2.0_pReal*(1.0_pReal - Cv)*(1.0_pReal - VoidPhaseFrac)*(1.0_pReal - VoidPhaseFrac)
dChemPot_dCv = VoidPhaseFrac*VoidPhaseFrac*dChemPot_dCv &
+ 2.0_pReal*(1.0_pReal - VoidPhaseFrac)*(1.0_pReal - VoidPhaseFrac)
call vacancyflux_cahnhilliard_KinematicChemPotAndItsTangent(KPot, dKPot_dCv, Cv, ip, el)
ChemPot = ChemPot + KPot
dChemPot_dCv = dChemPot_dCv + dKPot_dCv
if (Cv < 0.0_pReal) then
ChemPot = ChemPot - 3.0_pReal*vacancyBoundPenalty*Cv*Cv
dChemPot_dCv = dChemPot_dCv - 6.0_pReal*vacancyBoundPenalty*Cv
elseif (Cv > 1.0_pReal) then
ChemPot = ChemPot + 3.0_pReal*vacancyBoundPenalty*(1.0_pReal - Cv)*(1.0_pReal - Cv)
dChemPot_dCv = dChemPot_dCv - 6.0_pReal*vacancyBoundPenalty*(1.0_pReal - Cv)
endif
ChemPot = ChemPot* &
vacancyflux_cahnhilliard_thermalFluc(vacancyflux_typeInstance(homog))%p(mappingHomogenization(1,ip,el))
dChemPot_dCv = dChemPot_dCv* &
vacancyflux_cahnhilliard_thermalFluc(vacancyflux_typeInstance(homog))%p(mappingHomogenization(1,ip,el))
end subroutine vacancyflux_cahnhilliard_getChemPotAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief updated vacancy concentration and its rate with solution from transport PDE
!--------------------------------------------------------------------------------------------------
subroutine vacancyflux_cahnhilliard_putVacancyConcAndItsRate(Cv,Cvdot,ip,el)
use material, only: &
mappingHomogenization, &
vacancyConc, &
vacancyConcRate, &
vacancyfluxMapping
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
Cv, &
Cvdot
integer(pInt) :: &
homog, &
offset
homog = mappingHomogenization(2,ip,el)
offset = vacancyfluxMapping(homog)%p(ip,el)
vacancyConc (homog)%p(offset) = Cv
vacancyConcRate(homog)%p(offset) = Cvdot
end subroutine vacancyflux_cahnhilliard_putVacancyConcAndItsRate
!--------------------------------------------------------------------------------------------------
!> @brief return array of vacancy transport results
!--------------------------------------------------------------------------------------------------
function vacancyflux_cahnhilliard_postResults(ip,el)
use material, only: &
mappingHomogenization, &
vacancyflux_typeInstance, &
vacancyConc, &
vacancyfluxMapping
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point
el !< element
real(pReal), dimension(vacancyflux_cahnhilliard_sizePostResults(vacancyflux_typeInstance(mappingHomogenization(2,ip,el)))) :: &
vacancyflux_cahnhilliard_postResults
integer(pInt) :: &
instance, homog, offset, o, c
homog = mappingHomogenization(2,ip,el)
offset = vacancyfluxMapping(homog)%p(ip,el)
instance = vacancyflux_typeInstance(homog)
c = 0_pInt
vacancyflux_cahnhilliard_postResults = 0.0_pReal
do o = 1_pInt,vacancyflux_cahnhilliard_Noutput(instance)
select case(vacancyflux_cahnhilliard_outputID(o,instance))
case (vacancyConc_ID)
vacancyflux_cahnhilliard_postResults(c+1_pInt) = vacancyConc(homog)%p(offset)
c = c + 1
end select
enddo
end function vacancyflux_cahnhilliard_postResults
end module vacancyflux_cahnhilliard

View File

@ -1,329 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for locally evolving vacancy concentration
!> @details to be done
!--------------------------------------------------------------------------------------------------
module vacancyflux_isochempot
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
vacancyflux_isochempot_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
vacancyflux_isochempot_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
vacancyflux_isochempot_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
vacancyflux_isochempot_Noutput !< number of outputs per instance of this damage
enum, bind(c)
enumerator :: undefined_ID, &
vacancyconc_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
vacancyflux_isochempot_outputID !< ID of each post result output
public :: &
vacancyflux_isochempot_init, &
vacancyflux_isochempot_updateState, &
vacancyflux_isochempot_getSourceAndItsTangent, &
vacancyflux_isochempot_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine vacancyflux_isochempot_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
vacancyflux_type, &
vacancyflux_typeInstance, &
homogenization_Noutput, &
VACANCYFLUX_isochempot_label, &
VACANCYFLUX_isochempot_ID, &
material_homog, &
mappingHomogenization, &
vacancyfluxState, &
vacancyfluxMapping, &
vacancyConc, &
vacancyConcRate, &
vacancyflux_initialCv, &
material_partHomogenization
use numerics,only: &
worldrank
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,mySize=0_pInt,section,instance,o
integer(pInt) :: sizeState
integer(pInt) :: NofMyHomog
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- vacancyflux_'//VACANCYFLUX_isochempot_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(vacancyflux_type == VACANCYFLUX_isochempot_ID),pInt)
if (maxNinstance == 0_pInt) return
allocate(vacancyflux_isochempot_sizePostResults(maxNinstance), source=0_pInt)
allocate(vacancyflux_isochempot_sizePostResult (maxval(homogenization_Noutput),maxNinstance),source=0_pInt)
allocate(vacancyflux_isochempot_output (maxval(homogenization_Noutput),maxNinstance))
vacancyflux_isochempot_output = ''
allocate(vacancyflux_isochempot_outputID (maxval(homogenization_Noutput),maxNinstance),source=undefined_ID)
allocate(vacancyflux_isochempot_Noutput (maxNinstance), source=0_pInt)
rewind(fileUnit)
section = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to <homogenization>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of homog part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next homog section
section = section + 1_pInt ! advance homog section counter
cycle ! skip to next line
endif
if (section > 0_pInt ) then; if (vacancyflux_type(section) == VACANCYFLUX_isochempot_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = vacancyflux_typeInstance(section) ! which instance of my vacancyflux is present homog
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('vacancyconc')
vacancyflux_isochempot_Noutput(instance) = vacancyflux_isochempot_Noutput(instance) + 1_pInt
vacancyflux_isochempot_outputID(vacancyflux_isochempot_Noutput(instance),instance) = vacancyconc_ID
vacancyflux_isochempot_output(vacancyflux_isochempot_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
end select
endif; endif
enddo parsingFile
initializeInstances: do section = 1_pInt, size(vacancyflux_type)
if (vacancyflux_type(section) == VACANCYFLUX_isochempot_ID) then
NofMyHomog=count(material_homog==section)
instance = vacancyflux_typeInstance(section)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,vacancyflux_isochempot_Noutput(instance)
select case(vacancyflux_isochempot_outputID(o,instance))
case(vacancyconc_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
vacancyflux_isochempot_sizePostResult(o,instance) = mySize
vacancyflux_isochempot_sizePostResults(instance) = vacancyflux_isochempot_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! allocate state arrays
sizeState = 1_pInt
vacancyfluxState(section)%sizeState = sizeState
vacancyfluxState(section)%sizePostResults = vacancyflux_isochempot_sizePostResults(instance)
allocate(vacancyfluxState(section)%state0 (sizeState,NofMyHomog), source=vacancyflux_initialCv(section))
allocate(vacancyfluxState(section)%subState0(sizeState,NofMyHomog), source=vacancyflux_initialCv(section))
allocate(vacancyfluxState(section)%state (sizeState,NofMyHomog), source=vacancyflux_initialCv(section))
nullify(vacancyfluxMapping(section)%p)
vacancyfluxMapping(section)%p => mappingHomogenization(1,:,:)
deallocate(vacancyConc(section)%p)
vacancyConc(section)%p => vacancyfluxState(section)%state(1,:)
deallocate(vacancyConcRate(section)%p)
allocate(vacancyConcRate(section)%p(NofMyHomog), source=0.0_pReal)
endif
enddo initializeInstances
end subroutine vacancyflux_isochempot_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates change in vacancy concentration based on local vacancy generation model
!--------------------------------------------------------------------------------------------------
function vacancyflux_isochempot_updateState(subdt, ip, el)
use numerics, only: &
err_vacancyflux_tolAbs, &
err_vacancyflux_tolRel
use material, only: &
mappingHomogenization, &
vacancyflux_typeInstance, &
vacancyfluxState, &
vacancyConc, &
vacancyConcRate, &
vacancyfluxMapping
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
subdt
logical, dimension(2) :: &
vacancyflux_isochempot_updateState
integer(pInt) :: &
homog, &
offset, &
instance
real(pReal) :: &
Cv, Cvdot, dCvDot_dCv
homog = mappingHomogenization(2,ip,el)
offset = mappingHomogenization(1,ip,el)
instance = vacancyflux_typeInstance(homog)
Cv = vacancyfluxState(homog)%subState0(1,offset)
call vacancyflux_isochempot_getSourceAndItsTangent(CvDot, dCvDot_dCv, Cv, ip, el)
Cv = Cv + subdt*Cvdot
vacancyflux_isochempot_updateState = [ abs(Cv - vacancyfluxState(homog)%state(1,offset)) &
<= err_vacancyflux_tolAbs &
.or. abs(Cv - vacancyfluxState(homog)%state(1,offset)) &
<= err_vacancyflux_tolRel*abs(vacancyfluxState(homog)%state(1,offset)), &
.true.]
vacancyConc (homog)%p(vacancyfluxMapping(homog)%p(ip,el)) = Cv
vacancyConcRate(homog)%p(vacancyfluxMapping(homog)%p(ip,el)) = &
(vacancyfluxState(homog)%state(1,offset) - vacancyfluxState(homog)%subState0(1,offset))/(subdt+tiny(0.0_pReal))
end function vacancyflux_isochempot_updateState
!--------------------------------------------------------------------------------------------------
!> @brief calculates homogenized vacancy driving forces
!--------------------------------------------------------------------------------------------------
subroutine vacancyflux_isochempot_getSourceAndItsTangent(CvDot, dCvDot_dCv, Cv, ip, el)
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
phaseAt, phasememberAt, &
phase_source, &
phase_Nsources, &
SOURCE_vacancy_phenoplasticity_ID, &
SOURCE_vacancy_irradiation_ID, &
SOURCE_vacancy_thermalfluc_ID
use source_vacancy_phenoplasticity, only: &
source_vacancy_phenoplasticity_getRateAndItsTangent
use source_vacancy_irradiation, only: &
source_vacancy_irradiation_getRateAndItsTangent
use source_vacancy_thermalfluc, only: &
source_vacancy_thermalfluc_getRateAndItsTangent
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
Cv
integer(pInt) :: &
phase, &
grain, &
source
real(pReal) :: &
CvDot, dCvDot_dCv, localCvDot, dLocalCvDot_dCv
CvDot = 0.0_pReal
dCvDot_dCv = 0.0_pReal
do grain = 1, homogenization_Ngrains(mappingHomogenization(2,ip,el))
phase = phaseAt(grain,ip,el)
do source = 1_pInt, phase_Nsources(phase)
select case(phase_source(source,phase))
case (SOURCE_vacancy_phenoplasticity_ID)
call source_vacancy_phenoplasticity_getRateAndItsTangent (localCvDot, dLocalCvDot_dCv, grain, ip, el)
case (SOURCE_vacancy_irradiation_ID)
call source_vacancy_irradiation_getRateAndItsTangent (localCvDot, dLocalCvDot_dCv, grain, ip, el)
case (SOURCE_vacancy_thermalfluc_ID)
call source_vacancy_thermalfluc_getRateAndItsTangent(localCvDot, dLocalCvDot_dCv, grain, ip, el)
end select
CvDot = CvDot + localCvDot
dCvDot_dCv = dCvDot_dCv + dLocalCvDot_dCv
enddo
enddo
CvDot = CvDot/homogenization_Ngrains(mappingHomogenization(2,ip,el))
dCvDot_dCv = dCvDot_dCv/homogenization_Ngrains(mappingHomogenization(2,ip,el))
end subroutine vacancyflux_isochempot_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief return array of vacancy transport results
!--------------------------------------------------------------------------------------------------
function vacancyflux_isochempot_postResults(ip,el)
use material, only: &
mappingHomogenization, &
vacancyflux_typeInstance, &
vacancyConc, &
vacancyfluxMapping
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point
el !< element
real(pReal), dimension(vacancyflux_isochempot_sizePostResults(vacancyflux_typeInstance(mappingHomogenization(2,ip,el)))) :: &
vacancyflux_isochempot_postResults
integer(pInt) :: &
instance, homog, offset, o, c
homog = mappingHomogenization(2,ip,el)
offset = vacancyfluxMapping(homog)%p(ip,el)
instance = vacancyflux_typeInstance(homog)
c = 0_pInt
vacancyflux_isochempot_postResults = 0.0_pReal
do o = 1_pInt,vacancyflux_isochempot_Noutput(instance)
select case(vacancyflux_isochempot_outputID(o,instance))
case (vacancyconc_ID)
vacancyflux_isochempot_postResults(c+1_pInt) = vacancyConc(homog)%p(offset)
c = c + 1
end select
enddo
end function vacancyflux_isochempot_postResults
end module vacancyflux_isochempot

View File

@ -1,63 +0,0 @@
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for constant vacancy concentration
!--------------------------------------------------------------------------------------------------
module vacancyflux_isoconc
implicit none
private
public :: &
vacancyflux_isoconc_init
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields, reads information from material configuration file
!--------------------------------------------------------------------------------------------------
subroutine vacancyflux_isoconc_init()
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use prec, only: &
pReal, &
pInt
use IO, only: &
IO_timeStamp
use material
use numerics, only: &
worldrank
implicit none
integer(pInt) :: &
homog, &
NofMyHomog
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- vacancyflux_'//VACANCYFLUX_isoconc_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
initializeInstances: do homog = 1_pInt, material_Nhomogenization
myhomog: if (vacancyflux_type(homog) == VACANCYFLUX_isoconc_ID) then
NofMyHomog = count(material_homog == homog)
vacancyfluxState(homog)%sizeState = 0_pInt
vacancyfluxState(homog)%sizePostResults = 0_pInt
allocate(vacancyfluxState(homog)%state0 (0_pInt,NofMyHomog))
allocate(vacancyfluxState(homog)%subState0(0_pInt,NofMyHomog))
allocate(vacancyfluxState(homog)%state (0_pInt,NofMyHomog))
deallocate(vacancyConc (homog)%p)
allocate (vacancyConc (homog)%p(1), source=vacancyflux_initialCv(homog))
deallocate(vacancyConcRate(homog)%p)
allocate (vacancyConcRate(homog)%p(1), source=0.0_pReal)
endif myhomog
enddo initializeInstances
end subroutine vacancyflux_isoconc_init
end module vacancyflux_isoconc