96 lines
3.3 KiB
Python
96 lines
3.3 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- coding: UTF-8 no BOM -*-
|
||
|
|
||
|
import os,re,sys,string
|
||
|
import numpy as np
|
||
|
from optparse import OptionParser
|
||
|
import damask
|
||
|
|
||
|
scriptID = string.replace('$Id$','\n','\\n')
|
||
|
scriptName = os.path.splitext(scriptID.split()[1])[0]
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# MAIN
|
||
|
# --------------------------------------------------------------------
|
||
|
|
||
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||
|
Add cumulative (sum of first to current row) values for given label(s).
|
||
|
""", version = scriptID)
|
||
|
|
||
|
parser.add_option('-l','--label',
|
||
|
dest='label',
|
||
|
action = 'extend', metavar = '<string LIST>',
|
||
|
help = 'columns to cumulate')
|
||
|
|
||
|
parser.set_defaults(label = [],
|
||
|
)
|
||
|
|
||
|
(options,filenames) = parser.parse_args()
|
||
|
|
||
|
if len(options.label) == 0:
|
||
|
parser.error('no data column(s) specified.')
|
||
|
|
||
|
# --- loop over input files -------------------------------------------------------------------------
|
||
|
|
||
|
if filenames == []: filenames = [None]
|
||
|
|
||
|
for name in filenames:
|
||
|
try:
|
||
|
table = damask.ASCIItable(name = name,
|
||
|
buffered = False)
|
||
|
except: continue
|
||
|
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name else ''))
|
||
|
|
||
|
# ------------------------------------------ read header ------------------------------------------
|
||
|
|
||
|
table.head_read()
|
||
|
|
||
|
# ------------------------------------------ sanity checks ----------------------------------------
|
||
|
|
||
|
errors = []
|
||
|
remarks = []
|
||
|
columns = []
|
||
|
dims = []
|
||
|
|
||
|
for what in options.label:
|
||
|
dim = table.label_dimension(what)
|
||
|
if dim < 0: remarks.append('column {} not found...'.format(what))
|
||
|
else:
|
||
|
dims.append(dim)
|
||
|
columns.append(table.label_index(what))
|
||
|
table.labels_append('cum({})'.format(what) if dim == 1 else
|
||
|
['{}_cum({})'.format(i+1,what) for i in xrange(dim)] ) # extend ASCII header with new labels
|
||
|
|
||
|
if remarks != []: table.croak(remarks)
|
||
|
if errors != []:
|
||
|
table.croak(errors)
|
||
|
table.close(dismiss = True)
|
||
|
continue
|
||
|
|
||
|
# ------------------------------------------ assemble header ---------------------------------------
|
||
|
|
||
|
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||
|
table.head_write()
|
||
|
|
||
|
# ------------------------------------------ process data ------------------------------------------
|
||
|
|
||
|
table.data_readArray()
|
||
|
|
||
|
mask = []
|
||
|
for col,dim in zip(columns,dims): mask += range(col,col+dim) # isolate data columns to cumulate
|
||
|
|
||
|
cumulated = np.zeros((len(table.data),len(mask))) # prepare output field
|
||
|
|
||
|
for i,values in enumerate(table.data[:,mask]):
|
||
|
cumulated[i,:] = cumulated[max(0,i-1),:] + values # cumulate values
|
||
|
|
||
|
table.data = np.hstack((table.data,cumulated))
|
||
|
|
||
|
# ------------------------------------------ output result -----------------------------------------
|
||
|
|
||
|
table.data_writeArray()
|
||
|
|
||
|
# ------------------------------------------ output finalization -----------------------------------
|
||
|
|
||
|
table.close() # close ASCII tables
|