DAMASK_EICMD/src/thermal_conduction.f90

323 lines
13 KiB
Fortran
Raw Normal View History

!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for temperature evolution from heat conduction
!--------------------------------------------------------------------------------------------------
module thermal_conduction
2019-06-07 00:44:37 +05:30
use prec
use material
use config
use lattice
2019-12-11 00:55:19 +05:30
use results
2019-06-07 00:44:37 +05:30
use crystallite
use source_thermal_dissipation
use source_thermal_externalheat
implicit none
private
integer, dimension(:,:), allocatable, target, public :: &
thermal_conduction_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
thermal_conduction_output !< name of each post result output
integer, dimension(:), allocatable, target, public :: &
thermal_conduction_Noutput !< number of outputs per instance of this damage
enum, bind(c)
enumerator :: undefined_ID, &
temperature_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
thermal_conduction_outputID !< ID of each post result output
public :: &
thermal_conduction_init, &
thermal_conduction_getSourceAndItsTangent, &
thermal_conduction_getConductivity33, &
thermal_conduction_getSpecificHeat, &
thermal_conduction_getMassDensity, &
thermal_conduction_putTemperatureAndItsRate, &
2019-12-11 00:55:19 +05:30
thermal_conduction_results, &
thermal_conduction_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
2018-12-31 03:00:21 +05:30
subroutine thermal_conduction_init
2019-06-07 00:44:37 +05:30
integer :: maxNinstance,section,instance,i
integer :: sizeState
integer :: NofMyHomog
character(len=65536), dimension(0), parameter :: emptyStringArray = [character(len=65536)::]
character(len=65536), dimension(:), allocatable :: outputs
write(6,'(/,a)') ' <<<+- thermal_'//THERMAL_CONDUCTION_label//' init -+>>>'
maxNinstance = count(thermal_type == THERMAL_conduction_ID)
if (maxNinstance == 0) return
allocate(thermal_conduction_sizePostResult (maxval(homogenization_Noutput),maxNinstance),source=0)
allocate(thermal_conduction_output (maxval(homogenization_Noutput),maxNinstance))
thermal_conduction_output = ''
allocate(thermal_conduction_outputID (maxval(homogenization_Noutput),maxNinstance),source=undefined_ID)
allocate(thermal_conduction_Noutput (maxNinstance), source=0)
initializeInstances: do section = 1, size(thermal_type)
if (thermal_type(section) /= THERMAL_conduction_ID) cycle
NofMyHomog=count(material_homogenizationAt==section)
instance = thermal_typeInstance(section)
outputs = config_homogenization(section)%getStrings('(output)',defaultVal=emptyStringArray)
do i=1, size(outputs)
select case(outputs(i))
case('temperature')
thermal_conduction_Noutput(instance) = thermal_conduction_Noutput(instance) + 1
thermal_conduction_outputID(thermal_conduction_Noutput(instance),instance) = temperature_ID
thermal_conduction_output(thermal_conduction_Noutput(instance),instance) = outputs(i)
thermal_conduction_sizePostResult(thermal_conduction_Noutput(instance),instance) = 1
end select
enddo
! allocate state arrays
sizeState = 0
thermalState(section)%sizeState = sizeState
thermalState(section)%sizePostResults = sum(thermal_conduction_sizePostResult(:,instance))
allocate(thermalState(section)%state0 (sizeState,NofMyHomog))
allocate(thermalState(section)%subState0(sizeState,NofMyHomog))
allocate(thermalState(section)%state (sizeState,NofMyHomog))
nullify(thermalMapping(section)%p)
thermalMapping(section)%p => mappingHomogenization(1,:,:)
deallocate(temperature (section)%p)
allocate (temperature (section)%p(NofMyHomog), source=thermal_initialT(section))
deallocate(temperatureRate(section)%p)
allocate (temperatureRate(section)%p(NofMyHomog), source=0.0_pReal)
enddo initializeInstances
2018-12-31 02:24:50 +05:30
end subroutine thermal_conduction_init
!--------------------------------------------------------------------------------------------------
!> @brief returns heat generation rate
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
T
real(pReal), intent(out) :: &
Tdot, dTdot_dT
real(pReal) :: &
my_Tdot, my_dTdot_dT
integer :: &
phase, &
homog, &
offset, &
instance, &
grain, &
source, &
constituent
homog = material_homogenizationAt(el)
offset = mappingHomogenization(1,ip,el)
instance = thermal_typeInstance(homog)
Tdot = 0.0_pReal
dTdot_dT = 0.0_pReal
do grain = 1, homogenization_Ngrains(homog)
phase = material_phaseAt(grain,el)
constituent = material_phasememberAt(grain,ip,el)
do source = 1, phase_Nsources(phase)
select case(phase_source(source,phase))
case (SOURCE_thermal_dissipation_ID)
call source_thermal_dissipation_getRateAndItsTangent(my_Tdot, my_dTdot_dT, &
crystallite_S(1:3,1:3,grain,ip,el), &
crystallite_Lp(1:3,1:3,grain,ip,el), &
phase)
case (SOURCE_thermal_externalheat_ID)
call source_thermal_externalheat_getRateAndItsTangent(my_Tdot, my_dTdot_dT, &
phase, constituent)
case default
my_Tdot = 0.0_pReal
my_dTdot_dT = 0.0_pReal
end select
Tdot = Tdot + my_Tdot
dTdot_dT = dTdot_dT + my_dTdot_dT
enddo
enddo
Tdot = Tdot/real(homogenization_Ngrains(homog),pReal)
dTdot_dT = dTdot_dT/real(homogenization_Ngrains(homog),pReal)
end subroutine thermal_conduction_getSourceAndItsTangent
2018-12-31 02:24:50 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized thermal conductivity in reference configuration
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getConductivity33(ip,el)
2019-06-07 00:44:37 +05:30
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
thermal_conduction_getConductivity33
integer :: &
grain
thermal_conduction_getConductivity33 = 0.0_pReal
2019-06-07 00:44:37 +05:30
do grain = 1, homogenization_Ngrains(material_homogenizationAt(el))
thermal_conduction_getConductivity33 = thermal_conduction_getConductivity33 + &
2019-06-15 17:27:24 +05:30
crystallite_push33ToRef(grain,ip,el,lattice_thermalConductivity33(:,:,material_phaseAt(grain,el)))
enddo
thermal_conduction_getConductivity33 = &
2019-06-07 00:44:37 +05:30
thermal_conduction_getConductivity33/real(homogenization_Ngrains(material_homogenizationAt(el)),pReal)
end function thermal_conduction_getConductivity33
2018-12-31 02:24:50 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized specific heat capacity
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getSpecificHeat(ip,el)
2019-06-07 00:44:37 +05:30
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_conduction_getSpecificHeat
integer :: &
grain
thermal_conduction_getSpecificHeat = 0.0_pReal
2019-06-07 00:44:37 +05:30
do grain = 1, homogenization_Ngrains(material_homogenizationAt(el))
thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat + &
2019-06-15 17:27:24 +05:30
lattice_specificHeat(material_phaseAt(grain,el))
enddo
thermal_conduction_getSpecificHeat = &
2019-06-07 00:44:37 +05:30
thermal_conduction_getSpecificHeat/real(homogenization_Ngrains(material_homogenizationAt(el)),pReal)
end function thermal_conduction_getSpecificHeat
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized mass density
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getMassDensity(ip,el)
2019-06-07 00:44:37 +05:30
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_conduction_getMassDensity
integer :: &
grain
thermal_conduction_getMassDensity = 0.0_pReal
2019-06-07 00:44:37 +05:30
do grain = 1, homogenization_Ngrains(material_homogenizationAt(el))
thermal_conduction_getMassDensity = thermal_conduction_getMassDensity &
2019-06-15 17:27:24 +05:30
+ lattice_massDensity(material_phaseAt(grain,el))
enddo
thermal_conduction_getMassDensity = &
2019-06-07 00:44:37 +05:30
thermal_conduction_getMassDensity/real(homogenization_Ngrains(material_homogenizationAt(el)),pReal)
end function thermal_conduction_getMassDensity
2018-12-31 02:24:50 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief updates thermal state with solution from heat conduction PDE
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_putTemperatureAndItsRate(T,Tdot,ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
T, &
Tdot
integer :: &
homog, &
offset
homog = material_homogenizationAt(el)
offset = thermalMapping(homog)%p(ip,el)
temperature (homog)%p(offset) = T
temperatureRate(homog)%p(offset) = Tdot
end subroutine thermal_conduction_putTemperatureAndItsRate
2019-12-11 00:55:19 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief writes results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_results(homog,group)
integer, intent(in) :: homog
character(len=*), intent(in) :: group
#if defined(PETSc) || defined(DAMASK_HDF5)
integer :: o, instance
instance = thermal_typeInstance(homog)
outputsLoop: do o = 1,thermal_conduction_Noutput(instance)
select case(thermal_conduction_outputID(o,instance))
case (temperature_ID)
call results_writeDataset(group,temperature(homog)%p,'T',&
'temperature','K')
end select
enddo outputsLoop
#endif
end subroutine thermal_conduction_results
2018-12-31 02:24:50 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief return array of thermal results
!--------------------------------------------------------------------------------------------------
2018-12-31 02:24:50 +05:30
function thermal_conduction_postResults(homog,instance,of) result(postResults)
integer, intent(in) :: &
homog, &
instance, &
of
real(pReal), dimension(sum(thermal_conduction_sizePostResult(:,instance))) :: &
postResults
integer :: &
o, c
c = 0
do o = 1,thermal_conduction_Noutput(instance)
select case(thermal_conduction_outputID(o,instance))
case (temperature_ID)
postResults(c+1) = temperature(homog)%p(of)
c = c + 1
end select
enddo
2018-12-31 02:24:50 +05:30
end function thermal_conduction_postResults
end module thermal_conduction