DAMASK_EICMD/src/homogenization_thermal.f90

194 lines
6.4 KiB
Fortran
Raw Normal View History

2020-12-30 16:30:47 +05:30
!--------------------------------------------------------------------------------------------------
!> @author Martin Diehl, KU Leuven
!--------------------------------------------------------------------------------------------------
submodule(homogenization) homogenization_thermal
2021-01-24 17:56:01 +05:30
use lattice
2020-12-30 16:30:47 +05:30
type :: tDataContainer
real(pReal), dimension(:), allocatable :: T, dot_T
end type tDataContainer
type(tDataContainer), dimension(:), allocatable :: current
type :: tParameters
character(len=pStringLen), allocatable, dimension(:) :: &
output
end type tParameters
type(tparameters), dimension(:), allocatable :: &
param
2020-12-30 16:30:47 +05:30
contains
!--------------------------------------------------------------------------------------------------
!> @brief Allocate variables and set parameters.
!--------------------------------------------------------------------------------------------------
module subroutine thermal_init()
class(tNode), pointer :: &
configHomogenizations, &
configHomogenization, &
configHomogenizationThermal
integer :: ho
2021-01-08 02:45:18 +05:30
2020-12-30 16:30:47 +05:30
print'(/,a)', ' <<<+- homogenization_thermal init -+>>>'
configHomogenizations => config_material%get('homogenization')
allocate(param(configHomogenizations%length))
allocate(current(configHomogenizations%length))
do ho = 1, configHomogenizations%length
allocate(current(ho)%T(count(material_homogenizationAt2==ho)), source=thermal_initialT(ho))
allocate(current(ho)%dot_T(count(material_homogenizationAt2==ho)), source=0.0_pReal)
configHomogenization => configHomogenizations%get(ho)
associate(prm => param(ho))
if (configHomogenization%contains('thermal')) then
configHomogenizationThermal => configHomogenization%get('thermal')
#if defined (__GFORTRAN__)
prm%output = output_asStrings(configHomogenizationThermal)
#else
prm%output = configHomogenizationThermal%get_asStrings('output',defaultVal=emptyStringArray)
#endif
else
prm%output = emptyStringArray
endif
end associate
enddo
2020-12-30 16:30:47 +05:30
end subroutine thermal_init
!--------------------------------------------------------------------------------------------------
!> @brief Partition temperature onto the individual constituents.
2020-12-30 16:30:47 +05:30
!--------------------------------------------------------------------------------------------------
2021-01-24 17:56:01 +05:30
module subroutine thermal_partition(ce)
2020-12-30 16:30:47 +05:30
integer, intent(in) :: ce
2020-12-30 16:30:47 +05:30
2021-01-24 17:56:01 +05:30
real(pReal) :: T, dot_T
integer :: co
2020-12-30 16:30:47 +05:30
2021-01-24 17:56:01 +05:30
T = current(material_homogenizationAt2(ce))%T(material_homogenizationMemberAt2(ce))
dot_T = current(material_homogenizationAt2(ce))%dot_T(material_homogenizationMemberAt2(ce))
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
2021-01-24 17:56:01 +05:30
call constitutive_thermal_setField(T,dot_T,co,ce)
enddo
2020-12-30 16:30:47 +05:30
end subroutine thermal_partition
!--------------------------------------------------------------------------------------------------
!> @brief Homogenize temperature rates
!--------------------------------------------------------------------------------------------------
module subroutine thermal_homogenize(ip,el)
integer, intent(in) :: ip,el
2021-01-24 19:49:57 +05:30
!call constitutive_thermal_getRate(homogenization_dot_T((el-1)*discretization_nIPs+ip), ip,el)
end subroutine thermal_homogenize
2021-01-24 17:56:01 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief return homogenized thermal conductivity in reference configuration
!--------------------------------------------------------------------------------------------------
module function thermal_conduction_getConductivity(ip,el) result(K)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: K
integer :: &
co
K = 0.0_pReal
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
K = K + crystallite_push33ToRef(co,ip,el,lattice_K(:,:,material_phaseAt(co,el)))
enddo
K = K / real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal)
end function thermal_conduction_getConductivity
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized specific heat capacity
!--------------------------------------------------------------------------------------------------
module function thermal_conduction_getSpecificHeat(ce) result(c_P)
integer, intent(in) :: ce
real(pReal) :: c_P
integer :: co
c_P = 0.0_pReal
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
c_P = c_P + lattice_c_p(material_phaseAt2(co,ce))
enddo
c_P = c_P / real(homogenization_Nconstituents(material_homogenizationAt2(ce)),pReal)
end function thermal_conduction_getSpecificHeat
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized mass density
!--------------------------------------------------------------------------------------------------
module function thermal_conduction_getMassDensity(ce) result(rho)
integer, intent(in) :: ce
real(pReal) :: rho
integer :: co
rho = 0.0_pReal
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
rho = rho + lattice_rho(material_phaseAt2(co,ce))
enddo
rho = rho / real(homogenization_Nconstituents(material_homogenizationAt2(ce)),pReal)
end function thermal_conduction_getMassDensity
!--------------------------------------------------------------------------------------------------
!> @brief Set thermal field and its rate (T and dot_T)
!--------------------------------------------------------------------------------------------------
module subroutine homogenization_thermal_setField(T,dot_T, ce)
integer, intent(in) :: ce
real(pReal), intent(in) :: T, dot_T
current(material_homogenizationAt2(ce))%T(material_homogenizationMemberAt2(ce)) = T
current(material_homogenizationAt2(ce))%dot_T(material_homogenizationMemberAt2(ce)) = dot_T
end subroutine homogenization_thermal_setField
2021-01-24 19:49:57 +05:30
module function homogenization_thermal_T(ce) result(T)
integer, intent(in) :: ce
real(pReal) :: T
T = current(material_homogenizationAt2(ce))%T(material_homogenizationMemberAt2(ce))
end function homogenization_thermal_T
2020-12-30 16:30:47 +05:30
end submodule homogenization_thermal