DAMASK_EICMD/code/kinematics_thermal_expansio...

227 lines
11 KiB
Fortran
Raw Normal View History

!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incorporating kinematics resulting from thermal expansion
!> @details to be done
!--------------------------------------------------------------------------------------------------
module kinematics_thermal_expansion
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
kinematics_thermal_expansion_sizePostResults, & !< cumulative size of post results
kinematics_thermal_expansion_offset, & !< which kinematics is my current damage mechanism?
kinematics_thermal_expansion_instance !< instance of damage kinematics mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
kinematics_thermal_expansion_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
kinematics_thermal_expansion_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
kinematics_thermal_expansion_Noutput !< number of outputs per instance of this damage
! enum, bind(c) ! ToDo kinematics need state machinery to deal with sizePostResult
! enumerator :: undefined_ID, & ! possible remedy is to decouple having state vars from having output
! thermalexpansionrate_ID ! which means to separate user-defined types tState + tOutput...
! end enum
public :: &
kinematics_thermal_expansion_init, &
kinematics_thermal_expansion_initialStrain, &
kinematics_thermal_expansion_LiAndItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine kinematics_thermal_expansion_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_kinematics, &
phase_Nkinematics, &
phase_Noutput, &
KINEMATICS_thermal_expansion_label, &
KINEMATICS_thermal_expansion_ID, &
material_Nphase, &
MATERIAL_partPhase
use numerics,only: &
worldrank
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,phase,instance,kinematics
character(len=65536) :: &
tag = '', &
output = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- kinematics_'//KINEMATICS_thermal_expansion_LABEL//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_kinematics == KINEMATICS_thermal_expansion_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(kinematics_thermal_expansion_offset(material_Nphase), source=0_pInt)
allocate(kinematics_thermal_expansion_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
kinematics_thermal_expansion_instance(phase) = count(phase_kinematics(:,1:phase) == kinematics_thermal_expansion_ID)
do kinematics = 1, phase_Nkinematics(phase)
if (phase_kinematics(kinematics,phase) == kinematics_thermal_expansion_ID) &
kinematics_thermal_expansion_offset(phase) = kinematics
enddo
enddo
allocate(kinematics_thermal_expansion_sizePostResults(maxNinstance), source=0_pInt)
allocate(kinematics_thermal_expansion_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(kinematics_thermal_expansion_output(maxval(phase_Noutput),maxNinstance))
kinematics_thermal_expansion_output = ''
allocate(kinematics_thermal_expansion_Noutput(maxNinstance), source=0_pInt)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_kinematics(:,phase) == KINEMATICS_thermal_expansion_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = kinematics_thermal_expansion_instance(phase) ! which instance of my damage is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key...
select case(tag)
! case ('(output)')
! output = IO_lc(IO_stringValue(line,chunkPos,2_pInt)) ! ...and corresponding output
! select case(output)
! case ('thermalexpansionrate')
! kinematics_thermal_expansion_Noutput(instance) = kinematics_thermal_expansion_Noutput(instance) + 1_pInt
! kinematics_thermal_expansion_outputID(kinematics_thermal_expansion_Noutput(instance),instance) = &
! thermalexpansionrate_ID
! kinematics_thermal_expansion_output(kinematics_thermal_expansion_Noutput(instance),instance) = output
! ToDo add sizePostResult loop afterwards...
end select
endif; endif
enddo parsingFile
end subroutine kinematics_thermal_expansion_init
!--------------------------------------------------------------------------------------------------
!> @brief report initial thermal strain based on current temperature deviation from reference
!--------------------------------------------------------------------------------------------------
pure function kinematics_thermal_expansion_initialStrain(ipc, ip, el)
use material, only: &
material_phase, &
material_homog, &
temperature, &
thermalMapping
use lattice, only: &
lattice_thermalExpansion33, &
lattice_referenceTemperature
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
kinematics_thermal_expansion_initialStrain !< initial thermal strain (should be small strain, though)
integer(pInt) :: &
phase, &
homog, offset
phase = material_phase(ipc,ip,el)
homog = material_homog(ip,el)
offset = thermalMapping(homog)%p(ip,el)
kinematics_thermal_expansion_initialStrain = &
(temperature(homog)%p(offset) - lattice_referenceTemperature(phase)) * &
lattice_thermalExpansion33(1:3,1:3,phase)
end function kinematics_thermal_expansion_initialStrain
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the velocity gradient
!--------------------------------------------------------------------------------------------------
subroutine kinematics_thermal_expansion_LiAndItsTangent(Li, dLi_dTstar3333, ipc, ip, el)
use material, only: &
material_phase, &
material_homog, &
temperature, &
temperatureRate, &
thermalMapping
use lattice, only: &
lattice_thermalExpansion33, &
lattice_referenceTemperature
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(out), dimension(3,3) :: &
Li !< thermal velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLi_dTstar3333 !< derivative of Li with respect to Tstar (4th-order tensor defined to be zero)
integer(pInt) :: &
phase, &
homog, offset
real(pReal) :: &
T, TRef, TDot
phase = material_phase(ipc,ip,el)
homog = material_homog(ip,el)
offset = thermalMapping(homog)%p(ip,el)
T = temperature(homog)%p(offset)
TDot = temperatureRate(homog)%p(offset)
TRef = lattice_referenceTemperature(phase)
Li = TDot* &
lattice_thermalExpansion33(1:3,1:3,phase)/ &
(1.0_pReal + lattice_thermalExpansion33(1:3,1:3,phase)*(T - TRef))
dLi_dTstar3333 = 0.0_pReal
end subroutine kinematics_thermal_expansion_LiAndItsTangent
end module kinematics_thermal_expansion