DAMASK_EICMD/trunk/constitutive.f90

610 lines
20 KiB
Fortran
Raw Normal View History

!************************************
!* Module: CONSTITUTIVE *
!************************************
!* contains: *
!* - constitutive equations *
!* - Schmid matrices calculation *
!* - Hardening matrices definition *
!* - Parameters definition *
!* - orientations? *
!************************************
MODULE constitutive
!*** Include other modules ***
use prec, only: pReal,pInt
! NB: 'only'-commend may not be needed
implicit none
!*****************************
!* Material parameters *
!*****************************
!* Character *
character*80, allocatble :: TCfile(:),ODFfile(:)
! NB: orientation files TCfile(number of material)
!* Integer *
integer(pInt) Nmats
! NB: Number of materials (read in material file)
integer(pInt), allocatable :: crystal_structure(:)
! NB: crystal_structure(number of material)=1-3
integer(pInt) Nslip(3)
! NB: Number of systems for each crystal structure (3)
!* Real *
real(pReal), allocatable :: Cslip_66(:,:,:)
! NB: Cslip_66(1:6,1:6,number of materials)
real(pReal), allocatable :: s0_slip(:),gdot0_slip(:),n_slip(:)
real(pReal), allocatable :: h0(:),w0(:),s_sat(:)
! NB: Parameters(number of materials)
real(pReal), allocatable :: hardening_matrix(:,:,:)
! NB: hardening_matrix(48,48,3)
real(pReal), parameter :: latent_hardening=1.4_pReal
real(pReal) sn(3,48,3),sd(3,48,3)
! NB: slip normale and slip direction for 3 crystal structures
! Is 48 always the maximum number of systems?
real(pReal) Sslip(3,3,48,3),Sslip_v(6,48,3)
! NB: Schmid matrices and corresponding Schmid vectors
!*** Slip systems for FCC structures (1) ***
Nslip(1)=12_pInt
!* System {111}<110> Sort according Eisenlohr&Hantcherli
data sd(:, 1,1)/ 0, 1,-1/ ; data sn(:, 1,1)/ 1, 1, 1/
data sd(:, 2,1)/-1, 0, 1/ ; data sn(:, 2,1)/ 1, 1, 1/
data sd(:, 3,1)/ 1,-1, 0/ ; data sn(:, 3,1)/ 1, 1, 1/
data sd(:, 4,1)/ 0,-1,-1/ ; data sn(:, 4,1)/-1,-1, 1/
data sd(:, 5,1)/ 1, 0, 1/ ; data sn(:, 5,1)/-1,-1, 1/
data sd(:, 6,1)/-1, 1, 0/ ; data sn(:, 6,1)/-1,-1, 1/
data sd(:, 7,1)/ 0,-1, 1/ ; data sn(:, 7,1)/ 1,-1,-1/
data sd(:, 8,1)/-1, 0,-1/ ; data sn(:, 8,1)/ 1,-1,-1/
data sd(:, 9,1)/ 1, 1, 0/ ; data sn(:, 9,1)/ 1,-1,-1/
data sd(:,10,1)/ 0, 1, 1/ ; data sn(:,10,1)/-1, 1,-1/
data sd(:,11,1)/ 1, 0,-1/ ; data sn(:,11,1)/-1, 1,-1/
data sd(:,12,1)/-1,-1, 0/ ; data sn(:,12,1)/-1, 1,-1/
!*** Slip systems for BCC structures (2) ***
Nslip(2)=48_pInt
!* System {110}<111>
!* Sort?
data sd(:, 1,2)/ 1,-1, 1/ ; data sn(:, 1,2)/ 0, 1, 1/
data sd(:, 2,2)/-1,-1, 1/ ; data sn(:, 2,2)/ 0, 1, 1/
data sd(:, 3,2)/ 1, 1, 1/ ; data sn(:, 3,2)/ 0,-1, 1/
data sd(:, 4,2)/-1, 1, 1/ ; data sn(:, 4,2)/ 0,-1, 1/
data sd(:, 5,2)/-1, 1, 1/ ; data sn(:, 5,2)/ 1, 0, 1/
data sd(:, 6,2)/-1,-1, 1/ ; data sn(:, 6,2)/ 1, 0, 1/
data sd(:, 7,2)/ 1, 1, 1/ ; data sn(:, 7,2)/-1, 0, 1/
data sd(:, 8,2)/ 1,-1, 1/ ; data sn(:, 8,2)/-1, 0, 1/
data sd(:, 9,2)/-1, 1, 1/ ; data sn(:, 9,2)/ 1, 1, 0/
data sd(:,10,2)/-1, 1,-1/ ; data sn(:,10,2)/ 1, 1, 0/
data sd(:,11,2)/ 1, 1, 1/ ; data sn(:,11,2)/-1, 1, 0/
data sd(:,12,2)/ 1, 1,-1/ ; data sn(:,12,2)/-1, 1, 0/
!* System {112}<111>
!* Sort?
data sd(:,13,2)/-1, 1, 1/ ; data sn(:,13,2)/ 2, 1, 1/
data sd(:,14,2)/ 1, 1, 1/ ; data sn(:,14,2)/-2, 1, 1/
data sd(:,15,2)/ 1, 1,-1/ ; data sn(:,15,2)/ 2,-1, 1/
data sd(:,16,2)/ 1,-1, 1/ ; data sn(:,16,2)/ 2, 1,-1/
data sd(:,17,2)/ 1,-1, 1/ ; data sn(:,17,2)/ 1, 2, 1/
data sd(:,18,2)/ 1, 1,-1/ ; data sn(:,18,2)/-1, 2, 1/
data sd(:,19,2)/ 1, 1, 1/ ; data sn(:,19,2)/ 1,-2, 1/
data sd(:,20,2)/-1, 1, 1/ ; data sn(:,20,2)/ 1, 2,-1/
data sd(:,21,2)/ 1, 1,-1/ ; data sn(:,21,2)/ 1, 1, 2/
data sd(:,22,2)/ 1,-1, 1/ ; data sn(:,22,2)/-1, 1, 2/
data sd(:,23,2)/-1, 1, 1/ ; data sn(:,23,2)/ 1,-1, 2/
data sd(:,24,2)/ 1, 1, 1/ ; data sn(:,24,2)/ 1, 1,-2/
!* System {123}<111>
!* Sort?
data sd(:,25,2)/ 1, 1,-1/ ; data sn(:,25,2)/ 1, 2, 3/
data sd(:,26,2)/ 1,-1, 1/ ; data sn(:,26,2)/-1, 2, 3/
data sd(:,27,2)/-1, 1, 1/ ; data sn(:,27,2)/ 1,-2, 3/
data sd(:,28,2)/ 1, 1, 1/ ; data sn(:,28,2)/ 1, 2,-3/
data sd(:,29,2)/ 1,-1, 1/ ; data sn(:,29,2)/ 1, 3, 2/
data sd(:,30,2)/ 1, 1,-1/ ; data sn(:,30,2)/-1, 3, 2/
data sd(:,31,2)/ 1, 1, 1/ ; data sn(:,31,2)/ 1,-3, 2/
data sd(:,32,2)/-1, 1, 1/ ; data sn(:,32,2)/ 1, 3,-2/
data sd(:,33,2)/ 1, 1,-1/ ; data sn(:,33,2)/ 2, 1, 3/
data sd(:,34,2)/ 1,-1, 1/ ; data sn(:,34,2)/-2, 1, 3/
data sd(:,35,2)/-1, 1, 1/ ; data sn(:,35,2)/ 2,-1, 3/
data sd(:,36,2)/ 1, 1, 1/ ; data sn(:,36,2)/ 2, 1,-3/
data sd(:,37,2)/ 1,-1, 1/ ; data sn(:,37,2)/ 2, 3, 1/
data sd(:,38,2)/ 1, 1,-1/ ; data sn(:,38,2)/-2, 3, 1/
data sd(:,39,2)/ 1, 1, 1/ ; data sn(:,39,2)/ 2,-3, 1/
data sd(:,40,2)/-1, 1, 1/ ; data sn(:,40,2)/ 2, 3,-1/
data sd(:,41,2)/-1, 1, 1/ ; data sn(:,41,2)/ 3, 1, 2/
data sd(:,42,2)/ 1, 1, 1/ ; data sn(:,42,2)/-3, 1, 2/
data sd(:,43,2)/ 1, 1,-1/ ; data sn(:,43,2)/ 3,-1, 2/
data sd(:,44,2)/ 1,-1, 1/ ; data sn(:,44,2)/ 3, 1,-2/
data sd(:,45,2)/-1, 1, 1/ ; data sn(:,45,2)/ 3, 2, 1/
data sd(:,46,2)/ 1, 1, 1/ ; data sn(:,46,2)/-3, 2, 1/
data sd(:,47,2)/ 1, 1,-1/ ; data sn(:,47,2)/ 3,-2, 1/
data sd(:,48,2)/ 1,-1, 1/ ; data sn(:,48,2)/ 3, 2,-1/
!*** Slip systems for HCP structures (3) ***
Nslip(3)=12_pInt
!* Basal systems {0001}<1120>
!* 1- (0 0 0 1)[-2 1 1 0]
!* 2- (0 0 0 1)[ 1 -2 1 0]
!* 3- (0 0 0 1)[ 1 1 -2 0]
!* Plane (hkil)->(hkl)
!* Direction [uvtw]->[(u-t) (v-t) w]
!* Automatical transformation from Bravais to Miller
!* not done for the moment
!* Sort?
data sd(:, 1,3)/-1, 0, 0/ ; data sn(:, 1,3)/ 0, 0, 1/
data sd(:, 2,3)/ 0,-1, 0/ ; data sn(:, 2,3)/ 0, 0, 1/
data sd(:, 3,3)/ 1, 1, 0/ ; data sn(:, 3,3)/ 0, 0, 1/
!* 1st type prismatic systems {1010}<1120>
!* 1- ( 0 1 -1 0)[-2 1 1 0]
!* 2- ( 1 0 -1 0)[ 1 -2 1 0]
!* 3- (-1 1 0 0)[ 1 1 -2 0]
!* Sort?
data sd(:, 4,3)/-1, 0, 0/ ; data sn(:, 4,3)/ 0, 1, 0/
data sd(:, 5,3)/ 0,-1, 0/ ; data sn(:, 5,3)/ 1, 0, 0/
data sd(:, 6,3)/ 1, 1, 0/ ; data sn(:, 6,3)/-1, 1, 0/
!* 1st type 1st order pyramidal systems {1011}<1120>
!* 1- ( 0 -1 1 1)[-2 1 1 0]
!* 2- ( 0 1 -1 1)[-2 1 1 0]
!* 3- (-1 0 1 1)[ 1 -2 1 0]
!* 4- ( 1 0 -1 1)[ 1 -2 1 0]
!* 5- (-1 1 0 1)[ 1 1 -2 0]
!* 6- ( 1 -1 0 1)[ 1 1 -2 0]
!* Sort?
data sd(:, 7,3)/-1, 0, 0/ ; data sn(:, 7,3)/ 0,-1, 1/
data sd(:, 8,3)/ 0,-1, 0/ ; data sn(:, 8,3)/ 0, 1, 1/
data sd(:, 9,3)/ 1, 1, 0/ ; data sn(:, 9,3)/-1, 0, 1/
data sd(:,10,3)/-1, 0, 0/ ; data sn(:,10,3)/ 1, 0, 1/
data sd(:,11,3)/ 0,-1, 0/ ; data sn(:,11,3)/-1, 1, 1/
data sd(:,12,3)/ 1, 1, 0/ ; data sn(:,12,3)/ 1,-1, 1/
contains
!****************************************
!* - constitutive_init *
!* - constitutive_calc_SchmidM *
!* - constitutive_calc_HardeningM *
!* - constitutive_parse_materialDat *
!* - orientation reading???? *
!* - constitutive_calc_SlipRates *
!* - constitutive_calc_Hardening *
!* - consistutive_calc_PlasVeloGradient *
!* - CPFEM_CauchyStress??????? *
!****************************************
subroutine constitutive_init()
!**************************************
!*** Module initialization ***
!**************************************
call constitutive_calc_SchmidM()
call constitutive_calc_hardeningM()
call constitutive_parse_materialDat()
end subroutine
subroutine constitutive_calc_SchmidM()
!**************************************
!*** Calculation of Schmid matrices ***
!**************************************
use prec, only: pReal,pInt
implicit none
!* Definition of variables
integer(pInt) i,j,k,l
real(pReal) invNorm
!* Iteration over the crystal structures
do l=1,3
!* Iteration over the systems
do k=1,Nslip(l)
!* Defintion of Schmid matrix
forall (i=1:3,j=1:3)
Sslip(i,j,k,l)=sd(i,k,l)*sn(j,k,l)
endforall
!* Normalization of Schmid matrix
invNorm = dsqrt(1.0_pReal/
& (sn(1,k,l)**2+sn(2,k,l)**2+sn(3,k,l)**2)*
& (sd(1,k,l)**2+sd(2,k,l)**2+sd(3,k,l)**2))
Sslip(:,:,k,l)=Sslip(:,:,k,l)*invNorm
!* Vectorization of normalized Schmid matrix
!* according MARC component order 11,22,33,12,23,13
Sslip_v(1,k,l)=Sslip(1,1,k,l)
Sslip_v(2,k,l)=Sslip(2,2,k,l)
Sslip_v(3,k,l)=Sslip(3,3,k,l)
Sslip_v(4,k,l)=Sslip(1,2,k,l)+Sslip(2,1,k,l)
Sslip_v(5,k,l)=Sslip(2,3,k,l)+Sslip(3,3,k,l)
Sslip_v(6,k,l)=Sslip(1,3,k,l)+Sslip(3,1,k,l)
enddo
enddo
end subroutine
subroutine constitutive_calc_HardeningM()
!****************************************
!*** Hardening matrix (see Kalidindi) ***
!****************************************
use prec, only: pReal,pInt
implicit none
!* Definition of variables
integer(pInt) i,j,k,l
!* Initialization of the hardening matrix
hardening_matrix=latent_hardening
!* Iteration over the crystal structures
do l=1,3
select case(l)
!* Hardening matrix for FCC structures
case (1)
do k=1,10,3
forall (i=1:3,j=1:3)
hardening_matrix(k-1+i,k-1+j,l)=1.0_pReal
endforall
enddo
!* Hardening matrix for BCC structures
case (2)
do k=1,11,2
forall (i=1:2,j=1:2)
hardening_matrix(k-1+i,k-1+j,l)=1.0_pReal
endforall
enddo
do k=13,48
hardening_matrix(k,k,l)=1.0_pReal
enddo
!* Hardening matrix for HCP structures
case (3)
forall (i=1:3,j=1:3)
hardening_matrix(i,j,l)=1.0_pReal
endforall
do k=4,12
hardening_matrix(k,k,l)=1.0_ZdRe
enddo
end select
enddo
end subroutine
!* NOT YET IMPLEMENTED *!
subroutine constitutive_parse_materialDat()
!****************************************
!*** Reading parameter files ***
!****************************************
use prec, only: pReal,pInt
implicit none
!* Definition of variables
character*80 line
integer(pIn) i,j,k,l,positions(4)
! MISSING: needs to be 2 pass
! first pass to count Nmats and allocate
! 2nd pass to read actual parameters
write(6,*) '## constitutive_parse_materialDat ##'
write(6,*)
constitutive_Nmats = 1
open(200,FILE='material.mpie',ACTION='READ',STATUS='OLD',ERR=100)
read(200,610,ERR=200,END=200) line
IF( line(1:1).ne.'[' )THEN
WRITE(6,*) 'Problem with mat file: no mat. in 1st line'
ELSE
WRITE(6,*) 'Reading mat. data'
DO WHILE( .true. )
READ(200,610,END=220) line
IF( line(1:1).eq.'[' )THEN
constitutive_Nmats = constitutive_Nmats+1
ELSE
positions = IO_stringPos(line,2) ! parse 2 parts
SELECT CASE (IO_stringValue(line,positions,1))
CASE ('s0_slip')
s0_slip(mat) = IO_floatValue(line,positions,2)
CASE ('g0_slip')
g0_slip(mat) = IO_floatValue(line,positions,2)
CASE ('n_slip')
n_slip(mat) = IO_intValue(line,positions,2)
CASE ('h0')
h0(mat) = IO_floatValue(line,positions,2)
CASE ('w0')
w0(mat) = IO_floatValue(line,positions,2)
CASE ('tauc_sat')
tauc_sat(mat) = IO_floatValue(line,positions,2)
CASE ('C11')
C11(mat) = IO_floatValue(line,positions,2)
CASE ('C12')
C12(mat) = IO_floatValue(line,positions,2)
CASE ('C44')
C44(mat) = IO_floatValue(line,positions,2)
CASE ('TCfile')
TCfile(mat) = IO_stringValue(line,positions,2)
CASE ('ODFfile')
ODFfile(mat) = IO_stringValue(line,positions,2)
CASE ('Ngrains')
Ngrains(mat) = IO_intValue(line,positions,2)
CASE DEFAULT
WRITE(6,*) 'Unknown mat. parameter ',line
END IF
END DO
END IF
220 continue
close(200)
! ** Defintion of stiffness matrices **
! MISSING: this needs to be iterated over the materials
Cslip_66 = 0.0_pRe
do i=1,3
do j=1,3
Cslip_66(i,j) = C12
enddo
Cslip_66(i,i) = C11
Cslip_66(i+3,i+3) = C44
enddo
Cslip_3333(:,:,:,:) = math_66to3333(Cslip_66(:,:))
! *** Transformation to get the MARC order ***
! *** 11,22,33,12,23,13 ***
! MISSING this should be outsourced to FEM-spec
temp=Cslip_66(4,:)
Cslip_66(4,:)=Cslip_66(6,:)
Cslip_66(6,:)=Cslip_66(5,:)
Cslip_66(5,:)=temp
temp=Cslip_66(:,4)
Cslip_66(:,4)=2.0d0*Cslip_66(:,6)
Cslip_66(:,6)=2.0d0*Cslip_66(:,5)
Cslip_66(:,5)=2.0d0*temp
! *** Output to MARC output file ***
write(6,*) 'Material data:'
write(6,*) 'Slip parameter:(s0_slip,g0_slip,n_slip)'
write(6,*) s0_slip,g0_slip,n_slip
write(6,*) 'Slip hardening parameter:(h0,tauc_sat,w0)'
write(6,*) h0,tauc_sat,w0
write(6,*) 'Elasticity matrix:'
write(6,*) Cslip_66(1,:)
write(6,*) Cslip_66(2,:)
write(6,*) Cslip_66(3,:)
write(6,*) Cslip_66(4,:)/2.0d0
write(6,*) Cslip_66(5,:)/2.0d0
write(6,*) Cslip_66(6,:)/2.0d0
write(6,*)
call flush(6)
! END OF MISSING mat iterations
return
100 call _error(110)
200 call _error(210)
end
!* NOT YET IMPLEMENTED *!
subroutine READ_ORIENTATIONS
!***********************************************************************
!*** This routine reads orientations from 'orientations.mpie' ***
!***********************************************************************
use mpie
use Zahlendarstellung, only: ZdRe,ZdIn
implicit none
! *** Definition of variables ***
integer(ZdIn) i,j
! *** Read 'orientations.mpie' file ***
open(100,FILE='orientations.mpie',ACTION='READ',STATUS='OLD',
& ERR=100)
read(100,*,ERR=200,END=200)
! *** Read number of states, maximum of components over the states ***
read(100,*,ERR=200,END=200) mpie_nmat,mpie_norimx
! *** Allocate memory for the arrays ***
allocate(mpie_mat(mpie_nmat,2+7*mpie_norimx))
allocate(mpie_cko(mpie_nmat,4:35,3,0:35,2))
allocate(mpie_ckofile(mpie_nmat,80))
allocate(mpie_odfmax(mpie_nmat))
mpie_mat=0.0_ZdRe
mpie_cko=0.0_ZdRe
mpie_ckofile=''
mpie_odfmax=0.0_ZdRe
! *** Read the different states ***
do i=1,mpie_nmat
read(100,*,ERR=200,END=200)
! *** Number of component and symmetry ***
read(100,*,ERR=200,END=200) mpie_mat(i,1),mpie_mat(i,2)
! *** If symmetry = 2, use direct ODF sampling,i.e. read coefficience ***
if (mpie_mat(i,2)==2_ZdIn) then
read(100,'(80A)',ERR=200,END=201) mpie_ckofile(i,:)
201 call mpie_read_ckofile(mpie_cko(i,:,:,:,:),
& mpie_ckofile(i,:))
call mpie_odf_max(mpie_cko(i,:,:,:,:),mpie_odfmax(i))
! *** Set volume fraction to inverse of orientation number for each orientation ***
do j=1,int(mpie_mat(i,1),ZdIn)
mpie_mat(i,2+7*j)=1/mpie_mat(i,1)
enddo
else
! *** Read for every component: ***
! *** gauss: euler angles (phi1, PHI, phi2), dummy, scatter, volume fraction ***
! *** fiber: alpha1, alpha2, beta1, beta2, scatter, volume fraction ***
do j=1,int(mpie_mat(i,1),ZdIn)
read(100,*,ERR=200,END=200) mpie_mat(i,7*j-4),
& mpie_mat(i,7*j-3),mpie_mat(i,7*j-2),
& mpie_mat(i,7*j-1),mpie_mat(i,7*j),
& mpie_mat(i,7*j+1),mpie_mat(i,7*j+2)
enddo
endif
enddo
close(100)
! *** Output to MARC output file ***
write(6,*) 'MPIE Material Routine Ver. 0.1 by L. Hantcherli'
write(6,*)
write(6,*) 'Orientations data:'
write(6,*) 'Number of materials: ', mpie_nmat
write(6,*) 'Maximum number of components: ', mpie_norimx
write(6,*)
do i=1,mpie_nmat
write(6,*) 'State', i
if (mpie_mat(i,2)==2_ZdIn) then
write(6,*) mpie_ckofile(i,:),mpie_mat(i,9),mpie_odfmax(i)
else
write(6,*) mpie_mat(i,:)
endif
write(6,*)
enddo
call flush(6)
return
100 call _error(100)
200 call _error(200)
end
subroutine constitutive_calc_SlipRates(
& matID,
& tau_slip,
& tauc_slip,
& gdot_slip,
& dgdot_dtaucslip
& )
!*********************************************************************
!* This subroutine contains the constitutive equation for the slip *
!* rate on each slip system *
!* INPUT: *
!* - matID : material identifier *
!* - tau_slip : applied shear stress on each slip system *
!* - tauc_slip : critical shear stress on each slip system *
!* OUTPUT: *
!* - gdot_slip : slip rate on each slip system *
!* - dgdot_dtaucslip : derivative of slip rate on each slip system *
!*********************************************************************
use prec, only: pReal,pInt
implicit none
!* Definition of variables
integer(pInt) matID,i
real(pReal), tau_slip(Nslip(crystal_structure(matID)))
real(pReal), tauc_slip_new(Nslip(crystal_structure(matID)))
real(pReal), gdot_slip(Nslip(crystal_structure(matID)))
real(pReal), dgdot_dtaucslip(Nslip(crystal_structure(matID)))
!* Iteration over the systems
do i=1,Nslip(crystal_structure(matID))
gdot_slip(i)=gdot0_slip(matID)*(abs(tau_slip(i))/tauc_slip(i))
& **n_slip(matID)*sign(1.0_pReal,tau_slip(i))
dgdot_dtaucslip(i)=gdot0_slip(matID)*(abs(tau_slip(i))/tauc_slip(i))
& **(n_slip(matID)-1.0_pReal)
& *n_slip(matID)/tauc_slip(i)
enddo
return
end subroutine
subroutine constitutive_calc_Hardening(
& matID,
& tauc_slip,
& gdot_slip,
& dtauc_slip
& )
!*********************************************************************
!* This subroutine calculates the increment in critical shear stress *
!* due to plastic deformation on each slip system *
!* INPUT: *
!* - matID : material identifier *
!* - tauc_slip : critical shear stress on each slip system *
!* - gdot_slip : slip rate on each slip system *
!* OUTPUT: *
!* - dtauc_slip : increment of hardening due to slip on each system *
!*********************************************************************
use prec, only: pReal,pInt
implicit none
!* Definition of variables
integer(pInt) matID,i,j
real(pReal) tauc_slip_new(Nslip(crystal_structure(matID)))
real(pReal) gdot_slip(Nslip(crystal_structure(matID)))
real(pReal) dtauc_slip(Nslip(crystal_structure(matID)))
real(pReal) self_hardening(Nslip(crystal_structure(matID)))
!* Self-Hardening of each system
do i=1,Nslip(crystal_structure(matID))
self_hardening(i)=h0(matID)*(1.0_pReal-tauc_slip(i)/
& s_sat(matID))**w0(matID)*abs(gdot_slip(i))
enddo
!* Hardening for all systems
i=Nslip(crystal_structure(matID))
j=crystal_structure(matID)
dtauc_slip=matmul(hardening_matrix(i,i,j),selfhr)
return
end
subroutine plastic_vel_grad(dt,tau_slip,tauc_slip_new,Lp)
C *************************************************************
C Subroutine calculates the plastic velocity gradient given the
C slip rates
C Input: dt : time step
C tau_slip : shear stress on each slip system on each
C slip system
C tauc_slip_new : critical shear stress needed for slip on each
C slip system
C Output: Lp : plastic velocity gradient
C gdot_slip : slip rate on each slip system
C *************************************************************
use mpie
use Zahlendarstellung
implicit none
real(ZdRe) dt,tau_slip(nslip),tauc_slip_new(nslip),
& Lp(3,3),gdot_slip(nslip)
integer(ZdIn) i
Lp=0
do i=1,nslip
gdot_slip(i)=g0_slip*(abs(tau_slip(i))/tauc_slip_new(i))
& **n_slip*sign(1.0_ZdRe,tau_slip(i))
Lp=Lp+gdot_slip(i)*Sslip(i,:,:)
enddo
return
end
function CPFEM_Cauchy(Estar_v,Fe,C66)
C ***************************************************************
C Subroutine calculates the cauchy from the elastic strain tensor
C Input: Estar_v : elastic strain tensor (in vector form)
C Fe : elastic deformation gradient
C C66 : Stiffness Tensor
C Output: cs : cauchy stress
C Local: Tstar_v,Tstar,mm,det
C ***************************************************************
use math
use prec
implicit none
real(pRe) Estar_v(6),Fe(3,3),C66(6,6),CPFEM_Cauchy(6)
real(pRe) det,mm(3,3),Tstar(3,3)
integer(pIn) i
det = math_det(Fe)
Tstar = math_6to33(matmul(C66,Estar_v))
mm=matmul(matmul(Fe,Tstar),transpose(Fe))/det
CPFEM_Cauchy = math_33to6(mm)
return
end function
end module